Insulin receptor Arg717 and IGF-1 receptor Arg704 play a key role in ligand binding and in receptor activation
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37935358
PubMed Central
PMC10645074
DOI
10.1098/rsob.230142
Knihovny.cz E-zdroje
- Klíčová slova
- mutagenesis in vitro, peptide hormone, receptor modification, receptor tyrosine kinase, structure–function,
- MeSH
- elektronová kryomikroskopie MeSH
- insulinu podobný růstový faktor I genetika chemie metabolismus MeSH
- inzulin metabolismus MeSH
- ligandy MeSH
- receptor IGF typ 1 * genetika chemie metabolismus MeSH
- receptor inzulinu * genetika chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- insulinu podobný růstový faktor I MeSH
- inzulin MeSH
- ligandy MeSH
- receptor IGF typ 1 * MeSH
- receptor inzulinu * MeSH
The insulin receptor (IR, with its isoforms IR-A and IR-B) and the insulin-like growth factor 1 receptor (IGF-1R) are related tyrosine kinase receptors. Recently, the portfolio of solved hormone-receptor structures has grown extensively thanks to advancements in cryo-electron microscopy. However, the dynamics of how these receptors transition between their inactive and active state are yet to be fully understood. The C-terminal part of the alpha subunit (αCT) of the receptors is indispensable for the formation of the hormone-binding site. We mutated the αCT residues Arg717 and His710 of IR-A and Arg704 and His697 of IGF-1R. We then measured the saturation binding curves of ligands on the mutated receptors and their ability to become activated. Mutations of Arg704 and His697 to Ala in IGF-1R decreased the binding of IGF-1. Moreover, the number of binding sites for IGF-1 on the His697 IGF-1R mutant was reduced to one-half, demonstrating the presence of two binding sites. Both mutations of Arg717 and His710 to Ala in IR-A inactivated the receptor. We have proved that Arg717 is important for the binding of insulin to its receptor, which suggests that Arg717 is a key residue for the transition to the active conformation.
Zobrazit více v PubMed
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. 2017. Insulin receptor isoforms in physiology and disease: an updated view. Endocr. Rev. 38, 379-431. (10.1210/er.2017-00073) PubMed DOI PMC
Lin SL, Lin CY, Lee W, Teng CF, Shyu WC, Jeng LB. 2022. Mini review: molecular interpretation of the IGF/IGF-1R Axis in cancer treatment and stem cells-based therapy in regenerative medicine. Int. J. Mol. Sci. 23, 11781. (10.3390/ijms231911781) PubMed DOI PMC
De Meyts P. 2015. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation. Bioessays. 37, 389-397. (10.1002/bies.201400190) PubMed DOI
Lawrence MC. 2021. Understanding insulin and its receptor from their three-dimensional structures. Mol. Metab. 52, 101255. (10.1016/j.molmet.2021.101255) PubMed DOI PMC
Gutmann T, Schäfer IB, Poojari C, Brankatschk B, Vattulainen I, Strauss M, Coskun Ü. 2020. Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. J. Cell Biol. 219, e201907210. (10.1083/jcb.201907210) PubMed DOI PMC
Li J, et al. 2022. Synergistic activation of the insulin receptor via two distinct sites. Nat. Struct. Mol. Biol. 29, 357-368. (10.1038/s41594-022-00750-6) PubMed DOI PMC
Li J, Choi E, Yu H, Bai XC. 2019. Structural basis of the activation of type 1 insulin-like growth factor receptor. Nat. Commun. 10, 4567. (10.1038/s41467-019-12564-0) PubMed DOI PMC
Nagao H, Cai W, Wewer Albrechtsen NJ, Steger M, Batista TM, Pan H, Dreyfuss JM, Mann M, Kahn CR. 2021. Distinct signaling by insulin and IGF-1 receptors and their extra- and intracellular domains. Proc. Natl Acad. Sci. USA 118, e2019474118. (10.1073/pnas.2019474118) PubMed DOI PMC
Nagao H, et al. 2022. Leucine-973 is a crucial residue differentiating insulin and IGF-1 receptor signaling. J. Clin. Invest. 133, e161472. (10.1172/jci161472) PubMed DOI PMC
Shukla N, Kadam S, Padinhateeri R, Kolthur-Seetharam U. 2021. Continuous variable responses and signal gating form kinetic bases for pulsatile insulin signaling and emergence of resistance. Proc. Natl Acad. Sci. USA 118, e2102560118. (10.1073/pnas.2102560118) PubMed DOI PMC
Kiselyov VV, Versteyhe S, Gauguin L, De Meyts P. 2009. Harmonic oscillator model of the insulin and IGF1 receptors' allosteric binding and activation. Mol. Syst. Biol. 5, 243. (10.1038/msb.2008.78) PubMed DOI PMC
Knudsen L, De Meyts P, Kiselyov VV. 2011. Insight into the molecular basis for the kinetic differences between the two insulin receptor isoforms. Biochem. J. 440, 397-403. (10.1042/bj20110550) PubMed DOI
Surinya KH, Forbes BE, Occhiodoro F, Booker GW, Francis GL, Siddle K, Wallace JC, Cosgrove LJ. 2008. An investigation of the ligand binding properties and negative cooperativity of soluble insulin-like growth factor receptors. J. Biol. Chem. 283, 5355-5363. (10.1074/jbc.M707054200) PubMed DOI
Christoffersen CT, et al. 1994. Negative cooperativity in the insulin-like growth factor-I receptor and a chimeric IGF-I/insulin receptor. Endocrinology 135, 472-475. (10.1210/endo.135.1.8013387) PubMed DOI
Turvey SJ, McPhillie MJ, Kearney MT, Muench SP, Simmons KJ, Fishwick CWG. 2022. Recent developments in the structural characterisation of the IR and IGF1R: implications for the design of IR-IGF1R hybrid receptor modulators. RSC Med. Chem. 13, 360-374. (10.1039/d1md00300c) PubMed DOI PMC
Choi E, Bai XC. 2023. The activation mechanism of the insulin receptor: a structural perspective. Annu. Rev. Biochem. 92, 247-272. (10.1146/annurev-biochem-052521-033250) PubMed DOI PMC
Forbes BE. 2023. The three-dimensional structure of insulin and its receptor. Vitamins Hormones 123, 151-185. (10.1016/bs.vh.2022.12.001) PubMed DOI
McKern NM, et al. 2006. Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature. 443, 218-221. (10.1038/nature05106) PubMed DOI
Gutmann T, Kim KH, Grzybek M, Walz T, Coskun Ü. 2018. Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor. J. Cell Biol. 217, 1643-1649. (10.1083/jcb.201711047) PubMed DOI PMC
Uchikawa E, Choi E, Shang G, Yu H, Bai XC. 2019. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. Elife 8, e48630. (10.7554/eLife.48630) PubMed DOI PMC
Xu Y, et al. 2018. How ligand binds to the type 1 insulin-like growth factor receptor. Nat. Commun. 9, 821. (10.1038/s41467-018-03219-7) PubMed DOI PMC
Nielsen J, Brandt J, Boesen T, Hummelshøj T, Slaaby R, Schluckebier G, Nissen P. 2022. Structural investigations of full-length insulin receptor dynamics and signalling. J. Mol. Biol. 434, 167458. (10.1016/j.jmb.2022.167458) PubMed DOI
Weis F, et al. 2018. The signalling conformation of the insulin receptor ectodomain. Nat. Commun. 9, 4420. (10.1038/s41467-018-06826-6) PubMed DOI PMC
Zhang X, et al. 2020. Visualization of ligand-bound ectodomain assembly in the full-length human IGF-1 receptor by cryo-EM single-particle analysis. Structure. 28, 555-561. (10.1016/j.str.2020.03.007) PubMed DOI
Moreau F, et al. 2022. Interaction of a viral insulin-like peptide with the IGF-1 receptor produces a natural antagonist. Nat. Commun. 13, 6700. (10.1038/s41467-022-34391-6) PubMed DOI PMC
Li J, Wu J, Hall C, Bai XC, Choi E. 2022. Molecular basis for the role of disulfide-linked αCTs in the activation of insulin-like growth factor 1 receptor and insulin receptor. Elife 11, e81286. (10.7554/eLife.81286) PubMed DOI PMC
Wu C, Huang X, Dong F, Tang W, Shi J, Lu X, Shu Q, Zhang X. 2022. Cryo-EM structure shows how two IGF1 hormones bind to the human IGF1R receptor. Biochem. Biophys. Res. Commun. 636, 121-124. (10.1016/j.bbrc.2022.10.056) PubMed DOI
Macháčková K, et al. 2019. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. J. Biol. Chem. 294, 17 371-17 382. (10.1074/jbc.RA119.010072) PubMed DOI PMC
Gauguin L, Delaine C, Alvino CL, McNeil KA, Wallace JC, Forbes BE, De Meyts P. 2008. Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I. J. Biol. Chem. 283, 20 821-20 829. (10.1074/jbc.M802620200) PubMed DOI PMC
Jiráček J, Selicharová I, Žáková L. 2023. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2. In Vitamins and hormones. Academic Press. (10.1016/bs.vh.2023.01.010) PubMed DOI
Mynarcik DC, Yu GQ, Whittaker J. 1996. Alanine-scanning mutagenesis of a C-terminal ligand binding domain of the insulin receptor alpha subunit. J. Biol. Chem. 271, 2439-2442. (10.1074/jbc.271.5.2439) PubMed DOI
Whittaker J, Groth AV, Mynarcik DC, Pluzek L, Gadsbøll VL, Whittaker LJ. 2001. Alanine scanning mutagenesis of a type 1 insulin-like growth factor receptor ligand binding site. J. Biol. Chem. 276, 43 980-43 986. (10.1074/jbc.M102863200) PubMed DOI
Whittaker J, Whittaker L. 2005. Characterization of the functional insulin binding epitopes of the full-length insulin receptor. J. Biol. Chem. 280, 20 932-20 936. (10.1074/jbc.M411320200) PubMed DOI
Menting JG, et al. 2013. How insulin engages its primary binding site on the insulin receptor. Nature 493, 241-245. (10.1038/nature11781) PubMed DOI PMC
Sciacca L, Cassarino MF, Genua M, Pandini G, Le Moli R, Squatrito S, Vigneri R. 2010. Insulin analogues differently activate insulin receptor isoforms and post-receptor signalling. Diabetologia 53, 1743-1753. (10.1007/s00125-010-1760-6) PubMed DOI
Xu Y, et al. 2020. How IGF-II binds to the human type 1 insulin-like growth factor receptor. Structure 28, 786-798. (10.1016/j.str.2020.05.002) PubMed DOI PMC
Schäffer L. 1994. A model for insulin binding to the insulin receptor. Eur. J. Biochem. 221, 1127-1132. (10.1111/j.1432-1033.1994.tb18833.x) PubMed DOI
Whittaker L, Hao C, Fu W, Whittaker J. 2008. High-affinity insulin binding: insulin interacts with two receptor ligand binding sites. Biochemistry 47, 12 900-12 909. (10.1021/bi801693h) PubMed DOI PMC
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567-1572. (10.1038/nbt1037) PubMed DOI
Mynarcik DC, Williams PF, Schaffer L, Yu GQ, Whittaker J. 1997. Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors: insights into mechanisms of ligand binding. J. Biol. Chem. 272, 18 650-18 655. (10.1074/jbc.272.30.18650) PubMed DOI
Chrudinová M, et al. 2018. A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: structural implications for receptor binding. J. Biol. Chem. 293, 16 818-16 829. (10.1074/jbc.RA118.004852) PubMed DOI PMC
Xu Y, Margetts MB, Venugopal H, Menting JG, Kirk NS, Croll TI, Delaine C, Forbes BE, Lawrence MC. 2022. How insulin-like growth factor I binds to a hybrid insulin receptor type 1 insulin-like growth factor receptor. Structure 30, 1098-1108.e1096. (10.1016/j.str.2022.05.007) PubMed DOI PMC
Kristensen C, Kjeldsen T, Wiberg FC, Schäffer L, Hach M, Havelund S, Bass J, Steiner DF, Andersen AS. 1997. Alanine scanning mutagenesis of insulin. J. Biol. Chem. 272, 12 978-12 983. (10.1074/jbc.272.20.12978) PubMed DOI
Sell C, Dumenil G, Deveaud C, Miura M, Coppola D, DeAngelis T, Rubin R, Efstratiadis A, Baserga R. 1994. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol. Cell. Biol. 14, 3604-3612. (10.1128/mcb.14.6.3604-3612.1994) PubMed DOI PMC
Asai S, Žáková L, Selicharová I, Marek A, Jiráček J. 2021. A radioligand receptor binding assay for measuring of insulin secreted by MIN6 cells after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. Anal. Bioanal. Chem. 413, 4531-4543. (10.1007/s00216-021-03423-3) PubMed DOI
Potalitsyn P, Selicharová I, Sršeň K, Radosavljević J, Marek A, Nováková K, Jiráček J, Žáková L. 2020. A radioligand binding assay for the insulin-like growth factor 2 receptor. PLoS ONE 15, e0238393. (10.1371/journal.pone.0238393) PubMed DOI PMC
Beranova J, Knedlik T, Simkova A, Subr V, Kostka L, Etrych T, Sacha P, Konvalinka J. 2019. Tris-(nitrilotriacetic acid)-decorated polymer conjugates as tools for immobilization and visualization of His-tagged proteins. Catalysts 9, 1011. (10.3390/catal9121011) DOI
Křížková K, Chrudinová M, Povalová A, Selicharová I, Collinsová M, Vaněk V, Brzozowski AM, Jiráček J, Žáková L. 2016. Insulin–insulin-like growth factor hybrids as molecular probes of hormone:receptor binding specificity. Biochemistry 55, 2903-2913. (10.1021/acs.biochem.6b00140) PubMed DOI
Macháčková K, et al. 2017. Insulin-like growth factor 1 analogs clicked in the C domain: chemical synthesis and biological activities. J. Med. Chem. 60, 10 105-10 117. (10.1021/acs.jmedchem.7b01331) PubMed DOI
Kertisová A, Žáková L, Macháčková K, Marek A, Šácha P, Pompach P, Jiráček J, Selicharová I. 2023. Insulin receptor Arg717 and IGF-1 receptor Arg704 play a key role in ligand binding and in receptor activation. Figshare. (10.6084/m9.figshare.c.6902588) PubMed DOI PMC