A radioligand binding assay for the insulin-like growth factor 2 receptor
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/R009066/1
Medical Research Council - United Kingdom
PubMed
32877466
PubMed Central
PMC7467306
DOI
10.1371/journal.pone.0238393
PII: PONE-D-20-20311
Knihovny.cz E-zdroje
- MeSH
- insulinu podobný růstový faktor I metabolismus MeSH
- insulinu podobný růstový faktor II metabolismus MeSH
- kompetitivní vazba MeSH
- kultivované buňky MeSH
- lidé MeSH
- radioizotopy jodu MeSH
- radioligandová zkouška metody MeSH
- receptor IGF typ 2 imunologie ultrastruktura MeSH
- signální transdukce MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IGF1 protein, human MeSH Prohlížeč
- IGF2 protein, human MeSH Prohlížeč
- IGF2R protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor I MeSH
- insulinu podobný růstový faktor II MeSH
- Iodine-125 MeSH Prohlížeč
- radioizotopy jodu MeSH
- receptor IGF typ 2 MeSH
Insulin-like growth factors 2 and 1 (IGF2 and IGF1) and insulin are closely related hormones that are responsible for the regulation of metabolic homeostasis, development and growth of the organism. Physiological functions of insulin and IGF1 are relatively well-studied, but information about the role of IGF2 in the body is still sparse. Recent discoveries called attention to emerging functions of IGF2 in the brain, where it could be involved in processes of learning and memory consolidation. It was also proposed that these functions could be mediated by the receptor for IGF2 (IGF2R). Nevertheless, little is known about the mechanism of signal transduction through this receptor. Here we produced His-tagged domain 11 (D11), an IGF2-binding element of IGF2R; we immobilized it on the solid support through a well-defined sandwich, consisting of neutravidin, biotin and synthetic anti-His-tag antibodies. Next, we prepared specifically radiolabeled [125I]-monoiodotyrosyl-Tyr2-IGF2 and optimized a sensitive and robust competitive radioligand binding assay for determination of the nanomolar binding affinities of hormones for D11 of IGF2. The assay will be helpful for the characterization of new IGF2 mutants to study the functions of IGF2R and the development of new compounds for the treatment of neurological disorders.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Engstrom W, Shokrai A, Otte K, Granerus M, Gessbo A, Bierke P, et al. Transcriptional regulation and biological significance of the insulin like growth factor II gene. Cell Prolif, 1998. 31(5–6): p. 173–89 10.1111/j.1365-2184.1998.tb01196.x PubMed DOI PMC
Efstratiadis A. Genetics of mouse growth. Int J Dev Biol. 1998;42(7):955–76. PMID: ISI:000076795600017. PubMed
Eggenschwiler J, Ludwig T, Fisher P, Leighton PA, Tilghman SM, Efstratiadis A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes & Development. 1997;11(23):3128–42. 10.1101/gad.11.23.3128 PMID: ISI:A1997YL52600004. PubMed DOI PMC
Livingstone C. IGF2 and cancer. Endocr-Relat Cancer, 2013. 20(6): p. R321–R39 10.1530/ERC-13-0231 PubMed DOI
LeRoith D, Roberts CT. The insulin-like growth factor system and cancer. Cancer Lett, 2003. 195(2): p. 127–37 10.1016/s0304-3835(03)00159-9 PubMed DOI
Dynkevich Y, Rother KI, Whitford I, Qureshi S, Galiveeti S, Szulc AL, et al. Tumors, IGF-2, and Hypoglycemia: Insights From the Clinic, the Laboratory, and the Historical Archive. Endocr Rev, 2013. 34(6): p. 798–826. 10.1210/er.2012-1033 PubMed DOI
Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C. Parental Genomic Imprinting of the Human Igf2 Gene. Nature Gen, 1993. 4(1): p. 98–101. 10.1038/Ng0593-98 PubMed DOI
Alberini CM, Chen DY. Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci, 2012. 35(5): p. 274–83. 10.1016/j.tins.2011.12.007 PubMed DOI PMC
Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, et al. A critical role for IGF-II in memory consolidation and enhancement. Nature, 2011. 469(7331): p. 491–7. 10.1038/nature09667 PubMed DOI PMC
Steinmetz AB, Johnson SA, Iannitelli DE, Pollonini G, Alberini CM. Insulin-like growth factor 2 rescues aging-related memory loss in rats. Neurobiol Aging, 2016. 44: p. 9–21. 10.1016/j.neurobiolaging.2016.04.006 PubMed DOI PMC
Kitraki E, Bozas E, Philippidis H, Stylianopoulou F. Aging-Related Changes in Igf-Ii and C-Fos Gene-Expression in the Rat-Brain. Int J Dev Neurosci, 1993. 11(1): p. 1–9. 10.1016/0736-5748(93)90029-d PubMed DOI
Stern SA, Chen DY, Alberini CM. The effect of insulin and insulin-like growth factors on hippocampus- and amygdala-dependent long-term memory formation. Learn Mem, 2014. 21(10): p. 556–63. 10.1101/lm.029348.112 PubMed DOI PMC
Pascual-Lucas M, da Silva SV, Di Scala M, Garcia-Barroso C, Gonzalez-Aseguinolaza G, Mulle C, et al. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol Med, 2014. 6(10): p. 1246–62. 10.15252/emmm.201404228 PubMed DOI PMC
Trenker R, Jura N. Receptor tyrosine kinase activation: From the ligand perspective. Curr Opin Cell Biol, 2020. 63: p. 174–85. 10.1016/j.ceb.2020.01.016 PubMed DOI PMC
Clemmons DR. Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol Cell Endocrinol, 1998. 140(1–2): p. 19–24. 10.1016/s0303-7207(98)00024-0 PubMed DOI
Delaine C, Alvino CL, McNeil KA, Mulhern TD, Gauguin L, De Meyts P, et al. A novel binding site for the human insulin-like growth factor-II (IGF-II)/mannose 6-phosphate receptor on IGF-II. J Biol Chem, 2007. 282(26): p. 18886–94. 10.1074/jbc.M700531200 PubMed DOI
Lobel P, Dahms NM, Kornfeld S. Cloning and Sequence-Analysis of the Cation-Independent Mannose 6-Phosphate Receptor. J Biol Chem, 1988. 263(5): p. 2563–70. PubMed
Dahms NM, Hancock MK. P-type lectins. BBA-Gen Subjects, 2002. 1572(2–3): p. 317–40. 10.1016/S0304-4165(02)00317-3 PubMed DOI
Hassan AB. Keys to the hidden treasures of the mannose 6-phosphate/insulin-like growth factor 2 receptor. Am J Pathol, 2003. 162(1): p. 3–6. 10.1016/S0002-9440(10)63791-1 PubMed DOI PMC
Dahms NM. Insulin-like growth factor II cation-independent mannose 6-phosphate receptor and lysosomal enzyme recognition. Biochem Soc Trans, 1996. 24(1): p. 136–41. 10.1042/bst0240136 PubMed DOI
Linnell J, Groeger G, Hassan AB. Real time kinetics of insulin-like growth factor II (IGF-II) interaction with the IGF-II/mannose 6-phosphate receptor—The effects of domain 13 and pH. J Biol Chem, 2001. 276(26): p. 23986–91. 10.1074/jbc.M100700200 PubMed DOI
Hartman MA, Kreiling JL, Byrd JC, MacDonald RG. High-affinity ligand binding by wild-type/mutant heteromeric complexes of the mannose 6-phosphate/insulin-like growth factor II receptor. FEBS J, 2009. 276(7): p.1915–29. 10.1111/j.1742-4658.2009.06917.x PubMed DOI PMC
Brown J, Esnouf RM, Jones MA, Linnell J, Harlos K, Hassan AB, et al. Structure of a functional IGF2R fragment determined from the anomalous scattering of sulfur. EMBO J, 2002. 21(5): p. 1054–62. 10.1093/emboj/21.5.1054 PubMed DOI PMC
Brown J, Delaine C, Zaccheo OJ, Siebold C, Gilbert RJ, van Boxel G, et al. Structure and functional analysis of the IGF-II/IGF2R interaction. EMBO J, 2008. 27(1): p. 265–76. 10.1038/sj.emboj.7601938 PubMed DOI PMC
Frago S, Nicholls RD, Strickland M, Hughes J, Williams C, Garner L, et al. Functional evolution of IGF2:IGF2R domain 11 binding generates novel structural interactions and a specific IGF2 antagonist. Proc Natl Acad Sci USA, 2016. 113(20): p. E2766–E75. 10.1073/pnas.1513023113 PubMed DOI PMC
Williams C, Hoppe HJ, Rezgui D, Strickland M, Forbes BE, Grutzner F, et al. An Exon Splice Enhancer Primes IGF2:IGF2R Binding Site Structure and Function Evolution. Science, 2012. 338(6111): p. 1209–13. 10.1126/science.1228633 PubMed DOI PMC
Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: New twists in the tale. Nat Rev Mol Cell Biol, 2003. 4(3): p. 202–12. 10.1038/nrm1050 PubMed DOI
Hawkes C, Kar S. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Res Rev, 2004. 44(2–3): p. 117–40. 10.1016/j.brainresrev.2003.11.002 PubMed DOI
Dell'Angelica EC, Payne GS. Intracellular cycling of lysosomal enzyme receptors: Cytoplasmic tails' tales. Cell, 2001. 106(4): p. 395–8. 10.1016/s0092-8674(01)00470-6 PubMed DOI
Byrd JC, Park JHY, Schaffer BS, Garmroudi F, MacDonald RG. Dimerization of the insulin-like growth factor II/mannose 6-phosphate receptor. J Biol Chem, 2000. 275(25): p. 18647–56. 10.1074/jbc.M001273200 PubMed DOI
Hebert E. Mannose-6-phosphate/Insulin-like growth factor II receptor expression and tumor development. Biosci Rep, 2006. 26(1): p. 7–17. 10.1007/s10540-006-9002-3 PubMed DOI
Ou JM, Lian WS, Qiu MK, Dai YX, Dong Q, Shen J, et al. Knockdown of IGF2R suppresses proliferation and induces apoptosis in hemangioma cells in vitro and in vivo. Int J Oncol, 2014. 45(3): p. 1241–9. 10.3892/ijo.2014.2512 PubMed DOI
Sacha P, Knedlik T, Schimer J, Tykvart J, Parolek J, Navratil V, et al. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties. Angew Chem Int Ed Engl, 2016. 55(7): p. 2356–60. 10.1002/anie.201508642 PubMed DOI PMC
Dahms NM, Lobel P, Kornfeld S. Mannose 6-Phosphate Receptors and Lysosomal-Enzyme Targeting. J Biol Chem, 1989. 264(21): p. 12115–8. PubMed
Braulke T, Tippmer S, Chao HJ, Vonfigura K. Regulation of Mannose 6-Phosphate Insulin-Like Growth Factor-Ii Receptor Distribution by Activators and Inhibitors of Protein Kinase-C. Eur J Biochem, 1990. 189(3): p. 609–16. 10.1111/j.1432-1033.1990.tb15529.x PubMed DOI
Jones JI, Clemmons DR. Insulin-Like Growth-Factors and Their Binding-Proteins—Biological Actions. Endocr Rev, 1995. 16(1): p. 3–34. 10.1210/edrv-16-1-3 PubMed DOI
Murayama Y, Okamoto T, Ogata E, Asano T, Iiri T, Katada T, et al. Distinctive Regulation of the Functional Linkage between the Human Cation-Independent Mannose 6-Phosphate Receptor and Gtp-Binding Proteins by Insulin-Like Growth Factor-Ii and Mannose 6-Phosphate. J Biol Chem, 1990. 265(29): p. 17456–62. PubMed
Tally M, Hall K. Insulin-Like Growth Factor-Ii Effects Mediated through Insulin-Like Growth Factor-Ii Receptors. Acta Paediatr Scand, 1990: p. 67–75. PubMed PMID: ISI:A1990DQ39200014. PubMed
El-Shewy HM, Lee MH, Obeid LM, Jaffa AA, Luttrell LM. The insulin-like growth factor type 1 and insulin-like growth factor type 2/Mannose-6-phosphate receptors independently regulate ERK1/2 activity in HEK293 cells. J Biol Chem, 2007. 282(36): p. 26150–7. 10.1074/jbc.M703276200 PubMed PMID: ISI:000249239600018. PubMed DOI
De Meyts P. Insulin and growth hormone receptors in human cultured lymphocytes and peripheral blood monocytes. Methods Receptor Res, 1976. 1: p. 301–83
Zakova L, Kletvíková E., Lepšík M., Collinsová M., Watson C. J., Turkenburg J.P., et al. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex. Acta Crystallogr D, 2014. D70: p. 2765–74. 10.1107/S1399004714017775 PubMed DOI PMC
Kosinova L, Veverka V, Novotna P, Collinsova M, Urbanova M, Moody NR, et al. Insight into the Structural and Biological Relevance of the T/R Transition of the N-Terminus of the B-Chain in Human Insulin. Biochemistry, 2014. 53(21): p. 3392–402. 10.1021/bi500073z PubMed DOI PMC
Vikova J, Collinsova M, Kletvikova E, Budesinsky M, Kaplan V, Zakova L, et al. Rational steering of insulin binding specificity by intra-chain chemical crosslinking. Sci Rep, 2016. 6: 19431 10.1038/srep19431 PubMed DOI PMC
Krizkova K, Chrudinova M, Povalova A, Selicharova I, Collinsova M, Vanek V, et al. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity. Biochemistry. 2016, 55(21): p. 2903–13. 10.1021/acs.biochem.6b00140 PubMed DOI
Machackova K, Collinsova M, Chrudinova M, Selicharova I, Picha J, Budesinsky M, et al. Insulin-like Growth Factor 1 Analogs Clicked in the C Domain: Chemical Synthesis and Biological Activities. J Med Chem. 2017;60(24):10105–17. 10.1021/acs.jmedchem.7b01331 PubMed PMID: ISI:000419263400013. PubMed DOI
Machackova K, Chrudinova M, Radosavljevic J, Potalitsyn P, Krizkova K, Fabry M, et al. Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent Mutation. Biochemistry, 2018. 57(16): p. 2373–82. 10.1021/acs.biochem.7b01260 PubMed DOI
Chrudinova M, Zakova L, Marek A, Socha O, Budesinsky M, Hubalek M, et al. A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding. J Biol Chem, 2018. 293(43): p. 16818–29. 10.1074/jbc.RA118.004852 PubMed DOI PMC
Machackova K, Mlcochova K, Potalitsyn P, Hankova K, Socha O, Budesinski M, et al. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. J Biol Chem, 2019. 294(46): p. 17371–82. 10.1074/jbc.RA119.010072 PubMed DOI PMC
Schneider A, Hanke W. Influence of insulin-like growth factors and insulin on the [S-35]sulfate uptake by cartilage of the axolotl (Ambystoma mexicanum). Gen Comp Endocrinol, 1996. 104(1): p. 92–102. 10.1006/gcen.1996.0145 PubMed DOI
Sakano KI, Enjoh T, Numata F, Fujiwara H, Marumoto Y, Higashihashi N, et al. The Design, Expression, and Characterization of Human Insulin-Like Growth Factor-II (IGF-II) Mutants Specific for Either the IGF-II Cation-Independent Mannose 6-Phosphate Receptor or IGF-I Receptor. J Biol Chem, 1991. 266(31): p. 20626–35. PubMed
Roth BV, Burgisser DM, Luthi C, Humbel RE. Mutants of Human Insulin-Like Growth Factor-II—Expression and Characterization of Analogs with a Substitution of Tyr27 and or a Deletion of Residues 62–67. Biochem Biophys Res Commun, 1991. 181(2): p. 907–14. 10.1016/0006-291x(91)91277-j PubMed DOI
Burgisser DM, Roth BV, Giger R, Luthi C, Weigl S, Zarn J, et al. Mutants of Human Insulin-Like Growth Factor-Ii with Altered Affinities for the Type-1 and Type-2 Insulin-Like Growth-Factor Receptor. J Biol Chem, 1991. 266(2): p. 1029–33. PubMed
Zaccheo OJ, Prince SN, Miller DM, Williams C, Kemp CF, Brown J, et al. Kinetics of insulin-like growth factor II (IGF-II) interaction with domain 11 of the human IGF-II/mannose 6-phosphate receptor: Function of CD and AB loop solvent-exposed residues. J Mol Biol, 2006. 359(2): p. 403–21. 10.1016/j.jmb.2006.03.046 PubMed DOI
Williams C, Rezgui D, Prince SN, Zaccheo OJ, Foulstone EJ, Forbes BE, et al. Structural insights into the interaction of insulin-like growth factor 2 with IGF2R domain 11. Structure, 2007. 15(9): p. 1065–78. 10.1016/j.str.2007.07.007 PubMed DOI
Hexnerova R, Krizkova K, Fabry M, Sieglova I, Kedrova K, Collinsova M, et al. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain. J Biol Chem, 2016. 291(40): p. 21234–45. 10.1074/jbc.M116.741041 PubMed DOI PMC
Elbert T, Vesela I. Conditions for Succsesful Labeling of Oxidation Sensitive Peptides by Na[I-125]—Iodo-Gen (Tm) System. J Labelled Compd Rad, 2010. 53(5–6): p. 288–91. 10.1002/jlcr.1765 DOI
Slaaby R, Andersen AS, Brandt J. IGF-I binding to the IGF-I receptor is affected by contaminants in commercial BSA: The contaminants are proteins with IGF-I binding properties. Growth Horm IGF Res, 2008. 18(4): p. 267–74. 10.1016/j.ghir.2007.09.003 PubMed DOI
Morcavallo A, Genua M, Palummo A, Kletvikova E, Jiracek J, Brzozowski AM, et al. Insulin and Insulin-like Growth Factor II Differentially Regulate Endocytic Sorting and Stability of Insulin Receptor Isoform A. J Biol Chem, 2012. 287(14): p. 11422–36. 10.1074/jbc.M111.252478 PubMed DOI PMC
Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci, 2012. 13(4): p. 225–39. 10.1038/nrn3209 PubMed DOI
Kar S, Chabot JG, Quirion R. Quantitative Autoradiographic Localization of [I-125] Insulin-Like Growth Factor-I, [I-125] Insulin-Like Growth Factor-Ii, and [I-125] Insulin-Receptor Binding-Sites in Developing and Adult-Rat Brain. J Comp Neurol, 1993. 333(3): p. 375–97. 10.1002/cne.903330306 PubMed DOI
Pardridge WM. Transport of Insulin-Related Peptides and Glucose across the Blood-Brain-Barrier. Ann N Y Acad Sci, 1993. 692: p. 126–37. 10.1111/j.1749-6632.1993.tb26211.x PubMed DOI
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. Biochem Insights, 2019. 12: p. 1–18. 10.1177/1178626419842176 PubMed DOI PMC
Reinhardt RR, Bondy CA. Insulin-Like Growth-Factors Cross the Blood-Brain-Barrier. Endocrinology, 1994. 135(5): p. 1753–61. 10.1210/endo.135.5.7525251 PubMed DOI
Perdue JF, Chan JK, Thibault C, Radaj P, Mills B, Daughaday WH. The Biochemical-Characterization of Detergent-Solubilized Insulin-Like Growth Factor-II Receptors from Rat Placenta. J Biol Chem, 1983. 258(12): p. 7800–11. PubMed
Martin-Kleiner I, Troselj KG. Mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) in carcinogenesis. Cancer Lett, 2010. 289(1): p. 11–22. 10.1016/j.canlet.2009.06.036 PubMed DOI
Devi GR, Byrd JC, Slentz DH, MacDonald RG. An insulin-like growth factor II (IGF-II) affinity-enhancing domain localized within extracytoplasmic repeat 13 of the IGF-II/mannose 6-phosphate receptor. Mol Endocrinol, 1998. 12(11): p. 1661–72. 10.1210/mend.12.11.0192 PubMed DOI
Subr V, Kostka L, Strohalm J, Etrych T, Ulbrich K. Synthesis of Well-Defined Semitelechelic Poly[N-(2-hydroxypropyl)methacrylamide] Polymers with Functional Group at the alpha-End of the Polymer Chain by RAFT Polymerization. Macromolecules, 2013. 46(6): p. 2100–8. 10.1021/ma400042u DOI
Jiracek J, Zakova L. Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs. Front Endocrinol, 2017. 8: 167 10.3389/Fendo.2017.00167 PubMed DOI PMC
Zakova L, Barth T, Jiracek J, Barthova J, Zorad S. Shortened insulin analogues: Marked changes in biological activity resulting from replacement of TyrB26 and N-methylation of peptide bonds in the C-terminus of the B-chain. Biochemistry, 2004. 43(8): p. 2323–31. 10.1021/bi036001w PubMed DOI
Zakova L, Kazdova L, Hanclova I, Protivinska E, Sanda M, Budesinsky M, et al. Insulin analogues with modifications at position B26. Divergence of binding affinity and biological activity. Biochemistry, 2008. 47(21): p. 5858–68. 10.1021/bi702086w PubMed DOI
Subramanian K, Fee CJ, Fredericks R, Stubbs RS, Hayes MT. Insulin receptor-insulin interaction kinetics using multiplex surface plasmon resonance. J Mol Recognit, 2013. 26(12): p. 643–52. 10.1002/jmr.2307 PubMed DOI
Ziegler AN, Chidambaram S, Forbes BE, Wood TL, Levison SW. Insulin- like Growth Factor- II (IGF- II) and IGF- II. Analogs with Enhanced Insulin Receptor- a Binding Affinity Promote Neural Stem Cell Expansion. J Biol Chem, 2014. 289(8): p. 4626–33. 10.1074/jbc.M113.537597 PubMed DOI PMC
Drejer K, Kruse V, Larsen UD, Hougaard P, Bjorn S, Gammeltoft S. Receptor-Binding and Tyrosine Kinase Activation by Insulin Analogs with Extreme Affinities Studied in Human Hepatoma Hepg2 Cells. Diabetes, 1991. 40(11): p. 1488–95. 10.2337/diab.40.11.1488 PubMed DOI
Kurtzhals P, Schaffer L, Sorensen A, Kristensen C, Jonassen I, Schmid C, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes, 2000. 49(6): p. 999–1005. 10.2337/diabetes.49.6.999 PubMed DOI
Yu XW, Pandey K, Katzman AC, Alberini CM. A role for CIM6P/IGF2 receptor in memory consolidation and enhancement. Elife, 2020. 9: 10.7554/eLife.54781 PubMed DOI PMC