Design of Potent Mannose-6-Phosphate Derivatives as Ligands for CI-M6P/IGF2R Using Fluorescence Polarization Assay
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
A1 FPBT 2024 003
Vysoká Škola Chemicko-technologická v Praze
Czech Academy of Sciences
90254
Ministerstvo Školství, Mládeže a Tělovýchovy
23-05805S
Grantová Agentura České Republiky
PubMed
40356531
PubMed Central
PMC12284618
DOI
10.1002/chem.202500973
Knihovny.cz E-resources
- Keywords
- IGF2, Mannose‐6‐phosphate, fluorescence polarization assay, ligand binding, receptor,
- MeSH
- Fluorescence Polarization MeSH
- Humans MeSH
- Ligands MeSH
- Lysosomes metabolism MeSH
- Mannosephosphates * chemistry metabolism chemical synthesis MeSH
- Drug Design MeSH
- Receptor, IGF Type 2 * metabolism chemistry MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- IGF2R protein, human MeSH Browser
- Ligands MeSH
- Mannosephosphates * MeSH
- mannose-6-phosphate MeSH Browser
- Receptor, IGF Type 2 * MeSH
The cation-independent mannose-6-phosphate/IGF2 receptor (CI-M6P/IGF2R) plays a crucial role in transporting lysosomal enzymes and other ligands. In this study, we designed and synthesized novel stable mannose-6-phosphate (M6P) derivatives to enhance their affinity for CI-M6P/IGF2R. To evaluate the binding potency, we employed a sensitive and cost-effective fluorescence polarization assay, enabling rapid quantification of receptor-ligand interactions in solution. The tested compounds included di-, tri-, and penta-M6P peptides along with various M6P-derived small molecules featuring phosphate isosteres or other functional modifications. Our findings indicate that ligands bearing multiple M6P moieties exhibit significantly higher receptor affinities than monomeric compounds and that phosphonate groups may serve as a more stable and potent alternative to native M6P. Computational modeling of ligand interactions with the CI-M6P/IGF2R domains further elucidated the binding mechanisms, offering new directions for the development of more effective ligands. This study advances the design of therapeutic strategies that leverage CI-M6P/IGF2R for targeted biomolecule delivery to lysosomes, thereby opening new possibilities for biomedical applications.
See more in PubMed
Kornfeld S., Annu. Rev. Biochem. 1992, 61, 307. PubMed
Zavorka M. E., Connelly C. M., Grosely R., MacDonald R. G., Oncotarget 2016, 7, 62386. PubMed PMC
Leksa V., Godár S., Cebecauer M., Hilgert I., Breuss J., Weidle U. H., Horejsí V., Binder B. R., Stockinger H., J. Biol. Chem. 2002, 277, 40575. PubMed
Coutinho M. F., Prata M. J., Alves S., Mol. Genet. Metab. 2012, 105, 542. PubMed
Brown J., Delaine C., Zaccheo O. J., Siebold C., Gilbert R. J., van Boxel G., Denley A., Wallace J. C., Hassan A. B., Forbes B. E., Jones E. Y., EMBO J. 2008, 27, 265. PubMed PMC
Bochel A. J., Williams C., McCoy A. J., Hoppe H.‐J., Winter A. J., Nicholls R. D., Harlos K., Jones E. Y., Berger I., Hassan A. B., Crump M. P., Structure 2020, 28, 1300. PubMed
a) Hancock M. K., Haskins D. J., Sun G. J., Dahms N. M., J. Biol. Chem. 2002, 277, 11255; PubMed
b) Marron‐Terada P. G., Brzycki‐Wessell M. A., Dahms N. M., J. Biol. Chem. 1998, 273, 22358. PubMed
Brown J., Jones E. Y., Forbes B. E., Vitam Horm 2009, 80, 699. PubMed
Dahms N. M., Hancock M. K., Bba‐Gen Subjects 2002, 1572, 317. PubMed
Hollak C. E., Wijburg F. A., J Inherit Metab Dis 2014, 37, 587. PubMed
Desnick R. J., Schuchman E. H., Nat. Rev. Genet. 2002, 3, 954. PubMed
a) Ahn G., Riley N. M., Kamber R. A., Wisnovsky S., von Hase S. M., Bassik M. C., Banik S. M., Bertozzi C. R., Science 2023, 382, eadf6249; PubMed PMC
b) Banik S. M., Pedram K., Wisnovsky S., Ahn G., Riley N. M., Bertozzi C. R., Nature 2020, 584, 291; PubMed PMC
c) Das S., Parekh N., Mondal B., Gupta S. S., ACS Macro Lett. 2016, 5, 809. PubMed
a) Tong P. Y., Gregory W., Kornfeld S., J. Biol. Chem. 1989, 264, 7962; PubMed
b) Kornfeld S., J. Clin. Invest. 1986, 77, 1. PubMed PMC
Christensen M. K., Meldal M., Bock K., Cordes H., Mouritsen S., Elsner H., J Chem Soc Perk T 1994, 1, 1299.
Franzyk H., Christensen M. K., Jørgensen R. M., Meldal M., Cordes H., Mouritsen S., Bock K., Bioorg. Med. Chem. 1997, 5, 21. PubMed
Hoogendoorn S., van Puijvelde G. H. M., Kuiper J., van der Marel G. A., Overkleeft H. S., Angew Chem Int Edit 2014, 53, 10975. PubMed
Berkowitz D. B., Maiti G., Charette B. D., Dreis C. D., MacDonald R. G., Org. Lett. 2004, 6, 4921. PubMed
a) Berkowitz D. B., Bhuniya D., Peris G., Tetrahedron Lett. 1999, 40, 1869;
b) Shen Q., Sloss D. G., Berkowitz D. B., Synth. Commun. 1994, 24, 1519;
c) Jeanjean A., Garcia M., Leydet A., Montero J.‐L., Morère A., Bioorgan Med Chem 2006, 14, 3575; PubMed
d) Barragan‐Montero V., Awwad A., Combemale S., de Santa Barbara P., Jover B., Molès J.‐P., Montero J.‐L., ChemMedChem 2011, 6, 1771; PubMed
e) Vidil C., Morère A., Garcia M., Barragan V., Hamdaoui B., Rochefort H., Montero J.‐L., Eur. J. Org. Chem. 1999, 1999, 447;
f) Ionescu C., Sippelli S., Toupet L., Barragan‐Montero V., Bioorg. Med. Chem. Lett. 2016, 26, 636; PubMed
g) Vidal S., Garcia M., Montero J.‐L., Morère A., Bioorgan Med Chem 2002, 10, 4051; PubMed
h) Belakhov V., Dovgolevsky E., Rabkin E., Shulami S., Shoham Y., Baasov T., Carbohydr. Res. 2004, 339, 385; PubMed
i) El Cheikh K., Basile I., Da Silva A., Bernon C., Cérutti P., Salgues F., Perez M., Maynadier M., Gary‐Bobo M., Caillaud C., Cérutti M., Garcia M., Morère A., Angew. Chem., Int. Ed. 2016, 55, 14774; PubMed
j) Reintjens N. R. M., Tondini E., Vis C., McGlinn T., Meeuwenoord N. J., Hogervorst T. P., Overkleeft H. S., Filippov D. V., van der Marel G. A., Ossendorp F., Codée J. D. C., ChemBioChem 2021, 22, 434. PubMed PMC
Cachatra V., Martins A., Oliveira M. C., Oliveira M. C., Gano L., Paulo A., López Ó., Fernández‐Bolaños J. G., Contino M., Colabufo N. A., Evans D., Man T., Rauter A. P., Org. Biomol. Chem. 2025. PubMed
Olson L. J., Castonguay A. C., Lasanajak Y., Peterson F. C., Cummings R. D., Smith D. F., Dahms N. M., Glycobiology 2015, 25, 591. PubMed PMC
Byrd J. C., MacDonald R. G., Schrödinger Release 2024‐3, Schrödinger, LLC, New York, NY: 2024.
a) Vidal S., Garcia M., Montero J. L., Morere A., Bioorgan Med Chem 2002, 10, 4051; PubMed
b) Gary‐Bobo M., Nirde P., Jeanjean A., Morere A., Garcia M., Curr. Med. Chem. 2007, 14, 2945; PubMed PMC
c) Jeanjean A., Gary‐Bobo M., Nirde P., Leiris S., Garcia M., Morere A., Bioorg. Med. Chem. Lett. 2008, 18, 6240; PubMed
d) Vaillant O., El Cheikh K., Warther D., Brevet D., Maynadier M., Bouffard E., Salgues F., Jeanjean A., Puche P., Mazerolles C., Maillard P., Mongin O., Blanchard‐Desce M., Raehm L., Rebillard X., Durand J. O., Gary‐Bobo M., Morere A., Garcia M., Angew Chem Int Edit 2015, 54, 5952. PubMed
Olson L. J., Peterson F. C., Castonguay A., Dahms N. M., Proc. Natl. Acad. Sci. USA 2010, 107, 12493. PubMed PMC
Dahms N. M., Olson L. J., Kim J.‐J. P., Glycobiology 2008, 18, 664. PubMed PMC
a) Potalitsyn P., Mrázková L., Selicharová I., Tencerová M., Ferenčáková M., Chrudinová M., Turnovská T., Brzozowski A. M., Marek A., Kaminský J., Jiráček J., Žáková L., Commun. Biol. 2023, 6, 863; PubMed PMC
b) Potalitsyn P., Selicharová I., Sršeň K., Radosavljevič J., Marek A., Novaková K., Jiráček J., Žaáková L., PLoS One 2020, 15, e0238393. PubMed PMC
Sörme P., Kahl‐Knutsson B., Huflejt M., Nilsson U. J., Leffler H., Anal. Biochem. 2004, 334, 36. PubMed
Prouza V., Zýka J., Kozák J., Magdolenová A., Pohl R., Parkan K., ChemMedChem 2025, 20, e202400826. PubMed
Schrödinger L., Schrödinger Release 2024‐3 Schrödinger, LLC, New York, NY: 2024.
a) Bowers K. J., Chow E., Xu H., Dror R. O., Eastwood M. P., Gregersen B. A., Klepeis J. L., Kolossváry I., Moraes M. A., Sacerdoti F. D., Salmon J. K., Shan Y., Shaw D. E., in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, ACM Press, New York, Tampa, FL: 2006;
b) D. E. S. Research , Maestro‐Desmond Interoperability Tools; Schrödinger, New York, NY: 2024.
Stewart J. J. P., Stewart Computational Chemistry, Colorado Springs, CO, USA, CO, USA, http://OpenMOPAC.net 2016.
Friesner R. A., Banks J. L., Murphy R. B., Halgren T. A., Klicic J. J., Mainz D. T., Repasky M. P., Knoll E. H., Shelley M., Perry J. K., Shaw D. E., Francis P., Shenkin P. S., J. Med. Chem. 2004, 47, 1739. PubMed
Jacobson M. P., Pincus D. L., Rapp C. S., Day T. J. F., Honig B., Shaw D. E., Friesner R. A., Proteins: Struct. Funct. Bioinf. 2004, 55, 351. PubMed
Lu C., Wu C., Ghoreishi D., Chen W., Wang L., Damm W., Ross G. A., Dahlgren M. K., Russell E., Von Bargen C. D., Abel R., Friesner R. A., Harder E. D., J. Chem. Theory Comput. 2021, 17, 4291. PubMed
Choutka J., Kaminský J., Wang E., Parkan K., Pohl R., J. Chem. Inf. Model. 2025, 65, 762. PubMed PMC
Řezáč J., Hobza P., J. Chem. Theory Comput. 2012, 8, 141. PubMed
Klamt A., Schüürmann G., J. Chem. Soc., Perkin Trans. 1993, 5, 799.
Kříž K., Řezáč J., J. Chem. Inf. Model. 2019, 59, 229. PubMed
Lee D., Taylor M. S., J. Am. Chem. Soc. 2011, 133, 3724. PubMed
Kleban M., Kautz U., Greul J., Hilgers P., Kugler R., Dong H.‐Q., Jäger V., Synthesis 2000, 2000, 1027.
Postema M. H. D., Calimente D., Liu L., Behrmann T. L., J. Org. Chem. 2000, 65, 6061. PubMed
Olson L. J., Dahms N. M., Kim J.‐J. P., J. Biol. Chem. 2004, 279, 34000. PubMed
Johnston R. C., Yao K., Kaplan Z., Chelliah M., Leswing K., Seekins S., Watts S., Calkins D., Chief Elk J., Jerome S. V., Repasky M. P., Shelley J. C., J. Chem. Theory Comput. 2023, 19, 2380. PubMed
Li J., Abel R., Zhu K., Cao Y., Zhao S., Friesner R. A., Proteins: Struct. Funct. Bioinf. 2011, 79, 2794. PubMed PMC
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L., J. Chem. Phys. 1983, 79, 926.
Murphy R. B., Philipp D. M., Friesner R. A., J. Comput. Chem. 2000, 21, 1442.
Martyna G. J., Klein M. L., Tuckerman M., J. Chem. Phys. 1992, 97, 2635.
Toukmaji A. Y., J. A. Board, Jr. , Comput. Phys. Commun. 1996, 95, 73.
Bailey T. L., Johnson J., Grant C. E., Noble W. S., Nucleic Acids Res. 2015, 43, W39. PubMed PMC
Holm L., Laiho A., Toronen P., Salgado M., Prot. Sci. 2023, 23, e4519. PubMed PMC