• This record comes from PubMed

Design of Potent Mannose-6-Phosphate Derivatives as Ligands for CI-M6P/IGF2R Using Fluorescence Polarization Assay

. 2025 Jul 22 ; 31 (41) : e202500973. [epub] 20250520

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
A1 FPBT 2024 003 Vysoká Škola Chemicko-technologická v Praze
Czech Academy of Sciences
90254 Ministerstvo Školství, Mládeže a Tělovýchovy
23-05805S Grantová Agentura České Republiky

The cation-independent mannose-6-phosphate/IGF2 receptor (CI-M6P/IGF2R) plays a crucial role in transporting lysosomal enzymes and other ligands. In this study, we designed and synthesized novel stable mannose-6-phosphate (M6P) derivatives to enhance their affinity for CI-M6P/IGF2R. To evaluate the binding potency, we employed a sensitive and cost-effective fluorescence polarization assay, enabling rapid quantification of receptor-ligand interactions in solution. The tested compounds included di-, tri-, and penta-M6P peptides along with various M6P-derived small molecules featuring phosphate isosteres or other functional modifications. Our findings indicate that ligands bearing multiple M6P moieties exhibit significantly higher receptor affinities than monomeric compounds and that phosphonate groups may serve as a more stable and potent alternative to native M6P. Computational modeling of ligand interactions with the CI-M6P/IGF2R domains further elucidated the binding mechanisms, offering new directions for the development of more effective ligands. This study advances the design of therapeutic strategies that leverage CI-M6P/IGF2R for targeted biomolecule delivery to lysosomes, thereby opening new possibilities for biomedical applications.

See more in PubMed

Kornfeld S., Annu. Rev. Biochem. 1992, 61, 307. PubMed

Zavorka M. E., Connelly C. M., Grosely R., MacDonald R. G., Oncotarget 2016, 7, 62386. PubMed PMC

Leksa V., Godár S., Cebecauer M., Hilgert I., Breuss J., Weidle U. H., Horejsí V., Binder B. R., Stockinger H., J. Biol. Chem. 2002, 277, 40575. PubMed

Coutinho M. F., Prata M. J., Alves S., Mol. Genet. Metab. 2012, 105, 542. PubMed

Brown J., Delaine C., Zaccheo O. J., Siebold C., Gilbert R. J., van Boxel G., Denley A., Wallace J. C., Hassan A. B., Forbes B. E., Jones E. Y., EMBO J. 2008, 27, 265. PubMed PMC

Bochel A. J., Williams C., McCoy A. J., Hoppe H.‐J., Winter A. J., Nicholls R. D., Harlos K., Jones E. Y., Berger I., Hassan A. B., Crump M. P., Structure 2020, 28, 1300. PubMed

a) Hancock M. K., Haskins D. J., Sun G. J., Dahms N. M., J. Biol. Chem. 2002, 277, 11255; PubMed

b) Marron‐Terada P. G., Brzycki‐Wessell M. A., Dahms N. M., J. Biol. Chem. 1998, 273, 22358. PubMed

Brown J., Jones E. Y., Forbes B. E., Vitam Horm 2009, 80, 699. PubMed

Dahms N. M., Hancock M. K., Bba‐Gen Subjects 2002, 1572, 317. PubMed

Hollak C. E., Wijburg F. A., J Inherit Metab Dis 2014, 37, 587. PubMed

Desnick R. J., Schuchman E. H., Nat. Rev. Genet. 2002, 3, 954. PubMed

a) Ahn G., Riley N. M., Kamber R. A., Wisnovsky S., von Hase S. M., Bassik M. C., Banik S. M., Bertozzi C. R., Science 2023, 382, eadf6249; PubMed PMC

b) Banik S. M., Pedram K., Wisnovsky S., Ahn G., Riley N. M., Bertozzi C. R., Nature 2020, 584, 291; PubMed PMC

c) Das S., Parekh N., Mondal B., Gupta S. S., ACS Macro Lett. 2016, 5, 809. PubMed

a) Tong P. Y., Gregory W., Kornfeld S., J. Biol. Chem. 1989, 264, 7962; PubMed

b) Kornfeld S., J. Clin. Invest. 1986, 77, 1. PubMed PMC

Christensen M. K., Meldal M., Bock K., Cordes H., Mouritsen S., Elsner H., J Chem Soc Perk T 1994, 1, 1299.

Franzyk H., Christensen M. K., Jørgensen R. M., Meldal M., Cordes H., Mouritsen S., Bock K., Bioorg. Med. Chem. 1997, 5, 21. PubMed

Hoogendoorn S., van Puijvelde G. H. M., Kuiper J., van der Marel G. A., Overkleeft H. S., Angew Chem Int Edit 2014, 53, 10975. PubMed

Berkowitz D. B., Maiti G., Charette B. D., Dreis C. D., MacDonald R. G., Org. Lett. 2004, 6, 4921. PubMed

a) Berkowitz D. B., Bhuniya D., Peris G., Tetrahedron Lett. 1999, 40, 1869;

b) Shen Q., Sloss D. G., Berkowitz D. B., Synth. Commun. 1994, 24, 1519;

c) Jeanjean A., Garcia M., Leydet A., Montero J.‐L., Morère A., Bioorgan Med Chem 2006, 14, 3575; PubMed

d) Barragan‐Montero V., Awwad A., Combemale S., de Santa Barbara P., Jover B., Molès J.‐P., Montero J.‐L., ChemMedChem 2011, 6, 1771; PubMed

e) Vidil C., Morère A., Garcia M., Barragan V., Hamdaoui B., Rochefort H., Montero J.‐L., Eur. J. Org. Chem. 1999, 1999, 447;

f) Ionescu C., Sippelli S., Toupet L., Barragan‐Montero V., Bioorg. Med. Chem. Lett. 2016, 26, 636; PubMed

g) Vidal S., Garcia M., Montero J.‐L., Morère A., Bioorgan Med Chem 2002, 10, 4051; PubMed

h) Belakhov V., Dovgolevsky E., Rabkin E., Shulami S., Shoham Y., Baasov T., Carbohydr. Res. 2004, 339, 385; PubMed

i) El Cheikh K., Basile I., Da Silva A., Bernon C., Cérutti P., Salgues F., Perez M., Maynadier M., Gary‐Bobo M., Caillaud C., Cérutti M., Garcia M., Morère A., Angew. Chem., Int. Ed. 2016, 55, 14774; PubMed

j) Reintjens N. R. M., Tondini E., Vis C., McGlinn T., Meeuwenoord N. J., Hogervorst T. P., Overkleeft H. S., Filippov D. V., van der Marel G. A., Ossendorp F., Codée J. D. C., ChemBioChem 2021, 22, 434. PubMed PMC

Cachatra V., Martins A., Oliveira M. C., Oliveira M. C., Gano L., Paulo A., López Ó., Fernández‐Bolaños J. G., Contino M., Colabufo N. A., Evans D., Man T., Rauter A. P., Org. Biomol. Chem. 2025. PubMed

Olson L. J., Castonguay A. C., Lasanajak Y., Peterson F. C., Cummings R. D., Smith D. F., Dahms N. M., Glycobiology 2015, 25, 591. PubMed PMC

Byrd J. C., MacDonald R. G., Schrödinger Release 2024‐3, Schrödinger, LLC, New York, NY: 2024.

a) Vidal S., Garcia M., Montero J. L., Morere A., Bioorgan Med Chem 2002, 10, 4051; PubMed

b) Gary‐Bobo M., Nirde P., Jeanjean A., Morere A., Garcia M., Curr. Med. Chem. 2007, 14, 2945; PubMed PMC

c) Jeanjean A., Gary‐Bobo M., Nirde P., Leiris S., Garcia M., Morere A., Bioorg. Med. Chem. Lett. 2008, 18, 6240; PubMed

d) Vaillant O., El Cheikh K., Warther D., Brevet D., Maynadier M., Bouffard E., Salgues F., Jeanjean A., Puche P., Mazerolles C., Maillard P., Mongin O., Blanchard‐Desce M., Raehm L., Rebillard X., Durand J. O., Gary‐Bobo M., Morere A., Garcia M., Angew Chem Int Edit 2015, 54, 5952. PubMed

Olson L. J., Peterson F. C., Castonguay A., Dahms N. M., Proc. Natl. Acad. Sci. USA 2010, 107, 12493. PubMed PMC

Dahms N. M., Olson L. J., Kim J.‐J. P., Glycobiology 2008, 18, 664. PubMed PMC

a) Potalitsyn P., Mrázková L., Selicharová I., Tencerová M., Ferenčáková M., Chrudinová M., Turnovská T., Brzozowski A. M., Marek A., Kaminský J., Jiráček J., Žáková L., Commun. Biol. 2023, 6, 863; PubMed PMC

b) Potalitsyn P., Selicharová I., Sršeň K., Radosavljevič J., Marek A., Novaková K., Jiráček J., Žaáková L., PLoS One 2020, 15, e0238393. PubMed PMC

Sörme P., Kahl‐Knutsson B., Huflejt M., Nilsson U. J., Leffler H., Anal. Biochem. 2004, 334, 36. PubMed

Prouza V., Zýka J., Kozák J., Magdolenová A., Pohl R., Parkan K., ChemMedChem 2025, 20, e202400826. PubMed

Schrödinger L., Schrödinger Release 2024‐3 Schrödinger, LLC, New York, NY: 2024.

a) Bowers K. J., Chow E., Xu H., Dror R. O., Eastwood M. P., Gregersen B. A., Klepeis J. L., Kolossváry I., Moraes M. A., Sacerdoti F. D., Salmon J. K., Shan Y., Shaw D. E., in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, ACM Press, New York, Tampa, FL: 2006;

b) D. E. S. Research , Maestro‐Desmond Interoperability Tools; Schrödinger, New York, NY: 2024.

Stewart J. J. P., Stewart Computational Chemistry, Colorado Springs, CO, USA, CO, USA, http://OpenMOPAC.net 2016.

Friesner R. A., Banks J. L., Murphy R. B., Halgren T. A., Klicic J. J., Mainz D. T., Repasky M. P., Knoll E. H., Shelley M., Perry J. K., Shaw D. E., Francis P., Shenkin P. S., J. Med. Chem. 2004, 47, 1739. PubMed

Jacobson M. P., Pincus D. L., Rapp C. S., Day T. J. F., Honig B., Shaw D. E., Friesner R. A., Proteins: Struct. Funct. Bioinf. 2004, 55, 351. PubMed

Lu C., Wu C., Ghoreishi D., Chen W., Wang L., Damm W., Ross G. A., Dahlgren M. K., Russell E., Von Bargen C. D., Abel R., Friesner R. A., Harder E. D., J. Chem. Theory Comput. 2021, 17, 4291. PubMed

Choutka J., Kaminský J., Wang E., Parkan K., Pohl R., J. Chem. Inf. Model. 2025, 65, 762. PubMed PMC

Řezáč J., Hobza P., J. Chem. Theory Comput. 2012, 8, 141. PubMed

Klamt A., Schüürmann G., J. Chem. Soc., Perkin Trans. 1993, 5, 799.

Kříž K., Řezáč J., J. Chem. Inf. Model. 2019, 59, 229. PubMed

Lee D., Taylor M. S., J. Am. Chem. Soc. 2011, 133, 3724. PubMed

Kleban M., Kautz U., Greul J., Hilgers P., Kugler R., Dong H.‐Q., Jäger V., Synthesis 2000, 2000, 1027.

Postema M. H. D., Calimente D., Liu L., Behrmann T. L., J. Org. Chem. 2000, 65, 6061. PubMed

Olson L. J., Dahms N. M., Kim J.‐J. P., J. Biol. Chem. 2004, 279, 34000. PubMed

Johnston R. C., Yao K., Kaplan Z., Chelliah M., Leswing K., Seekins S., Watts S., Calkins D., Chief Elk J., Jerome S. V., Repasky M. P., Shelley J. C., J. Chem. Theory Comput. 2023, 19, 2380. PubMed

Li J., Abel R., Zhu K., Cao Y., Zhao S., Friesner R. A., Proteins: Struct. Funct. Bioinf. 2011, 79, 2794. PubMed PMC

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L., J. Chem. Phys. 1983, 79, 926.

Murphy R. B., Philipp D. M., Friesner R. A., J. Comput. Chem. 2000, 21, 1442.

Martyna G. J., Klein M. L., Tuckerman M., J. Chem. Phys. 1992, 97, 2635.

Toukmaji A. Y., J. A. Board, Jr. , Comput. Phys. Commun. 1996, 95, 73.

Bailey T. L., Johnson J., Grant C. E., Noble W. S., Nucleic Acids Res. 2015, 43, W39. PubMed PMC

Holm L., Laiho A., Toronen P., Salgado M., Prot. Sci. 2023, 23, e4519. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...