Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27510031
PubMed Central
PMC5076530
DOI
10.1074/jbc.m116.741041
PII: S0021-9258(20)35898-1
Knihovny.cz E-zdroje
- Klíčová slova
- insulin, insulin receptor, insulin-like growth factor (IGF), nuclear magnetic resonance (NMR), structural biology, structure-function,
- MeSH
- CD antigeny chemie genetika metabolismus MeSH
- insulinu podobný růstový faktor II chemie genetika metabolismus MeSH
- lidé MeSH
- missense mutace MeSH
- protein - isoformy chemie genetika metabolismus MeSH
- proteinové domény MeSH
- receptor IGF typ 1 chemie genetika metabolismus MeSH
- receptor inzulinu chemie genetika metabolismus MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- substituce aminokyselin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CD antigeny MeSH
- IGF2 protein, human MeSH Prohlížeč
- INSR protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor II MeSH
- protein - isoformy MeSH
- receptor IGF typ 1 MeSH
- receptor inzulinu MeSH
- rekombinantní proteiny MeSH
Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains.
Zobrazit více v PubMed
Pandini G., Frasca F., Mineo R., Sciacca L., Vigneri R., and Belfiore A. (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J. Biol. Chem. 277, 39684–39695 PubMed
Křížková K., Chrudinová M., Povalová A., Selicharová I., Collinsová M., Vaněk V., Brzozowski A. M., Jiráček J., and Žaková L. (2016) Insulin-insulin-like growth factors hybrids as molecular probes of hormone:receptor binding specificity. Biochemistry 55, 2903–2913 PubMed
Lee J., and Pilch P. F. (1994) The insulin receptor: structure, function, and signaling. Am. J. Physiol. Cell Physiol. 266, C319–C334 PubMed
Boucher J., Tseng Y. H., and Kahn C. R. (2010) Insulin and insulin-like growth factor-1 receptors act as ligand-specific amplitude modulators of a common pathway regulating gene transcription. J. Biol. Chem. 285, 17235–17245 PubMed PMC
Siddle K. (2012) Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front. Endocrinol. 3, 34 PubMed PMC
Hers I., Vincent E. E., and Tavaré J. M. (2011) Akt signalling in health and disease. Cell. Signal. 23, 1515–1527 PubMed
Siddle K. (2011) Signalling by insulin and IGF receptors: supporting acts and new players. J. Mol. Endocrinol. 47, R1–R10 PubMed
Bedinger D. H., and Adams S. H. (2015) Metabolic, anabolic, and mitogenic insulin responses: a tissue-specific perspective for insulin receptor activators. Mol. Cell. Endocrinol. 415, 143–156 PubMed
Esposito D. L., Blakesley V. A., Koval A. P., Scrimgeour A. G., and LeRoith D. (1997) Tyrosine residues in the C-terminal domain of the insulin-like growth factor-I receptor mediate mitogenic and tumorigenic signals. Endocrinology 138, 2979–2988 PubMed
O'Connor R., Kauffmann-Zeh A., Liu Y., Lehar S., Evan G. I., Baserga R., and Blättler W. A. (1997) Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol. Cell. Biol. 17, 427–435 PubMed PMC
Sacco A., Morcavallo A., Pandini G., Vigneri R., and Belfiore A. (2009) Differential signaling activation by insulin and insulin-like growth factors I and II upon binding to insulin receptor isoform A. Endocrinology 150, 3594–3602 PubMed
Le Roith D. (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N. Engl. J. Med. 336, 633–640 PubMed
LeRoith D., and Roberts C. T. (2003) The insulin-like growth factor system and cancer. Cancer Lett. 195, 127–137 PubMed
Dynkevich Y., Rother K. I., Whitford I., Qureshi S., Galiveeti S., Szulc A. L., Danoff A., Breen T. L., Kaviani N., Shanik M. H., Leroith D., Vigneri R., Koch C. A., and Roth J. (2013) Tumors, IGF-2, and hypoglycemia: insights from the clinic, the laboratory, and the historical archive. Endocr. Rev. 34, 798–826 PubMed
Alvino C. L., Ong S. C., McNeil K. A., Delaine C., Booker G. W., Wallace J. C., and Forbes B. E. (2011) Understanding the mechanism of insulin and insulin-like growth factor (IGF) receptor activation by IGF-II. PLoS One 6, e27488. PubMed PMC
Gallagher E. J., and LeRoith D. (2011) Minireview: IGF, insulin, and cancer. Endocrinology 152, 2546–2551 PubMed
Alberini C. M., and Chen D. Y. (2012) Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci. 35, 274–283 PubMed PMC
Chen D. Y., Stern S. A., Garcia-Osta A., Saunier-Rebori B., Pollonini G., Bambah-Mukku D., Blitzer R. D., and Alberini C. M. (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469, 491–497 PubMed PMC
Pascual-Lucas M., Viana da Silva S., Di Scala M., Garcia-Barroso C., González-Aseguinolaza G., Mulle C., Alberini C. M., Cuadrado-Tejedor M., and Garcia-Osta A. (2014) Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol. Med. 6, 1246–1262 PubMed PMC
Clemmons D. R. (1998) Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol. Cell. Endocrinol. 140, 19–24 PubMed
Firth S. M., and Baxter R. C. (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824–854 PubMed
Kornfeld S. (1992) Structure and function of the mannose 6-phosphate insulin-like growth factor-II receptors. Annu. Rev. Biochem. 61, 307–330 PubMed
Belfiore A., and Malaguarnera R. (2011) Insulin receptor and cancer. Endocr.-Relat. Cancer 18, R125–R147 PubMed
Schaffer M. L., Deshayes K., Nakamura G., Sidhu S., and Skelton N. J. (2003) Complex with a phage display-derived peptide provides insight into the function of insulin-like growth factor I. Biochemistry 42, 9324–9334 PubMed
Laajoki L. G., Francis G. L., Wallace J. C., Carver J. A., and Keniry M. A. (2000) Solution structure and backbone dynamics of long-[Arg3]insulin-like growth factor-I. J. Biol. Chem. 275, 10009–10015 PubMed
De Wolf E., Gill R., Geddes S., Pitts J., Wollmer A., and Grötzinger J. (1996) Solution structure of a mini IGF-1. Protein Sci. 5, 2193–2202 PubMed PMC
Sato A., Nishimura S., Ohkubo T., Kyogoku Y., Koyama S., Kobayashi M., Yasuda T., and Kobayashi Y. (1993) 3-Dimensional structure of human insulin-like growth factor-I (IGF-I) determined by 1H-NMR and distance geometry. Int. J. Pept. Protein Res. 41, 433–440 PubMed
Cooke R. M., Harvey T. S., and Campbell I. D. (1991) Solution structure of human insulin-like growth factor 1: a nuclear magnetic resonance and restrained molecular dynamics study. Biochemistry 30, 5484–5491 PubMed
Brzozowski A. M., Dodson E. J., Dodson G. G., Murshudov G. N., Verma C., Turkenburg J. P., de Bree F. M., and Dauter Z. (2002) Structural origins of the functional divergence of human insulin-like growth factor-I and insulin. Biochemistry 41, 9389–9397 PubMed
Siwanowicz I., Popowicz G. M., Wisniewska M., Huber R., Kuenkele K. P., Lang K., Engh R. A., and Holak T. A. (2005) Structural basis for the regulation of insulin-like growth factors by IGF binding proteins. Structure 13, 155–167 PubMed
Vajdos F. F., Ultsch M., Schaffer M. L., Deshayes K. D., Liu J., Skelton N. J., and de Vos A. M. (2001) Crystal structure of human insulin-like growth factor-1: detergent binding inhibits binding protein interactions. Biochemistry 40, 11022–11029 PubMed
Yun C. H., Tang Y. H., Feng Y. M., An X. M., Chang W. R., and Liang D. C. (2005) 1.42 Å crystal structure of mini-IGF-1(2): an analysis of the disulfide isomerization property and receptor binding property of IGF-1 based on the three-dimensional structure. Biochem. Biophys. Res. Commun. 326, 52–59 PubMed
Sitar T., Popowicz G. M., Siwanowicz I., Huber R., and Holak T. A. (2006) Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 103, 13028–13033 PubMed PMC
Zesławski W., Beisel H. G., Kamionka M., Kalus W., Engh R. A., Huber R., Lang K., and Holak T. A. (2001) The interaction of insulin-like growth factor-I with the N-terminal domain of IGFBP-5. EMBO J. 20, 3638–3644 PubMed PMC
Terasawa H., Kohda D., Hatanaka H., Nagata K., Higashihashi N., Fujiwara H., Sakano K., and Inagaki F. (1994) Solution structure of human insulin-like growth-factor-II; recognition sites for receptors and binding-proteins. EMBO J. 13, 5590–5597 PubMed PMC
Torres A. M., Forbes B. E., Aplin S. E., Wallace J. C., Francis G. L., and Norton R. S. (1995) Solution structure of human insulin-like growth-factor-II. Relationship to receptor and binding-protein interactions. J. Mol. Biol. 248, 385–401 PubMed
Gursky O., Li Y., Badger J., and Caspar D. L. (1992) Monovalent cation binding to cubic insulin crystals. Biophys. J. 61, 604–611 PubMed PMC
McKern N. M., Lawrence M. C., Streltsov V. A., Lou M. Z., Adams T. E., Lovrecz G. O., Elleman T. C., Richards K. M., Bentley J. D., Pilling P. A., Hoyne P. A., Cartledge K. A., Pham T. M., Lewis J. L., Sankovich S. E., et al. (2006) Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 443, 218–221 PubMed
Lawrence M. C., McKern N. M., and Ward C. W. (2007) Insulin receptor structure and its implications for the IGF-1 receptor. Curr. Opin. Struct. Biol. 17, 699–705 PubMed
Ward C. W., Menting J. G., and Lawrence M. C. (2013) The insulin receptor changes conformation in unforeseen ways on ligand binding: sharpening the picture of insulin receptor activation. BioEssays 35, 945–954 PubMed
Yamaguchi Y., Flier J. S., Benecke H., Ransil B. J., and Moller D. E. (1993) Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology 132, 1132–1138 PubMed
Seino S., Seino M., Nishi S., and Bell G. I. (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc. Natl. Acad. Sci. U.S.A. 86, 114–118 PubMed PMC
Mosthaf L., Grako K., Dull T. J., Coussens L., Ullrich A., and McClain D. A. (1990) Functionally distinct insulin-receptors generated by tissue-specific alternative splicing. EMBO J. 9, 2409–2413 PubMed PMC
Schaefer E. M., Siddle K., and Ellis L. (1990) Deletion analysis of the human insulin receptor ectodomain reveals independently folded soluble subdomains and insulin binding by a monomeric α-subunit. J. Biol. Chem. 265, 13248–13253 PubMed
Brandt J., Andersen A. S., and Kristensen C. (2001) Dimeric fragment of the insulin receptor α-subunit binds insulin with full holoreceptor affinity. J. Biol. Chem. 276, 12378–12384 PubMed
De Meyts P. (2015) Insulin/receptor binding: the last piece of the puzzle? BioEssays 37, 389–397 PubMed
Kristensen C., Kjeldsen T., Wiberg F. C., Schäffer L., Hach M., Havelund S., Bass J., Steiner D. F., and Andersen A. S. (1997) Alanine scanning mutagenesis of insulin. J. Biol. Chem. 272, 12978–12983 PubMed
Denley A., Cosgrove L. J., Booker G. W., Wallace J. C., and Forbes B. E. (2005) Molecular interactions of the IGF system. Cytokine Growth Factor Rev. 16, 421–439 PubMed
Menting J. G., Whittaker J., Margetts M. B., Whittaker L. J., Kong G. K., Smith B. J., Watson C. J., Záková L., Kletvíková E., Jiráček J., Chan S. J., Steiner D. F., Dodson G. G., Brzozowski A. M., Weiss M. A., et al. (2013) How insulin engages its primary binding site on the insulin receptor. Nature 493, 241–245 PubMed PMC
Menting J. G., Yang Y., Chan S. J., Phillips N. B., Smith B. J., Whittaker J., Wickramasinghe N. P., Whittaker L. J., Pandyarajan V., Wan Z. L., Yadav S. P., Carroll J. M., Strokes N., Roberts C. T. Jr., Ismail-Beigi F., et al. (2014) Protective hinge in insulin opens to enable its receptor engagement. Proc. Natl. Acad. Sci. U.S.A. 111, E3395–E3404 PubMed PMC
Jirácek J., Záková L., Antolíková E., Watson C. J., Turkenburg J. P., Dodson G. G., and Brzozowski A. M. (2010) Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Proc. Natl. Acad. Sci. U.S.A. 107, 1966–1970 PubMed PMC
Žaková L., Kletvíková E., Veverka V., Lepsík M., Watson C. J., Turkenburg J. P., Jirácek J., and Brzozowski A. M. (2013) Structural integrity of the B24 site in human insulin is important for hormone functionality. J. Biol. Chem. 288, 10230–10240 PubMed PMC
Záková L., Kletvíková E., Lepšík M., Collinsová M., Watson C. J., Turkenburg J. P., Jiráček J., and Brzozowski A. M. (2014) Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex. Acta Crystallogr. D Biol. Crystallogr. 70, 2765–2774 PubMed PMC
Menting J. G., Lawrence C. F., Kong G. K., Margetts M. B., Ward C. W., and Lawrence M. C. (2015) Structural congruency of ligand binding to the insulin and insulin/type 1 insulin-like growth factor hybrid receptors. Structure 23, 1271–1282 PubMed
Mayer J. P., Zhang F., and DiMarchi R. D. (2007) Insulin structure and function. Biopolymers 88, 687–713 PubMed
Hashimoto R., Fujiwara H., Higashihashi N., Enjoh-Kimura T., Terasawa H., Fujita-Yamaguchi Y., Inagaki F., Perdue J. F., and Sakano K. (1995) N-terminal deletion mutants of insulin-like growth factor-II (IGF-II) show Thr7 and Leu8 important for binding to insulin and IGF-I receptors and Leu8 critical for All IGF-II functions. J. Biol. Chem. 270, 18013–18018 PubMed
Denley A., Bonython E. R., Booker G. W., Cosgrove L. J., Forbes B. E., Ward C. W., and Wallace J. C. (2004) Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Mol. Endocrinol. 18, 2502–2512 PubMed
Ziegler A. N., Chidambaram S., Forbes B. E., Wood T. L., and Levison S. W. (2014) Insulin-like growth factor-II (IGF-II) and IGF-II. Analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion. J. Biol. Chem. 289, 4626–4633 PubMed PMC
Henderson S. T., Brierley G. V., Surinya K. H., Priebe I. K., Catcheside D. E., Wallace J. C., Forbes B. E., and Cosgrove L. J. (2015) Delineation of the IGF-II C domain elements involved in binding and activation of the IR-A, IR-B and IGF-IR. Growth Horm. IGF Res. 25, 20–27 PubMed
Alvino C. L., McNeil K. A., Ong S. C., Delaine C., Booker G. W., Wallace J. C., Whittaker J., and Forbes B. E. (2009) A novel approach to identify two distinct receptor binding surfaces of insulin-like growth factor II. J. Biol. Chem. 284, 7656–7664 PubMed PMC
Delaine C., Alvino C. L., McNeil K. A., Mulhern T. D., Gauguin L., De Meyts P., Jones E. Y., Brown J., Wallace J. C., and Forbes B. E. (2007) A novel binding site for the human insulin-like growth factor-II (IGF-II)/mannose 6-phosphate receptor on IGF-II. J. Biol. Chem. 282, 18886–18894 PubMed
Sakano K., Enjoh T., Numata F., Fujiwara H., Marumoto Y., Higashihashi N., Sato Y., Perdue J. F., and Fujita-Yamaguchi Y. (1991) The design, expression, and characterization of human insulin-like growth factor-II (IGF-II) mutants specific for either the IGF-II cation-independent mannose 6-phosphate receptor or IGF-I receptor. J. Biol. Chem. 266, 20626–20635 PubMed
Zhou P., and Wagner G. (2010) Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies. J. Biomol. NMR 46, 23–31 PubMed PMC
Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., and Clore G. M. (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal Protein-G. Science 253, 657–661 PubMed
Williams C., Hoppe H. J., Rezgui D., Strickland M., Forbes B. E., Grutzner F., Frago S., Ellis R. Z., Wattana-Amorn P., Prince S. N., Zaccheo O. J., Nolan C. M., Mungall A. J., Jones E. Y., Crump M. P., et al. (2012) An exon splice enhancer primes IGF2:IGF2R binding site structure and function evolution. Science 338, 1209–1213 PubMed PMC
Frasca F., Pandini G., Scalia P., Sciacca L., Mineo R., Costantino A., Goldfine I. D., Belfiore A., and Vigneri R. (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell. Biol. 19, 3278–3288 PubMed PMC
Slaaby R. (2015) Specific insulin/IGF1 hybrid receptor activation assay reveals IGF1 as a more potent ligand than insulin. Sci. Rep. 5, 7911. PubMed PMC
Cottam J. M., Scanlon D. B., Karas J. A., Calabrese A. N., Pukala T. L., Forbes B. E., Wallace J. C., and Abell A. D. (2013) Chemical synthesis of a fluorescent IGF-II analogue. Int. J. Pept. Res. Ther. 19, 61–69
King G. L., Kahn C. R., Samuels B., Danho W., Bullesbach E. E., and Gattner H. G. (1982) Synthesis and characterization of molecular hybrids of insulin and insulin-like growth factor-I. The role of the A-chain extension peptide. J. Biol. Chem. 257, 10869–10873 PubMed
Francis G. L., Ross M., Ballard F. J., Milner S. J., Senn C., McNeil K. A., Wallace J. C., King R., and Wells J. R. (1992) Novel recombinant fusion protein analogs of insulin-like growth-factor (IGF)-I indicate the relative importance of IGF-binding protein and receptor-binding for enhanced biological potency. J. Mol. Endocrinol. 8, 213–223 PubMed
Francis G. L., Aplin S. E., Milner S. J., McNeil K. A., Ballard F. J., and Wallace J. C. (1993) Insulin-like growth-factor (IGF)-II binding to IGF-binding proteins and IGF receptors is modified by deletion of the N-terminal hexapeptide or substitution of arginine for glutamate-6 in IGF-II. Biochem. J. 293, 713–719 PubMed PMC
Williams C., Rezgui D., Prince S. N., Zaccheo O. J., Foulstone E. J., Forbes B. E., Norton R. S., Crosby J., Hassan A. B., and Crump M. P. (2007) Structural insights into the interaction of insulin-like growth factor 2 with IGF2R domain 11. Structure 15, 1065–1078 PubMed
Sohma Y., Pentelute B. L., Whittaker J., Hua Q. X., Whittaker L. J., Weiss M. A., and Kent S. B. (2008) Comparative properties of insulin-like growth factor 1 (IGF-1) and [Gly7D-Ala]IGF-1 prepared by total chemical synthesis. Angew. Chem. Int. Ed. Engl. 47, 1102–1106 PubMed
Gill R., Verma C., Wallach B., Ursø B., Pitts J., Wollmer A., De Meyts P., and Wood S. (1999) Modelling of the disulphide-swapped isomer of human insulin-like growth factor-1: implications for receptor binding. Protein Eng. 12, 297–303 PubMed
Bayne M. L., Applebaum J., Underwood D., Chicchi G. G., Green B. G., Hayes N. S., and Cascieri M. A. (1989) The C region of human insulin-like growth factor (IGF) I is required for high affinity binding to the type 1 IGF receptor. J. Biol. Chem. 264, 11004–11008 PubMed
Bayne M. L., Applebaum J., Chicchi G. G., Miller R. E., and Cascieri M. A. (1990) The roles of tyrosine-24, tyrosine-31, and tyrosine-60 in the high-affinity binding of insulin-like growth factor-I to the type-1 insulin-like growth-factor receptor. J. Biol. Chem. 265, 15648–15652 PubMed
Maly P., and Lüthi C. (1988) The binding sites of insulin-like growth factor I (IGF I) to type I IGF receptor and to a monoclonal antibody. Mapping by chemical modification of tyrosine residues. J. Biol. Chem. 263, 7068–7072 PubMed
Keyhanfar M., Booker G. W., Whittaker J., Wallace J. C., and Forbes B. E. (2007) Precise mapping of an IGF-I-binding site on the IGF-1R. Biochem. J. 401, 269–277 PubMed PMC
Renshaw P. S., Veverka V., Kelly G., Frenkiel T. A., Williamson R. A., Gordon S. V., Hewinson R. G., and Carr M. D. (2004) Sequence-specific assignment and secondary structure determination of the 195-residue complex formed by the Mycobacterium tuberculosis proteins CFP-10 and ESAT-6. J. Biomol. NMR 30, 225–226 PubMed
Veverka V., Lennie G., Crabbe T., Bird I., Taylor R. J., and Carr M. D. (2006) NMR assignment of the mTOR domain responsible for rapamycin binding. J. Biomol. NMR 36, Suppl. 1, 3. PubMed
Herrmann T., Güntert P., and Wüthrich K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 PubMed
Shen Y., Delaglio F., Cornilescu G., and Bax A. (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 PubMed PMC
Harjes E., Harjes S., Wohlgemuth S., Müller K. H., Krieger E., Herrmann C., and Bayer P. (2006) GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Structure 14, 881–888 PubMed
Koradi R., Billeter M., and Wüthrich K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32 PubMed
Morcavallo A., Genua M., Palummo A., Kletvikova E., Jiracek J., Brzozowski A. M., Iozzo R. V., Belfiore A., and Morrione A. (2012) Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J. Biol. Chem. 287, 11422–11436 PubMed PMC
Kosinová L., Veverka V., Novotná P., Collinsová M., Urbanová M., Moody N. R., Turkenburg J. P., Jiráček J., Brzozowski A. M., and Žáková L. (2014) Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry 53, 3392–3402 PubMed PMC
Viková J., Collinsová M., Kletvíková E., Buděšínský M., Kaplan V., Žáková L., Veverka V., Hexnerová R., Tarazona Aviñó R. J., Straková J., Selicharová I., Vaněk V., Wright D. W., Watson C. J., Turkenburg J. P., et al. (2016) Rational steering of insulin binding specificity by intra-chain chemical crosslinking. Sci. Rep. 6, 19431. PubMed PMC
Slaaby R., Andersen A. S., and Brandt J. (2008) IGF-I binding to the IGF-I receptor is affected by contaminants in commercial BSA: the contaminants are proteins with IGF-I binding properties. Growth Horm. IGF Res. 18, 267–274 PubMed
Non-glycosylated IGF2 prohormones are more mitogenic than native IGF2
A radioligand binding assay for the insulin-like growth factor 2 receptor
Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs
PDB
1GZR, 4XSS