Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain

. 2016 Sep 30 ; 291 (40) : 21234-21245. [epub] 20160810

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27510031
Odkazy

PubMed 27510031
PubMed Central PMC5076530
DOI 10.1074/jbc.m116.741041
PII: S0021-9258(20)35898-1
Knihovny.cz E-zdroje

Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains.

Zobrazit více v PubMed

Pandini G., Frasca F., Mineo R., Sciacca L., Vigneri R., and Belfiore A. (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J. Biol. Chem. 277, 39684–39695 PubMed

Křížková K., Chrudinová M., Povalová A., Selicharová I., Collinsová M., Vaněk V., Brzozowski A. M., Jiráček J., and Žaková L. (2016) Insulin-insulin-like growth factors hybrids as molecular probes of hormone:receptor binding specificity. Biochemistry 55, 2903–2913 PubMed

Lee J., and Pilch P. F. (1994) The insulin receptor: structure, function, and signaling. Am. J. Physiol. Cell Physiol. 266, C319–C334 PubMed

Boucher J., Tseng Y. H., and Kahn C. R. (2010) Insulin and insulin-like growth factor-1 receptors act as ligand-specific amplitude modulators of a common pathway regulating gene transcription. J. Biol. Chem. 285, 17235–17245 PubMed PMC

Siddle K. (2012) Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front. Endocrinol. 3, 34 PubMed PMC

Hers I., Vincent E. E., and Tavaré J. M. (2011) Akt signalling in health and disease. Cell. Signal. 23, 1515–1527 PubMed

Siddle K. (2011) Signalling by insulin and IGF receptors: supporting acts and new players. J. Mol. Endocrinol. 47, R1–R10 PubMed

Bedinger D. H., and Adams S. H. (2015) Metabolic, anabolic, and mitogenic insulin responses: a tissue-specific perspective for insulin receptor activators. Mol. Cell. Endocrinol. 415, 143–156 PubMed

Esposito D. L., Blakesley V. A., Koval A. P., Scrimgeour A. G., and LeRoith D. (1997) Tyrosine residues in the C-terminal domain of the insulin-like growth factor-I receptor mediate mitogenic and tumorigenic signals. Endocrinology 138, 2979–2988 PubMed

O'Connor R., Kauffmann-Zeh A., Liu Y., Lehar S., Evan G. I., Baserga R., and Blättler W. A. (1997) Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol. Cell. Biol. 17, 427–435 PubMed PMC

Sacco A., Morcavallo A., Pandini G., Vigneri R., and Belfiore A. (2009) Differential signaling activation by insulin and insulin-like growth factors I and II upon binding to insulin receptor isoform A. Endocrinology 150, 3594–3602 PubMed

Le Roith D. (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N. Engl. J. Med. 336, 633–640 PubMed

LeRoith D., and Roberts C. T. (2003) The insulin-like growth factor system and cancer. Cancer Lett. 195, 127–137 PubMed

Dynkevich Y., Rother K. I., Whitford I., Qureshi S., Galiveeti S., Szulc A. L., Danoff A., Breen T. L., Kaviani N., Shanik M. H., Leroith D., Vigneri R., Koch C. A., and Roth J. (2013) Tumors, IGF-2, and hypoglycemia: insights from the clinic, the laboratory, and the historical archive. Endocr. Rev. 34, 798–826 PubMed

Alvino C. L., Ong S. C., McNeil K. A., Delaine C., Booker G. W., Wallace J. C., and Forbes B. E. (2011) Understanding the mechanism of insulin and insulin-like growth factor (IGF) receptor activation by IGF-II. PLoS One 6, e27488. PubMed PMC

Gallagher E. J., and LeRoith D. (2011) Minireview: IGF, insulin, and cancer. Endocrinology 152, 2546–2551 PubMed

Alberini C. M., and Chen D. Y. (2012) Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci. 35, 274–283 PubMed PMC

Chen D. Y., Stern S. A., Garcia-Osta A., Saunier-Rebori B., Pollonini G., Bambah-Mukku D., Blitzer R. D., and Alberini C. M. (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469, 491–497 PubMed PMC

Pascual-Lucas M., Viana da Silva S., Di Scala M., Garcia-Barroso C., González-Aseguinolaza G., Mulle C., Alberini C. M., Cuadrado-Tejedor M., and Garcia-Osta A. (2014) Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol. Med. 6, 1246–1262 PubMed PMC

Clemmons D. R. (1998) Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol. Cell. Endocrinol. 140, 19–24 PubMed

Firth S. M., and Baxter R. C. (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824–854 PubMed

Kornfeld S. (1992) Structure and function of the mannose 6-phosphate insulin-like growth factor-II receptors. Annu. Rev. Biochem. 61, 307–330 PubMed

Belfiore A., and Malaguarnera R. (2011) Insulin receptor and cancer. Endocr.-Relat. Cancer 18, R125–R147 PubMed

Schaffer M. L., Deshayes K., Nakamura G., Sidhu S., and Skelton N. J. (2003) Complex with a phage display-derived peptide provides insight into the function of insulin-like growth factor I. Biochemistry 42, 9324–9334 PubMed

Laajoki L. G., Francis G. L., Wallace J. C., Carver J. A., and Keniry M. A. (2000) Solution structure and backbone dynamics of long-[Arg3]insulin-like growth factor-I. J. Biol. Chem. 275, 10009–10015 PubMed

De Wolf E., Gill R., Geddes S., Pitts J., Wollmer A., and Grötzinger J. (1996) Solution structure of a mini IGF-1. Protein Sci. 5, 2193–2202 PubMed PMC

Sato A., Nishimura S., Ohkubo T., Kyogoku Y., Koyama S., Kobayashi M., Yasuda T., and Kobayashi Y. (1993) 3-Dimensional structure of human insulin-like growth factor-I (IGF-I) determined by 1H-NMR and distance geometry. Int. J. Pept. Protein Res. 41, 433–440 PubMed

Cooke R. M., Harvey T. S., and Campbell I. D. (1991) Solution structure of human insulin-like growth factor 1: a nuclear magnetic resonance and restrained molecular dynamics study. Biochemistry 30, 5484–5491 PubMed

Brzozowski A. M., Dodson E. J., Dodson G. G., Murshudov G. N., Verma C., Turkenburg J. P., de Bree F. M., and Dauter Z. (2002) Structural origins of the functional divergence of human insulin-like growth factor-I and insulin. Biochemistry 41, 9389–9397 PubMed

Siwanowicz I., Popowicz G. M., Wisniewska M., Huber R., Kuenkele K. P., Lang K., Engh R. A., and Holak T. A. (2005) Structural basis for the regulation of insulin-like growth factors by IGF binding proteins. Structure 13, 155–167 PubMed

Vajdos F. F., Ultsch M., Schaffer M. L., Deshayes K. D., Liu J., Skelton N. J., and de Vos A. M. (2001) Crystal structure of human insulin-like growth factor-1: detergent binding inhibits binding protein interactions. Biochemistry 40, 11022–11029 PubMed

Yun C. H., Tang Y. H., Feng Y. M., An X. M., Chang W. R., and Liang D. C. (2005) 1.42 Å crystal structure of mini-IGF-1(2): an analysis of the disulfide isomerization property and receptor binding property of IGF-1 based on the three-dimensional structure. Biochem. Biophys. Res. Commun. 326, 52–59 PubMed

Sitar T., Popowicz G. M., Siwanowicz I., Huber R., and Holak T. A. (2006) Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 103, 13028–13033 PubMed PMC

Zesławski W., Beisel H. G., Kamionka M., Kalus W., Engh R. A., Huber R., Lang K., and Holak T. A. (2001) The interaction of insulin-like growth factor-I with the N-terminal domain of IGFBP-5. EMBO J. 20, 3638–3644 PubMed PMC

Terasawa H., Kohda D., Hatanaka H., Nagata K., Higashihashi N., Fujiwara H., Sakano K., and Inagaki F. (1994) Solution structure of human insulin-like growth-factor-II; recognition sites for receptors and binding-proteins. EMBO J. 13, 5590–5597 PubMed PMC

Torres A. M., Forbes B. E., Aplin S. E., Wallace J. C., Francis G. L., and Norton R. S. (1995) Solution structure of human insulin-like growth-factor-II. Relationship to receptor and binding-protein interactions. J. Mol. Biol. 248, 385–401 PubMed

Gursky O., Li Y., Badger J., and Caspar D. L. (1992) Monovalent cation binding to cubic insulin crystals. Biophys. J. 61, 604–611 PubMed PMC

McKern N. M., Lawrence M. C., Streltsov V. A., Lou M. Z., Adams T. E., Lovrecz G. O., Elleman T. C., Richards K. M., Bentley J. D., Pilling P. A., Hoyne P. A., Cartledge K. A., Pham T. M., Lewis J. L., Sankovich S. E., et al. (2006) Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 443, 218–221 PubMed

Lawrence M. C., McKern N. M., and Ward C. W. (2007) Insulin receptor structure and its implications for the IGF-1 receptor. Curr. Opin. Struct. Biol. 17, 699–705 PubMed

Ward C. W., Menting J. G., and Lawrence M. C. (2013) The insulin receptor changes conformation in unforeseen ways on ligand binding: sharpening the picture of insulin receptor activation. BioEssays 35, 945–954 PubMed

Yamaguchi Y., Flier J. S., Benecke H., Ransil B. J., and Moller D. E. (1993) Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology 132, 1132–1138 PubMed

Seino S., Seino M., Nishi S., and Bell G. I. (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc. Natl. Acad. Sci. U.S.A. 86, 114–118 PubMed PMC

Mosthaf L., Grako K., Dull T. J., Coussens L., Ullrich A., and McClain D. A. (1990) Functionally distinct insulin-receptors generated by tissue-specific alternative splicing. EMBO J. 9, 2409–2413 PubMed PMC

Schaefer E. M., Siddle K., and Ellis L. (1990) Deletion analysis of the human insulin receptor ectodomain reveals independently folded soluble subdomains and insulin binding by a monomeric α-subunit. J. Biol. Chem. 265, 13248–13253 PubMed

Brandt J., Andersen A. S., and Kristensen C. (2001) Dimeric fragment of the insulin receptor α-subunit binds insulin with full holoreceptor affinity. J. Biol. Chem. 276, 12378–12384 PubMed

De Meyts P. (2015) Insulin/receptor binding: the last piece of the puzzle? BioEssays 37, 389–397 PubMed

Kristensen C., Kjeldsen T., Wiberg F. C., Schäffer L., Hach M., Havelund S., Bass J., Steiner D. F., and Andersen A. S. (1997) Alanine scanning mutagenesis of insulin. J. Biol. Chem. 272, 12978–12983 PubMed

Denley A., Cosgrove L. J., Booker G. W., Wallace J. C., and Forbes B. E. (2005) Molecular interactions of the IGF system. Cytokine Growth Factor Rev. 16, 421–439 PubMed

Menting J. G., Whittaker J., Margetts M. B., Whittaker L. J., Kong G. K., Smith B. J., Watson C. J., Záková L., Kletvíková E., Jiráček J., Chan S. J., Steiner D. F., Dodson G. G., Brzozowski A. M., Weiss M. A., et al. (2013) How insulin engages its primary binding site on the insulin receptor. Nature 493, 241–245 PubMed PMC

Menting J. G., Yang Y., Chan S. J., Phillips N. B., Smith B. J., Whittaker J., Wickramasinghe N. P., Whittaker L. J., Pandyarajan V., Wan Z. L., Yadav S. P., Carroll J. M., Strokes N., Roberts C. T. Jr., Ismail-Beigi F., et al. (2014) Protective hinge in insulin opens to enable its receptor engagement. Proc. Natl. Acad. Sci. U.S.A. 111, E3395–E3404 PubMed PMC

Jirácek J., Záková L., Antolíková E., Watson C. J., Turkenburg J. P., Dodson G. G., and Brzozowski A. M. (2010) Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Proc. Natl. Acad. Sci. U.S.A. 107, 1966–1970 PubMed PMC

Žaková L., Kletvíková E., Veverka V., Lepsík M., Watson C. J., Turkenburg J. P., Jirácek J., and Brzozowski A. M. (2013) Structural integrity of the B24 site in human insulin is important for hormone functionality. J. Biol. Chem. 288, 10230–10240 PubMed PMC

Záková L., Kletvíková E., Lepšík M., Collinsová M., Watson C. J., Turkenburg J. P., Jiráček J., and Brzozowski A. M. (2014) Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex. Acta Crystallogr. D Biol. Crystallogr. 70, 2765–2774 PubMed PMC

Menting J. G., Lawrence C. F., Kong G. K., Margetts M. B., Ward C. W., and Lawrence M. C. (2015) Structural congruency of ligand binding to the insulin and insulin/type 1 insulin-like growth factor hybrid receptors. Structure 23, 1271–1282 PubMed

Mayer J. P., Zhang F., and DiMarchi R. D. (2007) Insulin structure and function. Biopolymers 88, 687–713 PubMed

Hashimoto R., Fujiwara H., Higashihashi N., Enjoh-Kimura T., Terasawa H., Fujita-Yamaguchi Y., Inagaki F., Perdue J. F., and Sakano K. (1995) N-terminal deletion mutants of insulin-like growth factor-II (IGF-II) show Thr7 and Leu8 important for binding to insulin and IGF-I receptors and Leu8 critical for All IGF-II functions. J. Biol. Chem. 270, 18013–18018 PubMed

Denley A., Bonython E. R., Booker G. W., Cosgrove L. J., Forbes B. E., Ward C. W., and Wallace J. C. (2004) Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Mol. Endocrinol. 18, 2502–2512 PubMed

Ziegler A. N., Chidambaram S., Forbes B. E., Wood T. L., and Levison S. W. (2014) Insulin-like growth factor-II (IGF-II) and IGF-II. Analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion. J. Biol. Chem. 289, 4626–4633 PubMed PMC

Henderson S. T., Brierley G. V., Surinya K. H., Priebe I. K., Catcheside D. E., Wallace J. C., Forbes B. E., and Cosgrove L. J. (2015) Delineation of the IGF-II C domain elements involved in binding and activation of the IR-A, IR-B and IGF-IR. Growth Horm. IGF Res. 25, 20–27 PubMed

Alvino C. L., McNeil K. A., Ong S. C., Delaine C., Booker G. W., Wallace J. C., Whittaker J., and Forbes B. E. (2009) A novel approach to identify two distinct receptor binding surfaces of insulin-like growth factor II. J. Biol. Chem. 284, 7656–7664 PubMed PMC

Delaine C., Alvino C. L., McNeil K. A., Mulhern T. D., Gauguin L., De Meyts P., Jones E. Y., Brown J., Wallace J. C., and Forbes B. E. (2007) A novel binding site for the human insulin-like growth factor-II (IGF-II)/mannose 6-phosphate receptor on IGF-II. J. Biol. Chem. 282, 18886–18894 PubMed

Sakano K., Enjoh T., Numata F., Fujiwara H., Marumoto Y., Higashihashi N., Sato Y., Perdue J. F., and Fujita-Yamaguchi Y. (1991) The design, expression, and characterization of human insulin-like growth factor-II (IGF-II) mutants specific for either the IGF-II cation-independent mannose 6-phosphate receptor or IGF-I receptor. J. Biol. Chem. 266, 20626–20635 PubMed

Zhou P., and Wagner G. (2010) Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies. J. Biomol. NMR 46, 23–31 PubMed PMC

Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., and Clore G. M. (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal Protein-G. Science 253, 657–661 PubMed

Williams C., Hoppe H. J., Rezgui D., Strickland M., Forbes B. E., Grutzner F., Frago S., Ellis R. Z., Wattana-Amorn P., Prince S. N., Zaccheo O. J., Nolan C. M., Mungall A. J., Jones E. Y., Crump M. P., et al. (2012) An exon splice enhancer primes IGF2:IGF2R binding site structure and function evolution. Science 338, 1209–1213 PubMed PMC

Frasca F., Pandini G., Scalia P., Sciacca L., Mineo R., Costantino A., Goldfine I. D., Belfiore A., and Vigneri R. (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell. Biol. 19, 3278–3288 PubMed PMC

Slaaby R. (2015) Specific insulin/IGF1 hybrid receptor activation assay reveals IGF1 as a more potent ligand than insulin. Sci. Rep. 5, 7911. PubMed PMC

Cottam J. M., Scanlon D. B., Karas J. A., Calabrese A. N., Pukala T. L., Forbes B. E., Wallace J. C., and Abell A. D. (2013) Chemical synthesis of a fluorescent IGF-II analogue. Int. J. Pept. Res. Ther. 19, 61–69

King G. L., Kahn C. R., Samuels B., Danho W., Bullesbach E. E., and Gattner H. G. (1982) Synthesis and characterization of molecular hybrids of insulin and insulin-like growth factor-I. The role of the A-chain extension peptide. J. Biol. Chem. 257, 10869–10873 PubMed

Francis G. L., Ross M., Ballard F. J., Milner S. J., Senn C., McNeil K. A., Wallace J. C., King R., and Wells J. R. (1992) Novel recombinant fusion protein analogs of insulin-like growth-factor (IGF)-I indicate the relative importance of IGF-binding protein and receptor-binding for enhanced biological potency. J. Mol. Endocrinol. 8, 213–223 PubMed

Francis G. L., Aplin S. E., Milner S. J., McNeil K. A., Ballard F. J., and Wallace J. C. (1993) Insulin-like growth-factor (IGF)-II binding to IGF-binding proteins and IGF receptors is modified by deletion of the N-terminal hexapeptide or substitution of arginine for glutamate-6 in IGF-II. Biochem. J. 293, 713–719 PubMed PMC

Williams C., Rezgui D., Prince S. N., Zaccheo O. J., Foulstone E. J., Forbes B. E., Norton R. S., Crosby J., Hassan A. B., and Crump M. P. (2007) Structural insights into the interaction of insulin-like growth factor 2 with IGF2R domain 11. Structure 15, 1065–1078 PubMed

Sohma Y., Pentelute B. L., Whittaker J., Hua Q. X., Whittaker L. J., Weiss M. A., and Kent S. B. (2008) Comparative properties of insulin-like growth factor 1 (IGF-1) and [Gly7D-Ala]IGF-1 prepared by total chemical synthesis. Angew. Chem. Int. Ed. Engl. 47, 1102–1106 PubMed

Gill R., Verma C., Wallach B., Ursø B., Pitts J., Wollmer A., De Meyts P., and Wood S. (1999) Modelling of the disulphide-swapped isomer of human insulin-like growth factor-1: implications for receptor binding. Protein Eng. 12, 297–303 PubMed

Bayne M. L., Applebaum J., Underwood D., Chicchi G. G., Green B. G., Hayes N. S., and Cascieri M. A. (1989) The C region of human insulin-like growth factor (IGF) I is required for high affinity binding to the type 1 IGF receptor. J. Biol. Chem. 264, 11004–11008 PubMed

Bayne M. L., Applebaum J., Chicchi G. G., Miller R. E., and Cascieri M. A. (1990) The roles of tyrosine-24, tyrosine-31, and tyrosine-60 in the high-affinity binding of insulin-like growth factor-I to the type-1 insulin-like growth-factor receptor. J. Biol. Chem. 265, 15648–15652 PubMed

Maly P., and Lüthi C. (1988) The binding sites of insulin-like growth factor I (IGF I) to type I IGF receptor and to a monoclonal antibody. Mapping by chemical modification of tyrosine residues. J. Biol. Chem. 263, 7068–7072 PubMed

Keyhanfar M., Booker G. W., Whittaker J., Wallace J. C., and Forbes B. E. (2007) Precise mapping of an IGF-I-binding site on the IGF-1R. Biochem. J. 401, 269–277 PubMed PMC

Renshaw P. S., Veverka V., Kelly G., Frenkiel T. A., Williamson R. A., Gordon S. V., Hewinson R. G., and Carr M. D. (2004) Sequence-specific assignment and secondary structure determination of the 195-residue complex formed by the Mycobacterium tuberculosis proteins CFP-10 and ESAT-6. J. Biomol. NMR 30, 225–226 PubMed

Veverka V., Lennie G., Crabbe T., Bird I., Taylor R. J., and Carr M. D. (2006) NMR assignment of the mTOR domain responsible for rapamycin binding. J. Biomol. NMR 36, Suppl. 1, 3. PubMed

Herrmann T., Güntert P., and Wüthrich K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 PubMed

Shen Y., Delaglio F., Cornilescu G., and Bax A. (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 PubMed PMC

Harjes E., Harjes S., Wohlgemuth S., Müller K. H., Krieger E., Herrmann C., and Bayer P. (2006) GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Structure 14, 881–888 PubMed

Koradi R., Billeter M., and Wüthrich K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 29–32 PubMed

Morcavallo A., Genua M., Palummo A., Kletvikova E., Jiracek J., Brzozowski A. M., Iozzo R. V., Belfiore A., and Morrione A. (2012) Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J. Biol. Chem. 287, 11422–11436 PubMed PMC

Kosinová L., Veverka V., Novotná P., Collinsová M., Urbanová M., Moody N. R., Turkenburg J. P., Jiráček J., Brzozowski A. M., and Žáková L. (2014) Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry 53, 3392–3402 PubMed PMC

Viková J., Collinsová M., Kletvíková E., Buděšínský M., Kaplan V., Žáková L., Veverka V., Hexnerová R., Tarazona Aviñó R. J., Straková J., Selicharová I., Vaněk V., Wright D. W., Watson C. J., Turkenburg J. P., et al. (2016) Rational steering of insulin binding specificity by intra-chain chemical crosslinking. Sci. Rep. 6, 19431. PubMed PMC

Slaaby R., Andersen A. S., and Brandt J. (2008) IGF-I binding to the IGF-I receptor is affected by contaminants in commercial BSA: the contaminants are proteins with IGF-I binding properties. Growth Horm. IGF Res. 18, 267–274 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...