Holocentric chromosomes: from tolerance to fragmentation to colonization of the land
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29069342
PubMed Central
PMC5786251
DOI
10.1093/aob/mcx118
PII: 4560298
Knihovny.cz E-zdroje
- Klíčová slova
- Clastogens, Zygnematophyceae, chromosomal fragmentation, cosmic radiation, desiccation, gamma radiation, herbivory, holokinetic chromosomes, land plants, monocentric chromosomes, terrestrialization, ultraviolet radiation,
- MeSH
- biologická evoluce * MeSH
- centromera fyziologie MeSH
- chromozomy rostlin MeSH
- chromozomy * fyziologie MeSH
- Eukaryota genetika MeSH
- mutace MeSH
- selekce (genetika) genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The dispersed occurrence of holocentric chromosomes across eukaryotes implies they are adaptive, but the conditions under which they confer an advantage over monocentric chromosomes remain unclear. Due to their extended kinetochore and the attachment of spindle microtubules along their entire length, holocentric chromosomes tolerate fragmentation; hence, they may be advantageous in times of exposure to factors that cause chromosomal fragmentation (clastogens). SCOPE: It is shown that holocentric organisms may, indeed, thrive better than monocentric organisms under clastogenic conditions and that such conditions of various duration and intensity have occurred many times throughout the history of Earth's biota. One of the most important clastogenic events in eukaryotic history, in which holocentric chromosomes may have played the key role, was the colonization of land by plants and animals half a billion years ago. In addition to arguments supporting the anticlastogenic hypothesis of holocentric chromosomes and a discussion of its evolutionary consequences, experiments and analyses are proposed to explore this hypothesis in more depth. CONCLUSIONS: It is argued that the tolerance to clastogens explains the origin of holocentric lineages and may also have far-reaching consequences for eukaryotic evolution in general as exemplified by the potential role of holocentric chromosomes in terrestrialization.
Zobrazit více v PubMed
Amiro BD, Dugle JR. 1985. Temporal changes in boreal forest tree canopy cover along a gradient of gamma radiation. Canadian Journal of Botany 63: 15–20.
Amiro BD, Sheppard SC. 1994. Effects of ionizing radiation on the boreal forest: Canada’s FIG experiment, with implications for radionuclides. The Science of the Total Environment 157: 371–382.
Bakri A, Heather N, Hendrichs J, Ferris I. 2005. Fifty years of radiation biology in entomology: lessons learned from IDIDAS. Annals of the Entomological Society of America 98: 1–12.
Banasiuk R, Kawiak A, Królicka A. 2012. In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. Journal of Biotechnology, Computational Biology and Bionanotechnology 93: 87–96.
Battaglia E. 2003. Centromere, kinetochore, kinochore, kinetosome, kinosome, kinetomere, kinomere, kinetocentre, kinocentre: history, etymology and interpretation. Caryologia 56: 1–21.
Beckmann M, Václavík T, Manceur AM et al. . 2014. glUV: a global UV-B radiation data set for macroecological studies. Methods in Ecology and Evolution 5: 372–383
Bennett MD, Leitch IJ. 2012. Plant DNA C-values database (release 6.0, December 2012), http://www.kew.org/cvalues/
Bertolani R. 1982. Cytology and reproductive mechanisms in tardigrades. In: Nelson DR, ed. Proceedings of the Third International Symposium on Tardigrada Johnson City: East Tennessee State University Press, 93–114.
Bouchenak-Khelladi Y, Muasya MA, Linder HP. 2014. A revised evolutionary history of Poales: origins and diversification. Botanical Journal of the Linnean Society 175: 4–16.
Brook AJ. 1981. The biology of Desmids. Berkeley and Los Angeles: University of California Press
Bureš P, Zedek F, Marková M. 2013. Holocentric chromosomes. In: Wendel J, Greilhuber J, Doležel J, Leitch IJ, eds. Plant genome diversity. Vol. 2. Physical structure of plant genomes. Heidelberg: Springer-Verlag, 187–208.
Carpenter JE, Bloem S, Marec F. 2005. Inherited sterility in insects. In: Dyck VA, Hendrichs J, Robinson AS, eds. Sterile insect technique. Principles and practice in area-wide integrated pest management.Dordrecht: Springer, 115–146.
Chytrý M, Hennekens SM, Jiménez-Alfaro B, et al. . 2016. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science 19: 173–180.
Culligan K, Tissier A, Britt A. 2004. ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. The Plant Cell 16: 1091–1104. PubMed PMC
Dartnell LR. 2011. Ionizing radiation and life. Astrobiology 11: 551–582. PubMed
de Vries J, Stanton A, Archibald JM, Gould SB. 2016. Streptophyte terrestrialization in light of plastid evolution. Trends Plant Sciences 21: 467–476. PubMed
Delwiche CF, Cooper ED. 2015. The evolutionary origin of a terrestrial flora. Current Biology 25: R899–R910. PubMed
Demidov D, Schubert V, Kumke K, et al. . 2014. Anti-phosphorylated histone H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenetic and Genome Research 143: 150–156. PubMed
Doglioni C, Pignatti J, Coleman M. 2016. Why did life develop on the surface of the Earth in the Cambrian?Geoscience Frontiers 7: 865–873.
Dunn CW. 2013. Evolution: out of the ocean. Current Biology 23: R241–R243. PubMed
Escudero M, Márquez-Corro JI, Hipp AL. 2016. The phylogenetic origins and evolutionary history of holocentric chromosomes. Systematic Botany 41: 580–585.
Flaccus E, Armentano TV, Archer M. 1974. Effects of chronic gamma radiation on the composition of the herb community of an oak-pine forest. Radiation Botany 14: 263–271.
Garwood RJ, Edgecombe GD. 2011. Early terrestrial animals, evolution, and uncertainty. Evolution: Education and Outreach 4: 489–501.
Gegas VC, Wargent JJ, Pesquet E, Granqvist E, Paul ND, Doonan JH. 2014. Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. Journal of Experimental Botany 65: 2757–2766. PubMed PMC
Gernand D, Demidov D, Houben A. 2003. The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenetic and Genome Research 101: 172–176. PubMed
Godward MBE. 1966. Conjugales. In: Godward MBE, ed. The chromosomes of algae. London: Edward Arnold (Publishers) Ltd, 24–51.
Godward MBE. 1985. The kinetochore. In: Bourne GH, Danielli JF, Jeon KW, eds. International review of cytology volume 94. London: Academic Press, 77–105.
Guerra M, Cabral G, Cuacos M, et al. . 2010. Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenetic and Genome Research 129: 82–96. PubMed
Hallman GJ. 2000. Expanding radiation quarantine treatments beyond fruitflies. Agricultural and Forest Entomology 2: 85–95.
Heckmann S, Schroeder-Reiter E, Kumke K, et al. . 2011. Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenetic and Genome Research 134: 220–228. PubMed
Holzinger A, Pichrtová M. 2016. Abiotic stress tolerance of charophyte green algae: new challenges for omics techniques. Frontiers in Plant Science 7: 678. PubMed PMC
Hughes-Schrader S, Ris H. 1941. The diffuse spindle attachment of Coccids, verified by the mitotic behaviour of induced chromosome fragments. Journal of Experimental Zoology 87: 429–456.
Hulot G, Finlay CC, Constable CG, Olsen N, Mandea M. 2010. The magnetic field of Planet Earth. Space Science Reviews 152: 159–222.
Hutchinson TC, Harwell MA, Cropper WP, Grover HD. 1985. Additional potential effects of nuclear war on ecological systems. In: Harwell MA, Hutchinson TC, eds. Environmental consequences of nuclear war II: Ecological and agricultural effects. New York: Wiley, 173–267.
Ishidate M, Harnois MC, Sofuni T. 1988. A comparative analysis of data on the clastogenicity of 951 chemical substances tested in mammalian cell cultures. Mutation Research 195: 151–213. PubMed
Jankowska M, Fuchs J, Klocke E, et al. . 2015. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 124: 519–528. PubMed
Kati AN, Mandrioli M, Skouras PJ, et al. . 2014. Recent changes in the distribution of carboxylesterase genes and associated chromosomal rearrangements in Greek populations of the tobacco aphid Myzus persicae nicotianae. Biological Journal of the Linnean Society 113: 455–470.
King GC. 1960. The cytology of desmids: the chromosomes. New Phytologist 59: 65–72.
Kovalchuk O, Arkhipov A, Barylyak I, et al. . 2000. Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants. Mutation Research 449: 47–56. PubMed
Kumar S, Stecher G, Suleski M, Blair Hedges S. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 32: 835–845. PubMed
Lindquist EE. 1999. Evolution of phytophagy in trombidiform mites. In: Bruin J, van der Geest LPS, Sabelis MW, eds. Ecology and evolution of the Acari. Dordrecht: Kluwer Academic Publishers, 73–88.
Lomax BH. 2012. Past extremes. In Bell EM, ed. Life at extremes: environments, organisms and strategies for survival.Wallingford: CABI, 13–35.
Lowden M, Flibotte S, Moerman D, Ahmed S. 2011. DNA synthesis generates terminal duplications that seal end-to-end chromosome fusions. Science 332: 468–471. PubMed PMC
Madej A, Kuta E. 2001. Holokinetic chromosomes of Luzula luzuloides (Juncaceae) in callus culture. Acta biologica Cracoviensia Series botanica 43: 33–43.
Malik HS, Henikoff S. 2009. Major evolutionary transitions in centromere complexity. Cell 138: 1067–1082. PubMed
Mandrioli M, Manicardi GC. 2012. Unlocking holocentric chromosomes: new perspectives from comparative and functional genomics?Current Genomics 13: 343–349. PubMed PMC
Mandrioli M, Zanasi F, Manicardi GC. 2014. Karyotype rearrangements and telomere analysis in Myzus persicae (Hemiptera, Aphididae) strains collected on Lavandula sp. plants. Comparative Cytogenetics 8: 259–274. PubMed PMC
Marques A, Pedrosa-Harand A. 2016. Holocentromere identity: from the typical mitotic linear structure to the great plasticity of meiotic holocentromeres. Chromosoma 125: 669–681. PubMed
McCormick JF, Platt RB. 1962. Effects of ionizing radiation on a natural plant community. Radiation Botany 2: 161–188.
Meert JG, Levashova NM, Bazhenov ML, Landing E. 2016. Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Research 34: 149–157.
Melott AL, Lieberman BS, Laird CM, et al. . 2004. Did a gamma-ray burst initiate the late Ordovician mass extinction?International Journal of Astrobiology 3: 55–61.
Melters DP, Paliulis LV, Korf IF, Chan SW. 2012. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research 20: 579–593. PubMed
Merrill RT, McFadden PL. 1999. Geomagnetic polarity transitions. Review of Geophysics 37: 201–226.
Miehe G, Miehe S, Kaiser K, Liu J, Zhao X. 2008. Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan plateau. Ambio 37: 272–279. PubMed
Mola LM, Papeschi AG. 2006. Holokinetic chromosomes at a glance. Journal of Basic and Applied Genetics 17: 17–33.
Mughal S, Godward MBE. 1973. Kinetochore and microtubules in two members of Chlorophyceae, Cladophora fracta and Spirogyra majuscula. Chromosoma 44: 213–229.
Murakami A, Imai HT. 1974. Cytological evidence for holocentric chromosomes of the silkworms, Bombyx mori and B. mandarina, (Bombycidae, Lepidoptera). Chromosoma 47: 167–178. PubMed
Newsham KK, Davidson AT. 2012. High ultraviolet radiation environments. In: Bell EM, ed. Life at extremes: environments, organisms and strategies for survival.Wallingford: CABI, 454–473.
Niklas KJ, Kutschera U. 2010. The evolution of the land plant life cycle. New Phytologist 185: 27–41. PubMed
Nokkala S, Kuznetsova VG, Maryanska-Nadachowska A, Nokkala C. 2004. Holocentric chromosomes in meiosis. I. Restriction of the number of chiasmata in bivalents. Chromosome Research 12: 733–739. PubMed
Nordenskiöld H. 1963. A study of meiosis in progeny of x-irradiated Luzula purpurea. Hereditas 49: 33–47.
Olsvig LS. 1979. Pattern and diversity analysis of the irradiated oak-pine forest, Brookhaven, New York. Vegetatio 40: 65–78.
Pavlov AA, Pavlov AK, Mills MJ, Ostryakov VM, Vasilyev GI, Toon OB. 2005. Catastrophic ozone loss during passage of the Solar system through an interstellar cloud. Geophysical Research Letters 32: L01815.
Preuss SB, Britt AB. 2003. A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics 164: 323–334. PubMed PMC
Rice A, Glick L, Abadi S, et al. . 2015. The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytologist 206: 19–26. PubMed
Rota-Stabelli O, Daley AC, Pisani D. 2013. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Current Biology 23: 392–398. PubMed
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. 2014. From algae to angiosperms – inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology 14: 23. PubMed PMC
Schrader F. 1935. Notes on the mitotic behaviour of long chromosomes. Cytologia 6: 422–430.
Sheikh SA, Kondo K, Hoshi Y. 1995. Study of diffused centromeric nature of Drosera chromosomes. Cytologia 60: 43–47.
Shultz JW. Chelicerata (arachnids, including spiders, mites and scorpions). In: eLS. Chichester: John Wiley & Sons Ltd. doi:10.1038/npg.els.0001605 2001
Smagghe G, Goodman CL, Stanley D. 2009. Insect cell culture and applications to research and pest management. In Vitro Cell and Developmental Biology: Animal 45: 93–105. PubMed
Stalter R, Kincaid D. 2009. Community development following gamma radiation at a pine-oak forest, Brookhaven National Laboratory, Long Island, New York. American Journal of Botany 96: 2206–2213. PubMed
Stamenković M, Hanelt D. 2017. Geographic distribution and ecophysiological adaptations of desmids (Zygnematophyceae, Streptophyta) in relation to PAR, UV radiation and temperature: a review. Hydrobiologia 787: 1–26.
Stear J, Roth M. 2002. Characterization of HCP-6, a C. elegans protein required to prevent chromosome twisting and merotelic attachment. Genes and Development 16: 1498–1508. PubMed PMC
Takahashi CS. 1976. Cytogenetical studies on the effects of high natural radiation levels in Tityus bahiensis (Scorpiones, Buthidae) from Morro do Ferro, Brazil. Radiation Research 67: 371–381. PubMed
Talbert PB, Bayes JJ, Henikoff S. 2008. Evolution of centromeres and kinetochores: A two-part fugue. In: De Wulf P, Earnshaw WC, eds. The kinetochore. Berlin: Springer, 193–230.
Tedetti M, Sempéré R. 2006. Penetration of ultraviolet radiation in the marine environment. A review. Photochemistry and Photobiology 82: 389–397. PubMed
Thomas BC, Neale PJ, Snyder BR. 2015. Solar irradiance changes and photobiological effects at Earth’s surface following astrophysical ionizing radiation events. Astrobiology 15: 207–220. PubMed
Timme RE, Bachvaroff TR, Delwiche CF. 2012. Broad phylogenomic sampling and the sister lineage of land plants. PLoS One 7: e29696. PubMed PMC
Vedajanani K, Sarma YSRK. 1979. Effects of radiations on Spirogyra azygospora Singh 1. Gamma-rays. Cytologia 44: 419–427.
Waterworth WM, Drury GE, Bray CM, West CE. 2011. Repairing breaks in the plant genome: the importance of keeping it together. New Phytologist 192: 805–822. PubMed
Wei Y, Pu Z, Zong Q, et al. . 2014. Oxygen escape from the Earth during geomagnetic reversals: implications to mass extinction. Earth and Planetary Science Letters 394: 94–98.
Wells CV, Hoshaw RW. 1980. Gamma irradiation effects on two species of the green alga Sirogonium with different chromosome types. Environmental and Experimental Botany 20: 39–45.
White MJD. 1936. Chromosome cycle of Ascaris megalocephala.Nature 137: 783.
Wickett NJ, Mirarab S, Nguyen N, et al. . 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences USA 111: E4859–4868. PubMed PMC
Wiens JJ, Lapoint RT, Whiteman NK. 2015. Herbivory increases diversification across insect clades. Nature Communications 6: 8370. PubMed PMC
Willis KJ, Bennett KD, Birks HJB. 2009. Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. Journal of Biogeography 36: 1630–1644.
Wodniok S, Brinkmann H, Glöckner G, et al. . 2011. Origin of land plants: do conjugating green algae hold the key?BMC Evolutionary Biology 11: 104. PubMed PMC
Woodwell GM. 1962. Effect of ionizing radiation on terrestrial ecosystems. Science 138: 572–577. PubMed
Wrensch DL, Kethley JB, Norton RA. 1994. Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites, with generalizations on eukaryotes. In: Houck MA, ed. Mites: ecological and evolutionary analyses of life-story patterns.New York: Chapman and Hall, 282–342.
Zanne AE, Tank DC, Cornwell WK, et al. . 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89–92. PubMed
Zavitkovski J, Salmonson BJ. 1975. Effects of gamma radiation on biomass production of ground vegetation under broadleaved forests of Northern Wisconsin. Radiation Botany 15: 337–348.
Zedek F, Bureš P. 2016. Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive. Annals of Botany 118: 1347–1352. PubMed PMC
Zedek F, Veselý P, Horová L, Bureš P. 2016. Flow cytometry may allow microscope-independent detection of holocentric chromosomes in plants. Scientific Reports 6: 27161. PubMed PMC
Centromere drive may propel the evolution of chromosome and genome size in plants
Centromere size scales with genome size across Eukaryotes
Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae
Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture
Chromosome numbers of Carex (Cyperaceae) and their taxonomic implications