Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27616209
PubMed Central
PMC5155603
DOI
10.1093/aob/mcw186
PII: mcw186
Knihovny.cz E-zdroje
- Klíčová slova
- CenH3, Luzula, centromere drive, holokinetic chromosomes, positive selection,
- MeSH
- centromera genetika MeSH
- chromozomy rostlin genetika MeSH
- fylogeneze MeSH
- genom rostlinný genetika MeSH
- histony genetika MeSH
- Magnoliopsida genetika MeSH
- meióza genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- selekce (genetika) genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH
BACKGROUND AND AIMS: The centromere drive theory explains diversity of eukaryotic centromeres as a consequence of the recurrent conflict between centromeric repeats and centromeric histone H3 (CenH3), in which selfish centromeres exploit meiotic asymmetry and CenH3 evolves adaptively to counterbalance deleterious consequences of driving centromeres. Accordingly, adaptively evolving CenH3 has so far been observed only in eukaryotes with asymmetric meiosis. However, if such evolution is a consequence of centromere drive, it should depend not only on meiotic asymmetry but also on monocentric or holokinetic chromosomal structure. Selective pressures acting on CenH3 have never been investigated in organisms with holokinetic meiosis despite the fact that holokinetic chromosomes have been hypothesized to suppress centromere drive. Therefore, the present study evaluates selective pressures acting on the CenH3 gene in holokinetic organisms for the first time, specifically in the representatives of the plant genus Luzula (Juncaceae), in which the kinetochore formation is not co-localized with any type of centromeric repeat. METHODS: PCR, cloning and sequencing, and database searches were used to obtain coding CenH3 sequences from Luzula species. Codon substitution models were employed to infer selective regimes acting on CenH3 in Luzula KEY RESULTS: In addition to the two previously published CenH3 sequences from L. nivea, 16 new CenH3 sequences have been isolated from 12 Luzula species. Two CenH3 isoforms in Luzula that originated by a duplication event prior to the divergence of analysed species were found. No signs of positive selection acting on CenH3 in Luzula were detected. Instead, evidence was found that selection on CenH3 of Luzula might have been relaxed. CONCLUSIONS: The results indicate that holokinetism itself may suppress centromere drive and, therefore, holokinetic chromosomes might have evolved as a defence against centromere drive.
Zobrazit více v PubMed
Anisimova M, Yang Z. 2007. Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Molecular Biology and Evolution 24: 1219–1228. PubMed
Baker RE, Rogers K. 2006. Phylogenetic analysis of fungal centromere H3 proteins. Genetics 174: 1481–1492. PubMed PMC
Beck EA, Llopart A. 2015. Widespread positive selection drives differentiation of centromeric proteins in the Drosophila melanogaster subgroup. Scientific Reports 5: 17197. PubMed PMC
Bureš P, Zedek F. 2014. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution 68: 2412–2420. PubMed
Bureš P, Zedek F, Marková M. 2013. Holocentric chromosomes In: Leitch IJ, Greihuber J, Doležel J, Wendel J, eds. Plant genome diversity, Vol. 2. Heidelberg: Springer, 187–208.
Chan RC, Severson AF, Meyer BJ. 2004. Condensin restructures chromosomes in preparation for meiotic divisions. Journal of Cell Biology 167: 613–625. PubMed PMC
Drinnenberg IA, DeYoung D, Henikoff S, Malik HS. 2014. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLlife 3: e03676. PubMed PMC
Escudero M, Hipp AL, Waterway MJ, Valente LM. 2012. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Molecular Phylogenetics and Evolution 63: 650–655. PubMed
Escudero M, Maguilla E, Loureiro J, Castro M, Castro S, Luceño M. 2015. Genome size stability despite high chromosome number variation in Carex gr. laevigata. American Journal of Botany 102: 233–238. PubMed
Fishman L. 2013. Female meiotic drive in monkeyflowers: insight into the population genetics of selfish centromeres In: Jiang J, Birchler JA, eds. Plant centromere biology. Oxford: Wiley-Blackwell, 129–145.
Fishman L, Saunders A. 2008. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322: 1559–1562. PubMed
Finseth FR, Dong Y, Saunders A, Fishman L. 2015. Duplication and adaptive evolution of a key centromeric protein in Mimulus, a genus with female meiotic drive. Molecular Biology and Evolution 32: 2694–2706. PubMed
Heckmann S, Macas J, Kumke K, et al. 2013. The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. The Plant Journal 73: 555–565. PubMed
Heckmann S, Jankowska M, Schubert V, Kumke K, Ma W, Houben A. 2014. Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nature Communications 5: 4979. PubMed PMC
Henikoff S, Ahmad K, Malik HS. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102. PubMed
Heslop-Harrison JS, Schwarzacher T. 2011. Organisation of the plant genome in chromosomes. The Plant Journal 66: 18–33. PubMed
Hirsch CD, Wu Y, Yan H, Jiang J. 2009. Lineage-specific adaptive evolution of the centromeric protein CENH3 in diploid and allotetraploid Oryza species. Molecular Biology and Evolution 26: 2877–2885. PubMed
Kikudome GY. 1959. Studies on the phenomenon of preferential segregation in maize. Genetics 44: 815–831. PubMed PMC
Kosakovsky Pond SL, Murrel B, Fourment M, Frost SD, Delport W, Scheffler K. 2011. A random effects branch-site model for detecting episodic diversifying selection. Molecular Biology and Evolution 28: 3033–3043. PubMed PMC
Lermontova I, Schubert I. 2013. CENH3 for establishing and maintaining centromeres In: Jiang J, Birchler JA. eds. Plant centromere biology. Oxford: Wiley-Blackwell, 67–82.
Malik HS, Henikoff S. 2009. Major evolutionary transitions in centromere complexity. Cell 138: 1067–1082. PubMed
Marques A, Ribeiro T, Neumann P, et al. 2015. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proceedings of the National Academy of Sciences, USA 112: 13633–13638. PubMed PMC
Melters DP, Paliulis LV, Korf IF, Chan SWL. 2012. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research 20: 579–593. PubMed
Melters DP, Bradnam KR, Young HA, et al. 2013. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology 14: R10. PubMed PMC
Misof B, Liu S, Meusemann K, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346: 763–767. PubMed
Monen J, Maddox PS, Hyndman F, Oegema K, Desai A. 2005. Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nature Cell Biology 7: 1248–1255. PubMed
Moraes IC, Lermontova I, Schubert I. 2011. Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein. Plant Molecular Biology 75: 253–261. PubMed
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genetics 8: e1002764. PubMed PMC
Nagaki K, Kashihara K, Murata M. 2005. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. The Plant Cell 17: 1886–1893. PubMed PMC
Neumann P, Navrátilová A, Schroeder-Reiter E, et al. 2012. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genetics 8: e1002777. PubMed PMC
Redelings BD. 2014. Erasing errors due to alignment ambiguity when estimating positive selection. Molecular Biology and Evolution 31: 1979–1993. PubMed PMC
Redelings BD, Suchard MA. 2005. Joint Bayesian estimation of alignment and phylogeny. Systematic Biology 54: 401–418. PubMed
Schueler MG, Swanson W, Thomas PJ, Green ED, Progra NCS. 2010. Adaptive evolution of foundation kinetochore proteins in primates. Molecular Biology and Evolution 27: 1585–1597. PubMed PMC
Talbert PB, Bryson TD, Henikoff S. 2004. Adaptive evolution of centromere proteins in plants and animals. Journal of Biology 3: 18. PubMed PMC
Talbert PB, Bayes JJ, Henikoff S. 2008. Evolution of centromeres and kinetochores: a two-part fugue In: De Wulf P, Earnshaw WC, eds. The kinetochore: from molecular discoveries to cancer therapy. Berlin: Springer, 193–230.
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586–1591. PubMed
Záveská Drábková L, Vlček C. 2010. Molecular phylogeny of the genus Luzula DC. (Juncaceae, Monocotyledones) based on plastome and nuclear ribosomal regions: a case of incongruence, incomplete lineage sorting and hybridisation. Molecular Phylogenetics and Evolution 57: 536–551. PubMed
Zedek F, Bureš P. 2012. Evidence for centromere drive in the holocentric chromosomes of Caenorhabditis. PLoS One 7: e30496. PubMed PMC
Zedek F, Bureš P. 2016. CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model. Scientific Reports 6: 33308. PubMed PMC
Zedek F, Veselý P, Horová L, Bureš P. 2016. Flow cytometry may allow microscope-independent detection of holocentric chromosomes in plants. Scientific Reports 6: 27161. PubMed PMC
Zhang T, Talbert PB, Zhang W, et al. 2013. The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proceedings of the National Academy of Sciences, USA 110: E4875–4883. PubMed PMC
Centromere drive may propel the evolution of chromosome and genome size in plants
Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae
Chromosome numbers of Carex (Cyperaceae) and their taxonomic implications
Holocentric chromosomes: from tolerance to fragmentation to colonization of the land
Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae)
CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model