Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26489653
PubMed Central
PMC4640781
DOI
10.1073/pnas.1512255112
PII: 1512255112
Knihovny.cz E-zdroje
- Klíčová slova
- centromere, chromosome, evolution, holokinetic, satellite DNA,
- MeSH
- centromera * MeSH
- euchromatin genetika MeSH
- genom rostlinný * MeSH
- molekulární sekvence - údaje MeSH
- šáchorovité genetika MeSH
- satelitní DNA genetika MeSH
- tandemové repetitivní sekvence * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- euchromatin MeSH
- satelitní DNA MeSH
Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated "Tyba" and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle-dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences.
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben 06466 Stadt Seeland Germany;
Zobrazit více v PubMed
Plohl M, Meštrović N, Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014;123(4):313–325. PubMed PMC
Neumann P, et al. Plant centromeric retrotransposons: A structural and cytogenetic perspective. Mob DNA. 2011;2(4):1–16. PubMed PMC
Marshall OJ, Chueh AC, Wong LH, Choo KH. Neocentromeres: New insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet. 2008;82(2):261–282. PubMed PMC
Earnshaw WC, et al. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res. 2013;21(2):101–106. PubMed PMC
Heckmann S, Houben A. 2013. Holokinetic centromeres. Plant Centromere Biology, eds Jiang J. Birchler JA (Wiley-Blackwell, Oxford, UK), pp 83–94.
Guerra M, et al. Neocentrics and holokinetics (holocentrics): Chromosomes out of the centromeric rules. Cytogenet Genome Res. 2010;129(1-3):82–96. PubMed
Moore LL, Morrison M, Roth MB. HCP-1, a protein involved in chromosome segregation, is localized to the centromere of mitotic chromosomes in Caenorhabditis elegans. J Cell Biol. 1999;147(3):471–480. PubMed PMC
Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S. A histone-H3-like protein in C. elegans. Nature. 1999;401(6753):547–548. PubMed
Nagaki K, Kashihara K, Murata M. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell. 2005;17(7):1886–1893. PubMed PMC
Heckmann S, et al. Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenet Genome Res. 2011;134(3):220–228. PubMed
Wanner G, Schroeder-Reiter E, Ma W, Houben A, Schubert V. The ultrastructure of mono- and holocentric plant centromeres: An immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma. June 6, 2015 doi: 10.1007/s00412-015-0521-1. PubMed DOI
Cabral G, Marques A, Schubert V, Pedrosa-Harand A, Schlögelhofer P. Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat Commun. 2014;5:5070. PubMed PMC
Chmátal L, et al. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol. 2014;24(19):2295–2300. PubMed PMC
Gassmann R, et al. An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature. 2012;484(7395):534–537. PubMed PMC
Heckmann S, et al. The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J. 2013;73(4):555–565. PubMed
Steiner FA, Henikoff S. Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. eLife. 2014;3:e02025. PubMed PMC
Subirana JA, Messeguer X. A satellite explosion in the genome of holocentric nematodes. PLoS One. 2013;8(4):e62221. PubMed PMC
Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C. elegans: Extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991;10(12):3959–3970. PubMed PMC
Riddle DL, Blumenthal T, Meyer BJ, Priess JR. 1997. Introduction to C. elegans. C. elegans II, eds Riddle DL, Blumenthal T, Meyer BJ, Priess JR (Cold Spring Harbor Lab Press, Cold Spring Harborn, NY), 2nd Ed.
Luceno M, Vanzela ALL, Guerra M. Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Canadian Journal of Botany. 1998;76(3):440–449.
Vanzela ALL, Cuadrado A, Jouve N, Luceño M, Guerra M. Multiple locations of the rDNA sites in holocentric chromosomes of Rhynchospora (Cyperaceae) Chromosome Res. 1998;6(5):345–349. PubMed
Vanzela ALL, Guerra M, Luceno M. Rhynchospora tenuis Link (Cyperaceae), a species with the lowest number of holocentric chromosomes. Cytobios. 1996;88(355):219–228.
Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010;11:378. PubMed PMC
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–793. PubMed
Plohl M, Luchetti A, Mestrović N, Mantovani B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008;409(1-2):72–82. PubMed
Melters DP, et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14(1):R10. PubMed PMC
Kelly WG, et al. X-chromosome silencing in the germline of C. elegans. Development. 2002;129(2):479–492. PubMed PMC
Nagaki K, et al. Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics. 2003;163(3):1221–1225. PubMed PMC
Nagaki K, et al. Sequencing of a rice centromere uncovers active genes. Nat Genet. 2004;36(2):138–145. PubMed
Zhong CX, et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002;14(11):2825–2836. PubMed PMC
Vafa O, Sullivan KF. Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr Biol. 1997;7(11):897–900. PubMed
Hall LE, Mitchell SE, O’Neill RJ. Pericentric and centromeric transcription: A perfect balance required. Chromosome Res. 2012;20(5):535–546. PubMed
Iwata A, et al. Identification and characterization of functional centromeres of the common bean. Plant J. 2013;76(1):47–60. PubMed
Dover GA. Molecular drive in multigene families - How biological novelties arise, spread and are assimilated. Trends Genet. 1986;2(6):159–165.
Mahtani MM, Willard HF. Physical and genetic mapping of the human X chromosome centromere: Repression of recombination. Genome Res. 1998;8(2):100–110. PubMed
Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science. 1976;191(4227):528–535. PubMed
Talbert PB, Henikoff S. Centromeres convert but don’t cross. PLoS Biol. 2010;8(3):e1000326. PubMed PMC
Horvath JE, et al. Punctuated duplication seeding events during the evolution of human chromosome 2p11. Genome Res. 2005;15(7):914–927. PubMed PMC
Ma J, Jackson SA. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res. 2006;16(2):251–259. PubMed PMC
Tek AL, Song J, Macas J, Jiang J. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics. 2005;170(3):1231–1238. PubMed PMC
Gorinsek B, Gubensek F, Kordis D. Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol. 2004;21(5):781–798. PubMed
Schrader F. The role of the kinetochore in the chromosomal evolution of the heteroptera and homoptera. Evolution. 1947;1:134–142.
Neumann P, et al. Stretching the rules: Monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8(6):e1002777. PubMed PMC
C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: A platform for investigating biology. Science. 1998;282(5396):2012–2018. PubMed
Holocentromeres can consist of merely a few megabase-sized satellite arrays
Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae
Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture
Flow cytometry may allow microscope-independent detection of holocentric chromosomes in plants
Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes