Mitotic Spindle Attachment to the Holocentric Chromosomes of Cuscuta europaea Does Not Correlate With the Distribution of CENH3 Chromatin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32038700
PubMed Central
PMC6992598
DOI
10.3389/fpls.2019.01799
Knihovny.cz E-zdroje
- Klíčová slova
- CENH3, Cuscuta, centromere, holocentric chromosomes, kinetochore, repetitive DNA analysis, satellite DNA,
- Publikační typ
- časopisecké články MeSH
The centromere is the region on a chromosome where the kinetochore assembles and spindle microtubules attach during mitosis and meiosis. In the vast majority of eukaryotes, the centromere position is determined epigenetically by the presence of the centromere-specific histone H3 variant CENH3. In species with monocentric chromosomes, CENH3 is confined to a single chromosomal region corresponding to the primary constriction on metaphase chromosomes. By contrast, in holocentrics, CENH3 (and thus centromere activity) is distributed along the entire chromosome length. Here, we report a unique pattern of CENH3 distribution in the holocentric plant Cuscuta europaea. This species expressed two major variants of CENH3, both of which were deposited into one to three discrete regions per chromosome, whereas the rest of the chromatin appeared to be devoid of CENH3. The two CENH3 variants fully co-localized, and their immunodetection signals overlapped with the positions of DAPI-positive heterochromatic bands containing the highly amplified satellite repeat CUS-TR24. This CENH3 distribution pattern contrasted with the distribution of the mitotic spindle microtubules, which attached at uniform density along the entire chromosome length. This distribution of spindle attachment sites proves the holocentric nature of C. europaea chromosomes and also suggests that, in this species, CENH3 either lost its function or acts in parallel to an additional CENH3-free mechanism of kinetochore positioning.
Zobrazit více v PubMed
Allshire R. C., Karpen G. H. (2008). Epigenetic regulation of centromeric chromatin: Old dogs, new tricks? Nat. Rev. Genet. 9, 923–937. 10.1038/nrg2466 PubMed DOI PMC
Altschul S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580. 10.1093/nar/27.2.573 PubMed DOI PMC
Bozek M., Leitch A. R., Leitch I. J., Záveská Drábková L., Kuta E. (2012). Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes. Bot. J. Linn. Soc 170, 529–541. 10.1111/j.1095-8339.2012.01314.x DOI
Cheeseman I. (2014). The Kinetochore. Cold Spring Harb. Perspect. Biol. 6, 1–18. 10.1101/cshperspect.a015826 PubMed DOI PMC
Dellaporta S. L., Wood J., Hicks J. B. (1983). A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 19–21. 10.1007/BF02712670 DOI
Drinnenberg I. A., Akiyoshi B. (2017). “Evolutionary Lessons from Species with Unique Kinetochores,” in Centromeres and Kinetochores, ed. Black B. (Cham: Springer; ), 111–138. 10.1007/978-3-319-58592-5_5 PubMed DOI
Drinnenberg I. A., DeYoung D., Henikoff S., Malik H. S. (2014). Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife 3, e03676. 10.7554/eLife.03676 PubMed DOI PMC
García M. A., Costea M., Kuzmina M., Stefanović S. (2014). Phylogeny, character evolution, and biogeography of Cuscuta (Dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. Am. J. Bot. 101, 670–690. 10.3732/ajb.1300449 PubMed DOI
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. 10.1038/nbt.1883 PubMed DOI PMC
Håkansson A. (2010). Holocentric chromosomes in Eleocharis . Hereditas 44, 531–540. 10.1111/j.1601-5223.1958.tb03498.x DOI
Hara M., Fukagawa T. (2017). “Critical foundation of the Kinetochore: the constitutive centromere-associated network (CCAN),” in Centromeres and Kinetochores, ed. Black B. (Cham: Springer; ), 29–57. 10.1007/978-3-319-58592-5_2 PubMed DOI
Heckmann S., Schroeder-Reiter E., Kumke K., Ma L., Nagaki K., Murata M., et al. (2011). Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenet. Genome Res. 134, 220–228. 10.1159/000327713 PubMed DOI
Heckmann S., Macas J., Kumke K., Fuchs J., Schubert V., Ma L., et al. (2013). The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J. 73, 555–565. 10.1111/tpj.12054 PubMed DOI
Karafiátová M., Bartoš J., Doležel J. (2016). “Localization of Low-Copy DNA Sequences on Mitotic Chromosomes by FISH,” in Plant Cytogenetics eds. Kianian S., Kianian P. (New York, NY: Humana Press; ), 49–64. 10.1007/978-1-4939-3622-9_5 PubMed DOI
Kolodin P., Cempírková H., Bureš P., Horová L., Veleba A., Francová J., et al. (2018). Holocentric chromosomes may be an apomorphy of Droseraceae. Plant Syst. Evol. 304, 1289–1296. 10.1007/s00606-018-1546-8 DOI
Luceño M., Vanzela A. L. L., Guerra M. (1998). Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Can. J. Bot. 76, 440–449. 10.1139/b98-013 DOI
Macas J., Neumann P., Navrátilová A. (2007). Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula . BMC Genomics 8, 427. 10.1186/1471-2164-8-427 PubMed DOI PMC
Marques A., Ribeiro T., Neumann P., Macas J., Novák P., Schubert V., et al. (2015). Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc. Natl. Acad. Sci. U. S. A. 112, 13633–13638. 10.1073/pnas.1512255112 PubMed DOI PMC
McKinley K. L., Cheeseman I. M. (2016). The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17, 16–29. 10.1038/nrm.2015.5 PubMed DOI PMC
McNeal J. R., Arumugunathan K., Kuehl J. V., Boore J. L., Depamphilis C. W. (2007). Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biol. 5, 55. 10.1186/1741-7007-5-55 PubMed DOI PMC
Melters D. P., Paliulis L. V., Korf I. F., Chan S. W. L. (2012). Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosom. Res. 20, 579–593. 10.1007/s10577-012-9292-1 PubMed DOI
Mon H., Lee J. M., Sato M., Kusakabe T. (2017). Identification and functional analysis of outer kinetochore genes in the holocentric insect Bombyx mori . Insect Biochem. Mol. Biol. 86, 1–8. 10.1016/j.ibmb.2017.04.005 PubMed DOI
Nagaki K., Kashihara K., Murata M. (2005). Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea . Plant Cell 17, 1886–1893. 10.1105/tpc.105.032961 PubMed DOI PMC
Neumann P., Požárková D., Vrána J., Doležel J., Macas J. (2002). Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosom. Res. 10, 63–71. 10.1023/A:1014274328269 PubMed DOI
Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., et al. (2012). Stretching the rules: Monocentric chromosomes with multiple centromere domains. PloS Genet. 8, e1002777. 10.1371/journal.pgen.1002777 PubMed DOI PMC
Neumann P., Pavlíková Z., Koblížková A., Fuková I., Jedličková V., Novák P., et al. (2015). Centromeres off the hook: massive changes in centromere size and structure following duplication of CenH3 gene in Fabeae species. Mol. Biol. Evol. 32, 1862–1879. 10.1093/molbev/msv070 PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793. 10.1093/bioinformatics/btt054 PubMed DOI
Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P., Macas J. (2017). TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 45, e111. 10.1093/nar/gkx257 PubMed DOI PMC
Pazy B., Plitmann U. (1991). Unusual chromosome separation in meiosis of Cuscuta L. Genome 34, 533–536. 10.1139/g91-082 DOI
Pazy B., Plitmann U. (1994). Holocentric chromosome behaviour in Cuscuta (Cuscutaceae). Plant Syst. Evol. 191, 105–109. 10.1007/BF00985345 DOI
Pazy B., Plitmann U. (1995). Chromosome divergence in the genus Cuscuta and its systematic implications. Caryologia 48, 173–180. 10.1080/00087114.1995.10797327 DOI
Pazy B., Plitmann U. (2002). New perspectives on the mechanisms of chromosome evolution in parasitic flowering plants. Bot. J. Linn. Soc 138, 117–122. 10.1046/j.1095-8339.2002.00006.x DOI
Ribeiro T., Marques A., Novák P., Schubert V., Vanzela A. L. L., Macas J., et al. (2017). Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma 126, 325–335. 10.1007/s00412-016-0616-3 PubMed DOI
Roalson E., McCubbin A., Whitkus R. (2007). Chromosome Evolution in Cyperales. Aliso 23, 62–71. 10.5642/aliso.20072301.08 DOI
Sobreira T. J. P., Durham A. M., Gruber A. (2006). TRAP: automated classification, quantification and annotation of tandemly repeated sequences. Bioinformatics 22, 361–362. 10.1093/bioinformatics/bti809 PubMed DOI
Tanaka N., Tanaka N. (1979). Chromosome studies in Chionographis (Liliaceae). Cytologia (Tokyo). 44, 935–949. 10.1508/cytologia.44.935 DOI
Ugarković Đ. (2009). “Centromere-competent DNA: structure and evolution,” in Centromere, ed. Ugarković Đ. (Berlin, Heidelberg: Springer; ), 53–76. 10.1007/978-3-642-00182-6_3 PubMed DOI
Wanner G., Schroeder-Reiter E., Ma W., Houben A., Schubert V. (2015). The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma 124, 503–517. 10.1007/s00412-015-0521-1 PubMed DOI
Westermann S., Schleiffer A. (2013). Family matters: Structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol. 23, 260–269. 10.1016/j.tcb.2013.01.010 PubMed DOI
Westermann S., Drubin D. G., Barnes G. (2007). Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76, 563–591. 10.1146/annurev.biochem.76.052705.160607 PubMed DOI
Holocentromeres can consist of merely a few megabase-sized satellite arrays
Disruption of the standard kinetochore in holocentric Cuscuta species
Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae
Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture