Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36735726
PubMed Central
PMC10027222
DOI
10.1371/journal.pgen.1010633
PII: PGENETICS-D-22-01340
Knihovny.cz E-zdroje
- MeSH
- centromera genetika MeSH
- chromatin genetika MeSH
- hrách setý * genetika MeSH
- lidé MeSH
- lidské chromozomy, pár 6 * MeSH
- satelitní DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- satelitní DNA MeSH
Centromeres in the legume genera Pisum and Lathyrus exhibit unique morphological characteristics, including extended primary constrictions and multiple separate domains of centromeric chromatin. These so-called metapolycentromeres resemble an intermediate form between monocentric and holocentric types, and therefore provide a great opportunity for studying the transitions between different types of centromere organizations. However, because of the exceedingly large and highly repetitive nature of metapolycentromeres, highly contiguous assemblies needed for these studies are lacking. Here, we report on the assembly and analysis of a 177.6 Mb region of pea (Pisum sativum) chromosome 6, including the 81.6 Mb centromere region (CEN6) and adjacent chromosome arms. Genes, DNA methylation profiles, and most of the repeats were uniformly distributed within the centromere, and their densities in CEN6 and chromosome arms were similar. The exception was an accumulation of satellite DNA in CEN6, where it formed multiple arrays up to 2 Mb in length. Centromeric chromatin, characterized by the presence of the CENH3 protein, was predominantly associated with arrays of three different satellite repeats; however, five other satellites present in CEN6 lacked CENH3. The presence of CENH3 chromatin was found to determine the spatial distribution of the respective satellites during the cell cycle. Finally, oligo-FISH painting experiments, performed using probes specifically designed to label the genomic regions corresponding to CEN6 in Pisum, Lathyrus, and Vicia species, revealed that metapolycentromeres evolved via the expansion of centromeric chromatin into neighboring chromosomal regions and the accumulation of novel satellite repeats. However, in some of these species, centromere evolution also involved chromosomal translocations and centromere repositioning.
Zobrazit více v PubMed
Musacchio A, Desai A. A molecular view of kinetochore assembly and function. Biology (Basel). 2017;6: 5. doi: 10.3390/biology6010005 PubMed DOI PMC
Hara M, Fukagawa T. Critical Foundation of the Kinetochore: The Constitutive Centromere-Associated Network (CCAN). Centromeres and Kinetochores. Springer, Cham; 2017. pp. 29–57. doi: 10.1007/978-3-319-58592-5_2 PubMed DOI
Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 2001;293: 1098–102. doi: 10.1126/science.1062939 PubMed DOI
Schubert V, Neumann P, Marques A, Heckmann S, Macas J, Pedrosa-Harand A, et al.. Super-resolution microscopy reveals diversity of plant centromere architecture. Int J Mol Sci. 2020;21: 3488. doi: 10.3390/ijms21103488 PubMed DOI PMC
Melters DP, Paliulis L V, Korf IF, Chan SWL. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosom Res. 2012;20: 579–93. doi: 10.1007/s10577-012-9292-1 PubMed DOI
Neumann P, Navrátilová A, Schroeder-Reiter E, Koblížková A, Steinbauerová V, Chocholová E, et al.. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8: e1002777. doi: 10.1371/journal.pgen.1002777 PubMed DOI PMC
Neumann P, Pavlíková Z, Koblížková A, Fuková I, Jedličková V, Novák P, et al.. Centromeres off the hook: Massive changes in centromere size and structure following duplication of CenH3 gene in Fabeae species. Mol Biol Evol. 2015;32: 1862–1879. doi: 10.1093/molbev/msv070 PubMed DOI PMC
Neumann P, Schubert V, Fuková I, Manning JE, Houben A, Macas J. Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes. Front Plant Sci. 2016;7: 234. doi: 10.3389/fpls.2016.00234 PubMed DOI PMC
Peona V, Weissensteiner MH, Suh A. How complete are ‘complete’ genome assemblies?—An avian perspective. Mol Ecol Resour. 2018;18: 1188–1195. doi: 10.1111/1755-0998.12933 PubMed DOI
Hartley G, O’Neill R. Centromere repeats: Hidden gems of the genome. Genes (Basel). 2019;10: 223. doi: 10.3390/genes10030223 PubMed DOI PMC
Talbert PB, Henikoff S. What makes a centromere? Exp Cell Res. 2020;389: 111895. doi: 10.1016/j.yexcr.2020.111895 PubMed DOI
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze A V., Mikheenko A, et al.. The complete sequence of a human genome. Science 2022;376: 44–53. doi: 10.1126/science.abj6987 PubMed DOI PMC
Altemose N, Logsdon GA, Bzikadze A V., Sidhwani P, Langley SA, Caldas G V., et al.. Complete genomic and epigenetic maps of human centromeres. Science 2022;376. doi: 10.1126/science.abl4178 PubMed DOI PMC
Liu J, Seetharam AS, Chougule K, Ou S, Swentowsky KW, Gent JI, et al.. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 2020;21: 121. doi: 10.1186/s13059-020-02029-9 PubMed DOI PMC
Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, Liu J, et al.. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 2021;373: 655–662. doi: 10.1126/science.abg5289 PubMed DOI PMC
Naish M, Alonge M, Wlodzimierz P, Tock AJ, Abramson BW, Schmücker A, et al.. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 2021;374. doi: 10.1126/science.abi7489 PubMed DOI PMC
Wang B, Yang X, Jia Y, Xu Y, Jia P, Dang N, et al.. High-quality Arabidopsis thaliana genome assembly with Nanopore and HiFi long reads. Genomics Proteomics Bioinformatics. 2022;20: 4–13. doi: 10.1016/j.gpb.2021.08.003 PubMed DOI PMC
Song J-M, Xie W-Z, Wang S, Guo Y-X, Koo D-H, Kudrna D, et al.. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol Plant. 2021;14: 1757–1767. doi: 10.1016/j.molp.2021.06.018 PubMed DOI
Rengs WMJ, Schmidt MH-W., Effgen S, Le DB, Wang Y, Zaidan MWAM, et al.. A chromosome scale tomato genome built from complementary PacBio and Nanopore sequences alone reveals extensive linkage drag during breeding. Plant J. 2022; 1–17. doi: 10.1111/tpj.15690 PubMed DOI
Ávila Robledillo L, Neumann P, Koblížková A, Novák P, Vrbová I, Macas J. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol Biol Evol. 2020;37: 2341–2356. doi: 10.1093/molbev/msaa090 PubMed DOI PMC
Kreplak J, Madoui M-A, Cápal P, Novák P, Labadie K, Aubert G, et al.. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51: 1411–1422. doi: 10.1038/s41588-019-0480-1 PubMed DOI
Tayeh N, Aluome C, Falque M, Jacquin F, Klein A, Chauveau A, et al.. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high density, high resolution consensus genetic map. Plant J. 2015;84: 1257–1273. doi: 10.1111/tpj.13070 PubMed DOI
Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, et al.. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2: 4. doi: 10.1186/1759-8753-2-4 PubMed DOI PMC
Ni P, Huang N, Nie F, Zhang J, Zhang Z, Wu B, et al.. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nat Commun. 2021;12: 1–11. doi: 10.1038/s41467-021-26278-9 PubMed DOI PMC
Vondrak T, Ávila Robledillo L, Novák P, Koblížková A, Neumann P, Macas J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020;101: 484–500. doi: 10.1111/tpj.14546 PubMed DOI PMC
Hofstatter PG, Thangavel G, Lux T, Neumann P, Vondrak T, Novak P, et al.. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell. 2022;185: 3153–3168.e18. doi: 10.1016/j.cell.2022.06.045 PubMed DOI
Yang T, Liu R, Luo Y, Hu S, Wang D, Wang C, et al.. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet. 2022. doi: 10.1038/s41588-022-01172-2 PubMed DOI PMC
Heckmann S, Macas J, Kumke K, Fuchs J, Schubert V, Ma L, et al.. The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J. 2013;73: 555–565. doi: 10.1111/tpj.12054 PubMed DOI
Gershman A, Sauria MEG, Guitart X, Vollger MR, Hook PW, Hoyt SJ, et al.. Epigenetic patterns in a complete human genome. Science. 2022;376: eabj5089. doi: 10.1126/science.abj5089 PubMed DOI PMC
Montenegro C, do Vale Martins L, Bustamante F de O, Brasileiro-Vidal AC, Pedrosa-Harand A. Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae. Chromosom Res. 2022. doi: 10.1007/s10577-022-09702-8 PubMed DOI
Schubert I. What is behind “centromere repositioning”? Chromosoma. 2018;127: 229–234. doi: 10.1007/s00412-018-0672-y PubMed DOI
Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, et al.. Multiple wheat genomes reveal global variation in modern breeding. Nature. 2020;588: 277–283. doi: 10.1038/s41586-020-2961-x PubMed DOI PMC
Xue C, Liu G, Sun S, Liu X, Guo R, Cheng Z, et al.. De novo centromere formation in pericentromeric region of rice chromosome 8. Plant J. 2022;111: 859–871. doi: 10.1111/tpj.15862 PubMed DOI
Ma J, Jackson SA. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res. 2006;16: 251–259. doi: 10.1101/gr.4583106 PubMed DOI PMC
Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, Bednář P, et al.. The giant diploid faba genome unlocks variation in a global protein crop. bioRxiv. 2022; 2022.09.23.509015. doi: 10.1101/2022.09.23.509015 PubMed DOI PMC
Cortes-Silva N, Ulmer J, Kiuchi T, Hsieh E, Cornilleau G, Ladid I, et al.. CenH3-independent kinetochore assembly in Lepidoptera requires CCAN, including CENP-T. Curr Biol. 2020;30: 561–572.e10. doi: 10.1016/j.cub.2019.12.014 PubMed DOI
Drinnenberg IA, DeYoung D, Henikoff S, Malik HS. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife. 2014;3: e03676. doi: 10.7554/eLife.03676 PubMed DOI PMC
Oliveira L, Neumann P, Jang T, Klemme S, Schubert V. Mitotic spindle attachment to the holocentric chromosomes of Cuscuta europaea does not correlate with the distribution of CENH3 chromatin. Front Plant Sci. 2020;10: 1799. doi: 10.3389/fpls.2019.01799 PubMed DOI PMC
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25: 3389–402. doi: 10.1093/nar/25.17.3389 PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34: 3094–3100. doi: 10.1093/bioinformatics/bty191 PubMed DOI PMC
Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics. 2007;23: 1026–1028. doi: 10.1093/bioinformatics/btm039 PubMed DOI
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18: 170–175. doi: 10.1038/s41592-020-01056-5 PubMed DOI PMC
Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, et al.. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 2020;30: 1291–1305. doi: 10.1101/gr.263566.120 PubMed DOI PMC
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27: 737–746. doi: 10.1101/gr.214270.116 PubMed DOI PMC
Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA. 2019;10: 1. doi: 10.1186/s13100-018-0144-1 PubMed DOI PMC
Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, et al.. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One. 2015;10: e0143424. doi: 10.1371/journal.pone.0143424 PubMed DOI PMC
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27: 573–80. doi: 10.1093/nar/27.2.573 PubMed DOI PMC
Sobreira TJP, Durham AM, Gruber A. TRAP: automated classification, quantification and annotation of tandemly repeated sequences. Bioinformatics. 2006;22: 361–362. doi: 10.1093/bioinformatics/bti809 PubMed DOI
Banerjee S, Bhandary P, Woodhouse M, Sen TZ, Wise RP, Andorf CM. FINDER: an automated software package to annotate eukaryotic genes from RNA-Seq data and associated protein sequences. BMC Bioinformatics. 2021;22: 205. doi: 10.1186/s12859-021-04120-9 PubMed DOI PMC
Alves-Carvalho S, Aubert G, Carrère S, Cruaud C, Brochot A-L, Jacquin F, et al.. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 2015;84: 1–19. doi: 10.1111/tpj.12967 PubMed DOI
Henriet C, Aimé D, Térézol M, Kilandamoko A, Rossin N, Combes-Soia L, et al.. Water stress combined with sulfur deficiency in pea affects yield components but mitigates the effect of deficiency on seed globulin composition. J Exp Bot. 2019;70: 4287–4304. doi: 10.1093/jxb/erz114 PubMed DOI PMC
Song L, Sabunciyan S, Yang G, Florea L. A multi-sample approach increases the accuracy of transcript assembly. Nat Commun. 2019;10: 5000. doi: 10.1038/s41467-019-12990-0 PubMed DOI PMC
Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics Bioinforma. 2021;3. doi: 10.1093/nargab/lqaa108 PubMed DOI PMC
Gatter T, Stadler PF. Ryūtō: improved multi-sample transcript assembly for differential transcript expression analysis and more. Bioinformatics. 2021;37: 4307–4313. doi: 10.1093/bioinformatics/btab494 PubMed DOI
Venturini L, Caim S, Kaithakottil GG, Mapleson DL, Swarbreck D. Leveraging multiple transcriptome assembly methods for improved gene structure annotation. Gigascience. 2018;7. doi: 10.1093/gigascience/giy093 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31: 2032–2034. doi: 10.1093/bioinformatics/btv098 PubMed DOI PMC
Stovner EB, Sætrom P. Epic2 efficiently finds diffuse domains in ChIP-seq data. Bioinformatics. 2019;35: 4392–4393. doi: 10.1093/bioinformatics/btz232 PubMed DOI
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9: R137. doi: 10.1186/gb-2008-9-9-r137 PubMed DOI PMC
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al.. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44: W160–W165. doi: 10.1093/nar/gkw257 PubMed DOI PMC
Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009;25: 1841–1842. doi: 10.1093/bioinformatics/btp328 PubMed DOI PMC
Zhang T, Liu G, Zhao H, Braz GT, Jiang J. Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization. Plant Biotechnol J. 2021; 1–12. doi: 10.1111/pbi.13610 PubMed DOI PMC
Braz GT, Yu F, do Vale Martins L, Jiang J. Fluorescent In Situ Hybridization Using Oligonucleotide-Based Probes. In Situ Hybridization Protocols Methods in Molecular Biology, vol 2148. 2020. pp. 71–83. doi: 10.1007/978-1-0716-0623-0_4 PubMed DOI
Kato A, Albert PS, Vega JM, Birchler JA. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem. 2006;81: 71–78. doi: 10.1080/10520290600643677 PubMed DOI
Aliyeva-Schnorr L, Beier S, Karafiátová M, Schmutzer T, Scholz U, Doležel J, et al.. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. Plant J. 2015;84: 385–394. doi: 10.1111/tpj.13006 PubMed DOI
Neumann P, Pozárková D, Vrána J, Dolezel J, Macas J. Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosom Res. 2002;10: 63–71. doi: 10.1023/a:1014274328269 PubMed DOI
Zhong X-B, de Jong JH, Zabel P. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescencein situ hybridization (FISH). Chromosom Res. 1996;4: 24–28. doi: 10.1007/BF02254940 PubMed DOI
Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8: 427. doi: 10.1186/1471-2164-8-427 PubMed DOI PMC
Fields BD, Nguyen SC, Nir G, Kennedy S. A multiplexed DNA FISH strategy for assessing genome architecture in Caenorhabditis elegans. Elife. 2019;8. doi: 10.7554/eLife.42823 PubMed DOI PMC
The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly
A chromosome-scale reference genome of grasspea (Lathyrus sativus)
KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants