Metal Nanoparticles with Antimicrobial Properties: The Toxicity Response in Mouse Mesenchymal Stem Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-17720S
Czech Science Foundation
LM2018133
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36977018
PubMed Central
PMC10057305
DOI
10.3390/toxics11030253
PII: toxics11030253
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial properties, mesenchymal stem cells, metal nanoparticles, toxicity,
- Publikační typ
- časopisecké články MeSH
Some metal nanoparticles (NP) are characterized by antimicrobial properties with the potential to be used as alternative antibiotics. However, NP may negatively impact human organism, including mesenchymal stem cells (MSC), a cell population contributing to tissue growth and regeneration. To address these issues, we investigated the toxic effects of selected NP (Ag, ZnO, and CuO) in mouse MSC. MSC were treated with various doses of NP for 4 h, 24 h, and 48 h and multiple endpoints were analyzed. Reactive oxygen species were generated after 48 h CuO NP exposure. Lipid peroxidation was induced after 4 h and 24 h treatment, regardless of NP and/or tested dose. DNA fragmentation and oxidation induced by Ag NP showed dose responses for all the periods. For other NP, the effects were observed for shorter exposure times. The impact on the frequency of micronuclei was weak. All the tested NP increased the sensitivity of MSC to apoptosis. The cell cycle was most affected after 24 h, particularly for Ag NP treatment. In summary, the tested NP induced numerous adverse changes in MSC. These results should be taken into consideration when planning the use of NP in medical applications where MSC are involved.
Zobrazit více v PubMed
McIntyre R.A. Common Nano-Materials and Their Use in Real World Applications. Sci. Prog. 2012;95:1–22. doi: 10.3184/003685012X13294715456431. PubMed DOI PMC
Beyth N., Houri-Haddad Y., Domb A., Khan W., Hazan R. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evid.-Based Complement. Altern. Med. 2015;2015:246012. doi: 10.1155/2015/246012. PubMed DOI PMC
Oyarzun-Ampuero F., Vidal A., Concha M., Morales J., Orellana S., Moreno-Villoslada I. Nanoparticles for the Treatment of Wounds. Curr. Pharm. Des. 2015;21:4329–4341. doi: 10.2174/1381612821666150901104601. PubMed DOI
Ajdary M., Moosavi M.A., Rahmati M., Falahati M., Mahboubi M., Mandegary A., Jangjoo S., Mohammadinejad R., Varma R.S. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials. 2018;8:634. doi: 10.3390/nano8090634. PubMed DOI PMC
Abdal Dayem A., Lee S.B., Cho S.-G. The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation. Nanomaterials. 2018;8:761. doi: 10.3390/nano8100761. PubMed DOI PMC
Zhou X., Yuan L., Wu C., Chen C., Luo G., Deng J., Mao Z. Recent review of the effect of nanomaterials on stem cells. RSC Adv. 2018;8:17656–17676. doi: 10.1039/C8RA02424C. PubMed DOI PMC
Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI
Abumaree M., Al Jumah M., Pace R.A., Kalionis B. Immunosuppressive Properties of Mesenchymal Stem Cells. Stem Cell Rev. Rep. 2011;8:375–392. doi: 10.1007/s12015-011-9312-0. PubMed DOI
English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol. Cell Biol. 2012;91:19–26. doi: 10.1038/icb.2012.56. PubMed DOI
Holan V., Hermankova B., Bohacova P., Kossl J., Chudickova M., Hajkova M., Krulova M., Zajicova A., Javorkova E. Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment. Stem Cell Rev. Rep. 2016;12:654–663. doi: 10.1007/s12015-016-9688-y. PubMed DOI
Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials. 2020;10:292. doi: 10.3390/nano10020292. PubMed DOI PMC
Helmlinger J., Sengstock C., Groß-Heitfeld C., Mayer C., Schildhauer T.A., Köller M., Epple M. Silver nanoparticles with different size and shape: Equal cytotoxicity, but different antibacterial effects. RSC Adv. 2016;6:18490–18501. doi: 10.1039/C5RA27836H. DOI
Breisch M., Grasmik V., Loza K., Pappert K., Rostek A., Ziegler N., Ludwig A., Heggen M., Epple M., Tiller J.C., et al. Bimetallic silver–platinum nanoparticles with combined osteo-promotive and antimicrobial activity. Nanotechnology. 2019;30:305101. doi: 10.1088/1361-6528/ab172b. PubMed DOI
Wan R., Chu S., Wang X., Lei L., Tang H., Hu G., Dong L., Li D., Gu H. Study on the osteogenesis of rat mesenchymal stem cells and the long-term antibacterial activity of Staphylococcus epidermidis on the surface of silver-rich TiN /Ag modified titanium alloy. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020;108:3008–3021. doi: 10.1002/jbm.b.34630. PubMed DOI
Cioffi N., Torsi L., Ditaranto N., Tantillo G., Ghibelli L., Sabbatini L., Bleve-Zacheo T., D’Alessio M., Zambonin P.G., Traversa E. Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties. Chem. Mater. 2005;17:5255–5262. doi: 10.1021/cm0505244. DOI
Ren G., Hu D., Cheng E.W., Vargas-Reus M.A., Reip P., Allaker R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents. 2009;33:587–590. doi: 10.1016/j.ijantimicag.2008.12.004. PubMed DOI
Gunawan C., Teoh W.Y., Marquis C., Amal R. Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano. 2011;5:7214–7225. doi: 10.1021/nn2020248. PubMed DOI
Limbach L.K., Wick P., Manser P., Grass R.N., Bruinink A., Stark W.J. Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells: Influence of Chemical Composition and Catalytic Activity on Oxidative Stress. Environ. Sci. Technol. 2007;41:4158–4163. doi: 10.1021/es062629t. PubMed DOI
Karlsson H.L., Cronholm P., Gustafsson J., Möller L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008;21:1726–1732. doi: 10.1021/tx800064j. PubMed DOI
Murgia A., Mancuso L., Manis C., Caboni P., Cao G. GC-MS metabolomics analysis of mesenchymal stem cells treated with copper oxide nanoparticles. Toxicol. Mech. Methods. 2016;26:611–619. doi: 10.1080/15376516.2016.1220654. PubMed DOI
Fahmy B., Cormier S.A. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol. Vitr. 2009;23:1365–1371. doi: 10.1016/j.tiv.2009.08.005. PubMed DOI PMC
Siddiqui M., Alhadlaq H., Ahmad J., Al-Khedhairy A., Musarrat J., Ahamed M. Copper Oxide Nanoparticles Induced Mitochondria Mediated Apoptosis in Human Hepatocarcinoma Cells. PLoS ONE. 2013;8:e69534. doi: 10.1371/journal.pone.0069534. PubMed DOI PMC
Le Blanc K. Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy. 2006;8:559–561. doi: 10.1080/14653240601045399. PubMed DOI
Sasaki M., Abe R., Fujita Y., Ando S., Inokuma D., Shimizu H. Mesenchymal Stem Cells Are Recruited into Wounded Skin and Contribute to Wound Repair by Transdifferentiation into Multiple Skin Cell Type. J. Immunol. 2008;180:2581–2587. doi: 10.4049/jimmunol.180.4.2581. PubMed DOI
Politano A.D., Campbell K.T., Rosenberger L.H., Sawyer R.G. Use of Silver in the Prevention and Treatment of Infections: Silver Review. Surg. Infect. 2013;14:8–20. doi: 10.1089/sur.2011.097. PubMed DOI PMC
Kumar R., Umar A., Kumar G., Nalwa H.S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 2017;43:3940–3961. doi: 10.1016/j.ceramint.2016.12.062. DOI
Altoé L.S., Alves R.S., Sarandy M.M., Morais-Santos M., Novaes R.D., Gonçalves R.V. Does antibiotic use accelerate or retard cutaneous repair? A systematic review in animal models. PLoS ONE. 2019;14:e0223511. doi: 10.1371/journal.pone.0223511. PubMed DOI PMC
Matsumoto H., Wada T., Fukunaga K., Yoshihiro S., Matsuyama H., Naito K. Bax to Bcl-2 Ratio and Ki-67 Index are Useful Predictors of Neoadjuvant Chemoradiation Therapy in Bladder Cancer. Jpn. J. Clin. Oncol. 2004;34:124–130. doi: 10.1093/jjco/hyh026. PubMed DOI
Echalar B., Dostalova D., Palacka K., Javorkova E., Hermankova B., Cervena T., Zajicova A., Holan V., Rossner P. Effects of antimicrobial metal nanoparticles on characteristics and function properties of mouse mesenchymal stem cells. Toxicol. Vitr. 2023;87:105536. doi: 10.1016/j.tiv.2022.105536. PubMed DOI
Porubska B., Vasek D., Somova V., Hajkova M., Hlaviznova M., Tlapakova T., Holan V., Krulova M. Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells. Stem Cell Rev. Rep. 2021;17:1905–1916. doi: 10.1007/s12015-021-10197-9. PubMed DOI
Jensen K.A. The NANOGENOTOX Dispersion Protocol for NANoREG. National Research Centre for the Working Environment; Copenhagen, Denmark: 2014.
Hanzalova K., Rossner P., Sram R.J. Oxidative damage induced by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter. Mutat. Res. Toxicol. Environ. Mutagen. 2010;696:114–121. doi: 10.1016/j.mrgentox.2009.12.018. PubMed DOI
Rossner P., Libalova H., Vrbova K., Cervena T., Rossnerova A., Elzeinova F., Milcova A., Novakova Z., Topinka J. Genotoxicant exposure, activation of the aryl hydrocarbon receptor, and lipid peroxidation in cultured human alveolar type II A549 cells. Mutat. Res. Toxicol. Environ. Mutagen. 2020;853:503173. doi: 10.1016/j.mrgentox.2020.503173. PubMed DOI
Novotna B., Topinka J., Solansky I., Chvatalova I., Lnenickova Z., Sram R.J. Impact of air pollution and genotype variability on DNA damage in Prague policemen. Toxicol. Lett. 2007;172:37–47. doi: 10.1016/j.toxlet.2007.05.013. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Worldwide M.I. Dynamic Light Scattering: Common Terms Define. Malwern Instruments Limited; Malvern, UK: 2011. Inform white paper.
Holan V., Trosan P., Cejka C., Javorkova E., Zajicova A., Hermankova B., Chudickova M., Cejkova J. A Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction: MSCs and LSCs for Ocular Surface Reconstruction. STEM CELLS Transl. Med. 2015;4:1052–1063. doi: 10.5966/sctm.2015-0039. PubMed DOI PMC
Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V., Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8:233–278. doi: 10.3109/17435390.2013.773464. PubMed DOI
Poetsch A.R. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput. Struct. Biotechnol. J. 2020;18:207–219. doi: 10.1016/j.csbj.2019.12.013. PubMed DOI PMC
Sengstock C., Diendorf J., Epple M., Schildhauer T.A., Köller M. Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J. Nanotechnol. 2014;5:2058–2069. doi: 10.3762/bjnano.5.214. PubMed DOI PMC
Hackenberg S., Scherzed A., Kessler M., Hummel S., Technau A., Froelich K., Ginzkey C., Koehler C., Hagen R., Kleinsasser N. Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 2011;201:27–33. doi: 10.1016/j.toxlet.2010.12.001. PubMed DOI
Liu X., He W., Fang Z., Kienzle A., Feng Q. Influence of Silver Nanoparticles on Osteogenic Differentiation of Human Mesenchymal Stem Cells. J. Biomed. Nanotechnol. 2014;10:1277–1285. doi: 10.1166/jbn.2014.1824. PubMed DOI
Zhang R., Lee P., Lui V.C.H., Chen Y., Liu X., Lok C.N., To M., Yeung K., Wong K.K. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomed. Nanotechnol. Biol. Med. 2015;11:1949–1959. doi: 10.1016/j.nano.2015.07.016. PubMed DOI
Pérez-Díaz M.A., Silva-Bermudez P., Jiménez-López B., Martínez-López V., Melgarejo-Ramírez Y., Brena-Molina A., Ibarra C., Baeza I., Martínez-Pardo M.E., Reyes-Frías M.L., et al. Silver-pig skin nanocomposites and mesenchymal stem cells: Suitable antibiofilm cellular dressings for wound healing. J. Nanobiotechnology. 2018;16:2. doi: 10.1186/s12951-017-0331-0. PubMed DOI PMC
Patil S., Singh N. Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation. Colloids Surf. B Biointerfaces. 2018;176:150–155. doi: 10.1016/j.colsurfb.2018.12.067. PubMed DOI
Tian J., Wong K.K., Ho C.M., Lok C.N., Yu W.Y., Che C.M., Cliu J.F., Tam P.K. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2007;2:129–136. doi: 10.1002/cmdc.200600171. PubMed DOI
Paterson T.E., Shi R., Tian J., Harrison C.J., Mendes M.D.S., Hatton P.V., Li Z., Ortega I. Electrospun Scaffolds Containing Silver-Doped Hydroxyapatite with Antimicrobial Properties for Applications in Orthopedic and Dental Bone Surgery. J. Funct. Biomater. 2020;11:58. doi: 10.3390/jfb11030058. PubMed DOI PMC
Mancuso L., Cao G. Acute toxicity test of CuO nanoparticles using human mesenchymal stem cells. Toxicol. Mech. Methods. 2014;24:449–454. doi: 10.3109/15376516.2014.928920. PubMed DOI
Zhang W., Jiang P., Chen W., Zheng B., Mao Z., Antipov A., Correia M., Larsen E.H., Gao C. Genotoxicity of Copper Oxide Nanoparticles with Different Surface Chemistry on Rat Bone Marrow Mesenchymal Stem Cells. J. Nanosci. Nanotechnol. 2016;16:5489–5497. doi: 10.1166/jnn.2016.11753. PubMed DOI
Rodríguez J.P., Ríos S., González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J. Cell. Biochem. 2002;85:92–100. doi: 10.1002/jcb.10111. PubMed DOI
Syama S., Sreekanth P.J., Varma H.K., Mohanan P.V. Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells. Toxicol. Mech. Methods. 2014;24:644–653. doi: 10.3109/15376516.2014.956914. PubMed DOI
Ickrath P., Wagner M., Scherzad A., Gehrke T., Burghartz M., Hagen R., Radeloff K., Kleinsasser N., Hackenberg S. Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells. Int. J. Environ. Res. Public Health. 2017;14:1590. doi: 10.3390/ijerph14121590. PubMed DOI PMC
Milne G.L., Dai Q., Roberts L.J. The isoprostanes—25 years later. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids. 2015;1851:433–445. doi: 10.1016/j.bbalip.2014.10.007. PubMed DOI PMC
Šulinskienė J., Bernotienė R., Baranauskienė D., Naginienė R., Stanevičienė I., Kašauskas A., Ivanov L. Effect of Zinc on the Oxidative Stress Biomarkers in the Brain of Nickel-Treated Mice. Oxidative Med. Cell. Longev. 2019;2019:8549727. doi: 10.1155/2019/8549727. PubMed DOI PMC
Plesca D., Mazumder S., Almasan A. Methods in Enzymology. Volume 446. Elsevier; Amsterdam, The Netherlands: 2008. Chapter 6 DNA Damage Response and Apoptosis; pp. 107–122. PubMed DOI PMC
Alavi M., Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr. Polym. 2019;227:115349. doi: 10.1016/j.carbpol.2019.115349. PubMed DOI