Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
Status In-Process Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40806712
PubMed Central
PMC12347195
DOI
10.3390/ijms26157583
PII: ijms26157583
Knihovny.cz E-zdroje
- Klíčová slova
- in vitro exposure, mouse mesenchymal stem cells, nanoparticles, whole-genome expression analysis of mRNA and miRNA,
- Publikační typ
- časopisecké články MeSH
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of Ag, CuO, and ZnO NPs after in vitro exposure of mouse MSCs at the transcriptional level in order to reveal the potential toxicity as well as modulation of other processes that may modify the activity of MSCs. mRNA-miRNA interactions were further investigated to explore the epigenetic regulation of gene expression. All the tested NPs mediated immunomodulatory effects on MSCs, generation of extracellular vesicles, inhibition of osteogenesis, and enhancement of adipogenesis. Ag NPs exhibited the most pronounced response; they impacted the expression of the highest number of mRNAs, including those encoding interferon-γ-stimulated genes and genes involved in drug metabolism/cytochrome P450 activity, suggesting a response to the potential toxicity of Ag NPs (oxidative stress). Highly interacting MiR-126 was upregulated by all NPs, while downregulation of MiR-92a was observed after the ZnO NP treatment only, and both effects might be associated with the improvement of MSCs' healing potency. Overall, our results demonstrate positive effects of NPs on MSCs, although increased oxidative stress caused by Ag NPs may limit the therapeutical potential of the combined MSC+NP treatment.
Zobrazit více v PubMed
McIntyre R.A. Common Nano-Materials and Their Use in Real World Applications. Sci. Prog. 2012;95:1–22. doi: 10.3184/003685012X13294715456431. PubMed DOI PMC
Beyth N., Houri-Haddad Y., Domb A., Khan W., Hazan R. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evid. Based Complement. Altern. Med. 2015;2015:246012. doi: 10.1155/2015/246012. PubMed DOI PMC
Oyarzun-Ampuero F., Vidal A., Concha M., Morales J., Orellana S., Moreno-Villoslada I. Nanoparticles for the Treatment of Wounds. Curr. Pharm. Des. 2015;21:4329–4341. doi: 10.2174/1381612821666150901104601. PubMed DOI
Dusinska M., Tulinska J., El Yamani N., Kuricova M., Liskova A., Rollerova E., Rundén-Pran E., Smolkova B. Immunotoxicity, Genotoxicity and Epigenetic Toxicity of Nanomaterials: New Strategies for Toxicity Testing? Food Chem. Toxicol. 2017;109:797–811. doi: 10.1016/j.fct.2017.08.030. PubMed DOI
Ajdary M., Moosavi M.A., Rahmati M., Falahati M., Mahboubi M., Mandegary A., Jangjoo S., Mohammadinejad R., Varma R.S. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials. 2018;8:634. doi: 10.3390/nano8090634. PubMed DOI PMC
Sima M., Vrbova K., Zavodna T., Honkova K., Chvojkova I., Ambroz A., Klema J., Rossnerova A., Polakova K., Malina T., et al. The Differential Effect of Carbon Dots on Gene Expression and DNA Methylation of Human Embryonic Lung Fibroblasts as a Function of Surface Charge and Dose. Int. J. Mol. Sci. 2020;21:4763. doi: 10.3390/ijms21134763. PubMed DOI PMC
Šíma M., Líbalová H., Závodná T., Vrbová K., Kléma J., Rössner P. Gene Expression Profiles and Protein-Protein Interaction Networks in THP-1 Cells Exposed to Metal-Based Nanomaterials. Environ. Toxicol. Pharmacol. 2024;108:104469. doi: 10.1016/j.etap.2024.104469. PubMed DOI
Butler K.S., Peeler D.J., Casey B.J., Dair B.J., Elespuru R.K. Silver Nanoparticles: Correlating Nanoparticle Size and Cellular Uptake with Genotoxicity. Mutagenesis. 2015;30:577–591. doi: 10.1093/mutage/gev020. PubMed DOI PMC
Hanot-Roy M., Tubeuf E., Guilbert A., Bado-Nilles A., Vigneron P., Trouiller B., Braun A., Lacroix G. Oxidative Stress Pathways Involved in Cytotoxicity and Genotoxicity of Titanium Dioxide (TiO2) Nanoparticles on Cells Constitutive of Alveolo-Capillary Barrier in Vitro. Toxicol. Vitr. 2016;33:125–135. doi: 10.1016/j.tiv.2016.01.013. PubMed DOI
Åkerlund E., Islam M.S., McCarrick S., Alfaro-Moreno E., Karlsson H.L. Inflammation and (Secondary) Genotoxicity of Ni and NiO Nanoparticles. Nanotoxicology. 2019;13:1060–1072. doi: 10.1080/17435390.2019.1640908. PubMed DOI
Gurunathan S., Jeyaraj M., Kang M.-H., Kim J.-H. The Effects of Apigenin-Biosynthesized Ultra-Small Platinum Nanoparticles on the Human Monocytic THP-1 Cell Line. Cells. 2019;8:444. doi: 10.3390/cells8050444. PubMed DOI PMC
Safar R., Doumandji Z., Saidou T., Ferrari L., Nahle S., Rihn B.H., Joubert O. Cytotoxicity and Global Transcriptional Responses Induced by Zinc Oxide Nanoparticles NM 110 in PMA-Differentiated THP-1 Cells. Toxicol. Lett. 2019;308:65–73. doi: 10.1016/j.toxlet.2018.11.003. PubMed DOI
Zhu X., Tang Q., Zhou X., Momeni M.R. Antibiotic Resistance and Nanotechnology: A Narrative Review. Microb. Pathog. 2024;193:106741. doi: 10.1016/j.micpath.2024.106741. PubMed DOI
Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021;22:7202. doi: 10.3390/ijms22137202. PubMed DOI PMC
Mendes C.R., Dilarri G., Forsan C.F., Sapata V.d.M.R., Lopes P.R.M., de Moraes P.B., Montagnolli R.N., Ferreira H., Bidoia E.D. Antibacterial Action and Target Mechanisms of Zinc Oxide Nanoparticles against Bacterial Pathogens. Sci. Rep. 2022;12:2658. doi: 10.1038/s41598-022-06657-y. PubMed DOI PMC
Gudkov S.V., Burmistrov D.E., Fomina P.A., Validov S.Z., Kozlov V.A. Antibacterial Properties of Copper Oxide Nanoparticles (Review) Int. J. Mol. Sci. 2024;25:11563. doi: 10.3390/ijms252111563. PubMed DOI PMC
Jha S., Rani R., Singh S. Biogenic Zinc Oxide Nanoparticles and Their Biomedical Applications: A Review. J. Inorg. Organomet. Polym. Mater. 2023;33:1437–1452. doi: 10.1007/s10904-023-02550-x. PubMed DOI PMC
Devaraji M., Thanikachalam P.V., Elumalai K. The Potential of Copper Oxide Nanoparticles in Nanomedicine: A Comprehensive Review. Biotechnol. Notes. 2024;5:80–99. doi: 10.1016/j.biotno.2024.06.001. PubMed DOI PMC
Chen S., Liu X., Zhang W., Li B., Liu F., Zhang Y., Han Y. Nanozyme Coating-Mediated Mitochondrial Metabolic Reprogramming of Macrophages for Immunomodulatory Osseointegration in Rheumatoid Arthritis Case. ACS Nano. 2025;19:26127–26146. doi: 10.1021/acsnano.5c07535. PubMed DOI
Qi X., Li Y., Xiang Y., Chen Y., Shi Y., Ge X., Zeng B., Shen J. Hyperthermia-Enhanced Immunoregulation Hydrogel for Oxygenation and ROS Neutralization in Diabetic Foot Ulcers. Cell Biomater. 2025;1:100020. doi: 10.1016/j.celbio.2025.100020. DOI
Abumaree M., Al Jumah M., Pace R.A., Kalionis B. Immunosuppressive Properties of Mesenchymal Stem Cells. Stem Cell Rev. Rep. 2012;8:375–392. doi: 10.1007/s12015-011-9312-0. PubMed DOI
English K. Mechanisms of Mesenchymal Stromal Cell Immunomodulation. Immunol. Cell Biol. 2013;91:19–26. doi: 10.1038/icb.2012.56. PubMed DOI
Holan V., Hermankova B., Bohacova P., Kossl J., Chudickova M., Hajkova M., Krulova M., Zajicova A., Javorkova E. Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment. Stem Cell Rev. Rep. 2016;12:654–663. doi: 10.1007/s12015-016-9688-y. PubMed DOI
Squillaro T., Peluso G., Galderisi U. Clinical Trials with Mesenchymal Stem Cells: An Update. Cell Transplant. 2016;25:829–848. doi: 10.3727/096368915X689622. PubMed DOI
Sengstock C., Diendorf J., Epple M., Schildhauer T.A., Köller M. Effect of Silver Nanoparticles on Human Mesenchymal Stem Cell Differentiation. Beilstein J. Nanotechnol. 2014;5:2058–2069. doi: 10.3762/bjnano.5.214. PubMed DOI PMC
Hackenberg S., Scherzed A., Kessler M., Hummel S., Technau A., Froelich K., Ginzkey C., Koehler C., Hagen R., Kleinsasser N. Silver Nanoparticles: Evaluation of DNA Damage, Toxicity and Functional Impairment in Human Mesenchymal Stem Cells. Toxicol. Lett. 2011;201:27–33. doi: 10.1016/j.toxlet.2010.12.001. PubMed DOI
Zhang R., Lee P., Lui V.C.H., Chen Y., Liu X., Lok C.N., To M., Yeung K.W.K., Wong K.K.Y. Silver Nanoparticles Promote Osteogenesis of Mesenchymal Stem Cells and Improve Bone Fracture Healing in Osteogenesis Mechanism Mouse Model. Nanomedicine. 2015;11:1949–1959. doi: 10.1016/j.nano.2015.07.016. PubMed DOI
He W., Kienzle A., Liu X., Müller W.E.G., Feng Q. In Vitro 30 Nm Silver Nanoparticles Promote Chondrogenesis of Human Mesenchymal Stem Cells. RSC Adv. 2015;5:49809–49818. doi: 10.1039/C5RA06386H. DOI
Qin H., Zhu C., An Z., Jiang Y., Zhao Y., Wang J., Liu X., Hui B., Zhang X., Wang Y. Silver Nanoparticles Promote Osteogenic Differentiation of Human Urine-Derived Stem Cells at Noncytotoxic Concentrations. Int. J. Nanomed. 2014;9:2469–2478. doi: 10.2147/IJN.S59753. PubMed DOI PMC
Syama S., Sreekanth P.J., Varma H.K., Mohanan P.V. Zinc Oxide Nanoparticles Induced Oxidative Stress in Mouse Bone Marrow Mesenchymal Stem Cells. Toxicol. Mech. Methods. 2014;24:644–653. doi: 10.3109/15376516.2014.956914. PubMed DOI
Ickrath P., Wagner M., Scherzad A., Gehrke T., Burghartz M., Hagen R., Radeloff K., Kleinsasser N., Hackenberg S. Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells. Int. J. Environ. Res. Public Health. 2017;14:1590. doi: 10.3390/ijerph14121590. PubMed DOI PMC
Foroutan T., Mousavi S. The Effects of Zinc Oxide Nanoparticles on Differentiation of Human Mesenchymal Stem Cells to Osteoblast. Nanomed. J. 2014;1:308–314. doi: 10.7508/NMJ.2015.05.004. DOI
Norozi S., Ghollasi M., Salimi A., Halabian R., Shahrousvad M. Mesenchymal Stem Cells Osteogenic Differentiation by ZnO Nanoparticles and Polyurethane Bimodal Foam Nanocomposites. Cell Tissue Bank. 2024;25:167–185. doi: 10.1007/s10561-023-10090-4. PubMed DOI
Zhang W., Jiang P., Chen W., Zheng B., Mao Z., Antipov A., Correia M., Larsen E.H., Gao C. Genotoxicity of Copper Oxide Nanoparticles with Different Surface Chemistry on Rat Bone Marrow Mesenchymal Stem Cells. J. Nanosci. Nanotechnol. 2016;16:5489–5497. doi: 10.1166/jnn.2016.11753. PubMed DOI
Echalar B., Dostalova D., Palacka K., Javorkova E., Hermankova B., Cervena T., Zajicova A., Holan V., Rossner P. Effects of Antimicrobial Metal Nanoparticles on Characteristics and Function Properties of Mouse Mesenchymal Stem Cells. Toxicol. Vitr. 2023;87:105536. doi: 10.1016/j.tiv.2022.105536. PubMed DOI
Rossner P., Cervena T., Echalar B., Palacka K., Milcova A., Novakova Z., Sima M., Simova Z., Vankova J., Holan V. Metal Nanoparticles with Antimicrobial Properties: The Toxicity Response in Mouse Mesenchymal Stem Cells. Toxics. 2023;11:253. doi: 10.3390/toxics11030253. PubMed DOI PMC
Sabella S., Carney R.P., Brunetti V., Malvindi M.A., Al-Juffali N., Vecchio G., Janes S.M., Bakr O.M., Cingolani R., Stellacci F., et al. A General Mechanism for Intracellular Toxicity of Metal-Containing Nanoparticles. Nanoscale. 2014;6:7052–7061. doi: 10.1039/c4nr01234h. PubMed DOI PMC
Souza L.R.R., da Silva V.S., Franchi L.P., de Souza T.A.J. Toxic and Beneficial Potential of Silver Nanoparticles: The Two Sides of the Same Coin. Adv. Exp. Med. Biol. 2018;1048:251–262. doi: 10.1007/978-3-319-72041-8_15. PubMed DOI
Du J., Fu L., Li H., Xu S., Zhou Q., Tang J. The Potential Hazards and Ecotoxicity of CuO Nanoparticles: An Overview. Toxin Rev. 2021;40:460–472. doi: 10.1080/15569543.2019.1670211. DOI
Singh S. Zinc Oxide Nanoparticles Impacts: Cytotoxicity, Genotoxicity, Developmental Toxicity, and Neurotoxicity. Toxicol. Mech. Methods. 2019;29:300–311. doi: 10.1080/15376516.2018.1553221. PubMed DOI
Yang R., Roshani D., Gao B., Li P., Shang N. Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants. 2024;13:825. doi: 10.3390/antiox13070825. PubMed DOI PMC
Balfourier A., Marty A.P., Gazeau F. Importance of Metal Biotransformation in Cell Response to Metallic Nanoparticles: A Transcriptomic Meta-Analysis Study. ACS Nanosci. Au. 2023;3:46–57. doi: 10.1021/acsnanoscienceau.2c00035. PubMed DOI PMC
Wei Q., Liu X., Su J.L., Wang Y.X., Chu Z.Q., Ma K., Huang Q.L., Li H.H., Fu X.B., Zhang C.P. Small Extracellular Vesicles from Mesenchymal Stem Cells: A Potential Weapon for Chronic Non-Healing Wound Treatment. Front. Bioeng. Biotechnol. 2023;10:1083459. doi: 10.3389/fbioe.2022.1083459. PubMed DOI PMC
Braga C.L., da Silva L.R., Santos R.T., de Carvalho L.R.P., Mandacaru S.C., de Oliveira Trugilho M.R., Rocco P.R.M., Cruz F.F., Silva P.L. Proteomics Profile of Mesenchymal Stromal Cells and Extracellular Vesicles in Normoxic and Hypoxic Conditions. Cytotherapy. 2022;24:1211–1224. doi: 10.1016/j.jcyt.2022.08.009. PubMed DOI
van Balkom B.W.M., Gremmels H., Giebel B., Lim S.K. Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Proteomics. 2019;19:e1800163. doi: 10.1002/pmic.201800163. PubMed DOI
Shimoda M. Extracellular Vesicle-Associated MMPs: A Modulator of the Tissue Microenvironment. Adv. Clin. Chem. 2019;88:35–66. doi: 10.1016/BS.ACC.2018.10.006. PubMed DOI
Kou M., Huang L., Yang J., Chiang Z., Chen S., Liu J., Guo L., Zhang X., Zhou X., Xu X., et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Immunomodulation and Regeneration: A next Generation Therapeutic Tool? Cell Death Dis. 2022;13:580. doi: 10.1038/s41419-022-05034-x. PubMed DOI PMC
Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A., Reip P., Allaker R.P. Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications. Int. J. Antimicrob. Agents. 2009;33:587–590. doi: 10.1016/j.ijantimicag.2008.12.004. PubMed DOI
Holan V., Cervena T., Zajicova A., Hermankova B., Echalar B., Palacka K., Rossner P., Javorkova E. The Impact of Metal Nanoparticles on the Immunoregulatory and Therapeutic Properties of Mesenchymal Stem Cells. Stem Cell Rev. Rep. 2023;19:1360–1369. doi: 10.1007/s12015-022-10500-2. PubMed DOI
Lasrich D., Bartelt A., Grewal T., Heeren J. Apolipoprotein E Promotes Lipid Accumulation and Differentiation in Human Adipocytes. Exp. Cell Res. 2015;337:94–102. doi: 10.1016/j.yexcr.2015.07.015. PubMed DOI
Zhou L., Sun S., Zhang T., Yu Y., Xu L., Li H., Wang M., Hong Y. ATP-Binding Cassette G1 Regulates Osteogenesis via Wnt/β-Catenin and AMPK Signaling Pathways. Mol. Biol. Rep. 2020;47:7439–7449. doi: 10.1007/s11033-020-05800-0. PubMed DOI
Scheideler M., Elabd C., Zaragosi L.E., Chiellini C., Hackl H., Sanchez-Cabo F., Yadav S., Duszka K., Friedl G., Papak C., et al. Comparative Transcriptomics of Human Multipotent Stem Cells during Adipogenesis and Osteoblastogenesis. BMC Genom. 2008;9:340. doi: 10.1186/1471-2164-9-340. PubMed DOI PMC
He W., Zheng Y., Feng Q., Elkhooly T.A., Liu X., Yang X., Wang Y., Xie Y. Silver Nanoparticles Stimulate Osteogenesis of Human Mesenchymal Stem Cells through Activation of Autophagy. Nanomedicine. 2020;15:337–353. doi: 10.2217/nnm-2019-0026. PubMed DOI
He W., Elkhooly T.A., Liu X., Cavallaro A., Taheri S., Vasilev K., Feng Q. Silver Nanoparticle Based Coatings Enhance Adipogenesis Compared to Osteogenesis in Human Mesenchymal Stem Cells through Oxidative Stress. J. Mater. Chem. B. 2016;4:1466–1479. doi: 10.1039/C5TB02482J. PubMed DOI
Liu X., He W., Fang Z., Kienzle A., Feng Q. Influence of Silver Nanoparticles on Osteogenic Differentiation of Human Mesenchymal Stem Cells. J. Biomed. Nanotechnol. 2014;10:1277–1285. doi: 10.1166/jbn.2014.1824. PubMed DOI
Horsley V. Adipocyte Plasticity in Tissue Regeneration, Repair, and Disease. Curr. Opin. Genet. Dev. 2022;76:101968. doi: 10.1016/j.gde.2022.101968. PubMed DOI
Yang X., Li Y., Liu X., He W., Huang Q., Feng Q. Nanoparticles and Their Effects on Differentiation of Mesenchymal Stem Cells. Biomater. Transl. 2020;1:58. doi: 10.3877/CMA.J.ISSN.2096-112X.2020.01.006. PubMed DOI PMC
Dayem A.A., Lee S.B., Cho S.G. The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation. Nanomaterials. 2018;8:761. doi: 10.3390/nano8100761. PubMed DOI PMC
Lee M.S., Wang J., Yuan H., Jiao H., Tsai T.L., Squire M.W., Li W.J. Endothelin-1 Differentially Directs Lineage Specification of Adipose- and Bone Marrow–Derived Mesenchymal Stem Cells. FASEB J. 2018;33:996. doi: 10.1096/fj.201800614R. PubMed DOI PMC
Kao R., Lu W., Louie A., Nissenson R. Cyclic AMP Signaling in Bone Marrow Stromal Cells Has Reciprocal Effects on the Ability of Mesenchymal Stem Cells to Differentiate into Mature Osteoblasts versus Mature Adipocytes. Endocrine. 2012;42:622–636. doi: 10.1007/s12020-012-9717-9. PubMed DOI PMC
Madrigal A., Tan L., Zhao Y. Expression Regulation and Functional Analysis of RGS2 and RGS4 in Adipogenic and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Biol. Res. 2017;50:43. doi: 10.1186/s40659-017-0148-1. PubMed DOI PMC
Brizzi M.F., Tarone G., Defilippi P. Extracellular Matrix, Integrins, and Growth Factors as Tailors of the Stem Cell Niche. Curr. Opin. Cell Biol. 2012;24:645–651. doi: 10.1016/j.ceb.2012.07.001. PubMed DOI
Chen Q., Shou P., Zhang L., Xu C., Zheng C., Han Y., Li W., Huang Y., Zhang X., Shao C., et al. An Osteopontin-Integrin Interaction Plays a Critical Role in Directing Adipogenesis and Osteogenesis by Mesenchymal Stem Cells. Stem Cells. 2014;32:327–337. doi: 10.1002/stem.1567. PubMed DOI PMC
Carvalho M.S., Silva J.C., Hoff C.M., Cabral J.M.S., Linhardt R.J., da Silva C.L., Vashishth D. Loss and Rescue of Osteocalcin and Osteopontin Modulate Osteogenic and Angiogenic Features of Mesenchymal Stem/Stromal Cells. J. Cell. Physiol. 2020;235:7496–7515. doi: 10.1002/jcp.29653. PubMed DOI
Tucker R.P., Degen M. The Expression and Possible Functions of Tenascin-W during Development and Disease. Front. Cell Dev. Biol. 2019;7:439535. doi: 10.3389/fcell.2019.00053. PubMed DOI PMC
Zhang X., Alanazi Y.F., Jowitt T.A., Roseman A.M., Baldock C. Elastic Fibre Proteins in Elastogenesis and Wound Healing. Int. J. Mol. Sci. 2022;23:4087. doi: 10.3390/ijms23084087. PubMed DOI PMC
Bauman J.W., Liu J., Klaassen C.D. Production of Metallothionein and Heat-Shock Proteins in Response to Metals. Fundam. Appl. Toxicol. Off. J. Soc. Toxicol. 1993;21:15–22. doi: 10.1006/faat.1993.1066. PubMed DOI
Foldbjerg R., Jiang X., Micləuş T., Chen C., Autrup H., Beer C. Silver Nanoparticles—Wolves in Sheep’s Clothing? Toxicol. Res. 2015;4:563–575. doi: 10.1039/C4TX00110A. DOI
Kanda Y., Hinata T., Kang S.W., Watanabe Y. Reactive Oxygen Species Mediate Adipocyte Differentiation in Mesenchymal Stem Cells. Life Sci. 2011;89:250–258. doi: 10.1016/j.lfs.2011.06.007. PubMed DOI
Tormos K.V., Anso E., Hamanaka R.B., Eisenbart J., Joseph J., Kalyanaraman B., Chandel N.S. Mitochondrial Complex III ROS Regulate Adipocyte Differentiation. Cell Metab. 2011;14:537–544. doi: 10.1016/j.cmet.2011.08.007. PubMed DOI PMC
Youssef A., Aboalola D., Han V.K.M. The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int. 2017:9453108. doi: 10.1155/2017/9453108. PubMed DOI PMC
Petrocelli G., Pampanella L., Abruzzo P.M., Ventura C., Canaider S., Facchin F. Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. Int. J. Mol. Sci. 2022;23:3819. doi: 10.3390/ijms23073819. PubMed DOI PMC
Fritton J.C., Kawashima Y., Mejia W., Courtland H.W., Elis S., Sun H., Wu Y., Rosen C.J., Clemmons D., Yakar S. The Insulin-like Growth Factor-1 Binding Protein Acid-Labile Subunit Alters Mesenchymal Stromal Cell Fate. J. Biol. Chem. 2010;285:4709–4714. doi: 10.1074/jbc.M109.041913. PubMed DOI PMC
Ushakov R.E., Aksenov N.D., Pugovkina N.A., Burova E.B. Effects of IGFBP3 Knockdown on Human Endometrial Mesenchymal Stromal Cells Stress-Induced Senescence. Biochem. Biophys. Res. Commun. 2021;570:143–147. doi: 10.1016/j.bbrc.2021.07.046. PubMed DOI
Kim J.H., Yoon S.M., Song S.U., Park S.G., Kim W.S., Park I.G., Lee J., Sung J.H. Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation. Int. J. Mol. Sci. 2016;17:1389. doi: 10.3390/ijms17091389. PubMed DOI PMC
Mukhiddin Ugli M., Ahmed H.M., Ismaeel G.L., Jebur A.Q., Jalib H.H., Faisal A.N., Yasin H.A., Jabbar A.M., Kadirova D., Turaeva G., et al. Dose-Dependent Effects of ZnO Nanoparticles on the Osteogenic Differentiation Potential of Rat-Derived MSCs. J. Nanostructures. 2023;13:837–844. doi: 10.22052/JNS.2023.03.024. DOI
Qu Y., Wu J., Deng J.X., Zhang Y.P., Liang W.Y., Jiang Z.L., Yu Q.H., Li J. MicroRNA-126 Affects Rheumatoid Arthritis Synovial Fibroblast Proliferation and Apoptosis by Targeting PIK3R2 and Regulating PI3K-AKT Signal Pathway. Oncotarget. 2016;7:74217–74226. doi: 10.18632/oncotarget.12487. PubMed DOI PMC
Paschalaki K.E., Zampetaki A., Baker J.R., Birrell M.A., Starke R.D., Belvisi M.G., Donnelly L.E., Mayr M., Randi A.M., Barnes P.J. Downregulation of MicroRNA-126 Augments DNA Damage Response in Cigarette Smokers and Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2018;197:665–668. doi: 10.1164/rccm.201706-1304LE. PubMed DOI PMC
Zampetaki A., Kiechl S., Drozdov I., Willeit P., Mayr U., Prokopi M., Mayr A., Weger S., Oberhollenzer F., Bonora E., et al. Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circ. Res. 2010;107:810–817. doi: 10.1161/CIRCRESAHA.110.226357. PubMed DOI
Kong R., Gao J., Ji L., Zhao D. MicroRNA-126 Promotes Proliferation, Migration, Invasion and Endothelial Differentiation While Inhibits Apoptosis and Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Cell Cycle. 2020;19:2119–2138. doi: 10.1080/15384101.2020.1788258. PubMed DOI PMC
Houbaviy H.B., Murray M.F., Sharp P.A. Embryonic Stem Cell-Specific MicroRNAs. Dev. Cell. 2003;5:351–358. doi: 10.1016/S1534-5807(03)00227-2. PubMed DOI
Kalinina N., Klink G., Glukhanyuk E., Lopatina T., Efimenko A., Akopyan Z., Tkachuk V. MiR-92a Regulates Angiogenic Activity of Adipose-Derived Mesenchymal Stromal Cells. Exp. Cell Res. 2015;339:61–66. doi: 10.1016/j.yexcr.2015.10.007. PubMed DOI
Wan Z., Chen X., Gao X., Dong Y., Zhao Y., Wei M., Fan W., Yang G., Liu L. Chronic Myeloid Leukemia-Derived Exosomes Attenuate Adipogenesis of Adipose Derived Mesenchymal Stem Cells via Transporting MiR-92a-3p. J. Cell. Physiol. 2019;234:21274–21283. doi: 10.1002/jcp.28732. PubMed DOI
Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S. The Nf-Core Framework for Community-Curated Bioinformatics Pipelines. Nat. Biotechnol. 2020;38:276–278. doi: 10.1038/s41587-020-0439-x. PubMed DOI
Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Ru Y., Kechris K.J., Tabakoff B., Hoffman P., Radcliffe R.A., Bowler R., Mahaffey S., Rossi S., Calin G.A., Bemis L., et al. The MultiMiR R Package and Database: Integration of MicroRNA-Target Interactions along with Their Disease and Drug Associations. Nucleic Acids Res. 2014;42:e133. doi: 10.1093/nar/gku631. PubMed DOI PMC
Huang D.W., Sherman B.T., Lempicki R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update) Nucleic Acids Res. 2022;50:W216–W221. doi: 10.1093/nar/gkac194. PubMed DOI PMC
Vlachos I.S., Zagganas K., Paraskevopoulou M.D., Georgakilas G., Karagkouni D., Vergoulis T., Dalamagas T., Hatzigeorgiou A.G. DIANA-MiRPath v3.0: Deciphering MicroRNA Function with Experimental Support. Nucleic Acids Res. 2015;43:W460–W466. doi: 10.1093/nar/gkv403. PubMed DOI PMC