Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
30134524
PubMed Central
PMC6164883
DOI
10.3390/nano8090634
PII: nano8090634
Knihovny.cz E-zdroje
- Klíčová slova
- nanoparticles, organ-specific effects, toxicological effects,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanoparticles (NPs) are currently used in diagnosis and treatment of many human diseases, including autoimmune diseases and cancer. However, cytotoxic effects of NPs on normal cells and living organs is a severe limiting factor that hinders their use in clinic. In addition, diversity of NPs and their physico-chemical properties, including particle size, shape, surface area, dispersity and protein corona effects are considered as key factors that have a crucial impact on their safe or toxicological behaviors. Current studies on toxic effects of NPs are aimed to identify the targets and mechanisms of their side effects, with a focus on elucidating the patterns of NP transport, accumulation, degradation, and elimination, in both in vitro and in vitro models. NPs can enter the body through inhalation, skin and digestive routes. Consequently, there is a need for reliable information about effects of NPs on various organs in order to reveal their efficacy and impact on health. This review covers the existing knowledge base on the subject that hopefully prepares us better to address these challenges.
School of Medicine International Branch Shiraz University of Medical Sciences Shiraz 7134845794 Iran
Zobrazit více v PubMed
Cheng R., Feng F., Meng F., Deng C., Feijen J., Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release. 2011;152:2–12. doi: 10.1016/j.jconrel.2011.01.030. PubMed DOI
Sajid M., Ilyas M., Basheer C., Tariq M., Daud M., Baig N., Shehzad F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. 2015;22:4122–4143. doi: 10.1007/s11356-014-3994-1. PubMed DOI
Dwivedi A.D., Dubey S.P., Sillanpää M., Kwon Y.-N., Lee C., Varma R.S. Fate of engineered nanoparticles: Implications in the environment. Coord. Chem. Rev. 2015;287:64–78. doi: 10.1016/j.ccr.2014.12.014. DOI
Ajdari M., Ghahnavieh M.Z. Histopathology effects of nickel nanoparticles on lungs, liver, and spleen tissues in male mice. Int. Nano Lett. 2014;4:113. doi: 10.1007/s40089-014-0113-8. DOI
Negahdary M., Ajdary M. The toxicity of gold, silver, and zinc oxide nanoparticles on LDH enzyme in male mice. Annu. Res. Rev. Biol. 2014;4:1346–1352. doi: 10.9734/ARRB/2014/5370. DOI
Hornos Carneiro M.F., Barbosa F., Jr. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. J. Toxic. Environ. Health. 2016;19:129–148. doi: 10.1080/10937404.2016.1168762. PubMed DOI
Moulton M.C., Braydich-Stolle L.K., Nadagouda M.N., Kunzelman S., Hussain S.M., Varma R.S. Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale. 2010;2:763–770. doi: 10.1039/c0nr00046a. PubMed DOI
Warheit D.B., Laurence B.R., Reed K.L., Roach D.H., Reynolds G.A., Webb T.R. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 2004;77:117–125. doi: 10.1093/toxsci/kfg228. PubMed DOI
Hussain S., Hess K., Gearhart J., Geiss K., Schlager J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro. 2005;19:975–983. doi: 10.1016/j.tiv.2005.06.034. PubMed DOI
Kang S.J., Kim B.M., Lee Y.J., Chung H.W. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ. Mol. Mutagen. 2008;49:399–405. doi: 10.1002/em.20399. PubMed DOI
Xia T., Kovochich M., Brant J., Hotze M., Sempf J., Oberley T., Sioutas C., Yeh J.I., Wiesner M.R., Nel A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–1807. doi: 10.1021/nl061025k. PubMed DOI
Muller J., Huaux F., Moreau N., Misson P., Heilier J.-F., Delos M., Arras M., Fonseca A., Nagy J.B., Lison D. Respiratory toxicity of multi-wall carbon nanotubes. Toxic. Appl. Pharmacol. 2005;207:221–231. doi: 10.1016/j.taap.2005.01.008. PubMed DOI
Mutlu G.k.M., Budinger G.S., Green A.A., Urich D., Soberanes S., Chiarella S.E., Alheid G.F., McCrimmon D.R., Szleifer I., Hersam M.C. Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett. 2010;10:1664–1670. doi: 10.1021/nl9042483. PubMed DOI PMC
Fard J.K., Jafari S., Eghbal M.A. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv. Pharm. Bull. 2015;5:447–454. doi: 10.15171/apb.2015.061. PubMed DOI PMC
Gualtierotti R., Guarnaccia L., Beretta M., Navone S.E., Campanella R., Riboni L., Rampini P., Marfia G. Modulation of neuroinflammation in the central nervous system: Role of chemokines and sphingolipids. Adv. Ther. 2017;34:396–420. doi: 10.1007/s12325-016-0474-7. PubMed DOI
Ma L., Zou X., Chen W. A new X-ray activated nanoparticle photosensitizer for cancer treatment. J. Biomed. Nanotechnol. 2014;10:1501–1508. doi: 10.1166/jbn.2014.1954. PubMed DOI
Guan X., Avci-Adali M., Alarçin E., Cheng H., Kashaf S.S., Li Y., Chawla A., Jang H.L., Khademhosseini A. Development of hydrogels for regenerative engineering. Biotechnol. J. 2017;12:1600394. doi: 10.1002/biot.201600394. PubMed DOI PMC
Dorniani D., Hussein M.Z.B., Kura A.U., Fakurazi S., Shaari A.H., Ahmad Z. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int. J. Nanomed. 2012;7:5745–5756. doi: 10.2147/IJN.S35746. PubMed DOI PMC
Benita S. Microencapsulation: Methods and Industrial Applications. Taylor & Francis; Boca Raton, FL, USA: 2006.
Mishra A.K. Nanomedicine for Drug Delivery and Therapeutics. Wiley; New York, NY, USA: 2013.
Sharma V.K., Filip J., Zboril R., Varma R.S. Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chem. Soc. Rev. 2015;44:8410–8423. doi: 10.1039/C5CS00236B. PubMed DOI
You Y., He L., Ma B., Chen T. High-drug-loading mesoporous silica nanorods with reduced toxicity for precise cancer therapy against nasopharyngeal carcinoma. Adv. Funct. Mater. 2017;27:1703313. doi: 10.1002/adfm.201703313. DOI
Coradeghini R., Gioria S., García C.P., Nativo P., Franchini F., Gilliland D., Ponti J., Rossi F. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett. 2013;217:205–216. doi: 10.1016/j.toxlet.2012.11.022. PubMed DOI
Asharani P., Hande M.P., Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009;10:65. doi: 10.1186/1471-2121-10-65. PubMed DOI PMC
Nair S., Sasidharan A., Rani V.D., Menon D., Nair S., Manzoor K., Raina S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 2009;20:235–241. doi: 10.1007/s10856-008-3548-5. PubMed DOI
Premanathan M., Karthikeyan K., Jeyasubramanian K., Manivannan G. Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 2011;7:184–192. doi: 10.1016/j.nano.2010.10.001. PubMed DOI
Zou J., Li M., Zhang Y., Zheng G., Chen D., Chen S., Zheng H. Transport augmentation through the blood-inner ear barriers of guinea pigs treated with 3-nitropropionic acid and patients with acute hearing loss, visualized with 3.0 T MRI. Otol. Neurotol. 2011;32:204–212. doi: 10.1097/MAO.0b013e3182016332. PubMed DOI
Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA. 2008;105:14265–14270. doi: 10.1073/pnas.0805135105. PubMed DOI PMC
Jordan A., Scholz R., Maier-Hauff K., van Landeghem F.K., Waldoefner N., Teichgraeber U., Pinkernelle J., Bruhn H., Neumann F., Thiesen B. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neuro-Oncology. 2006;78:7–14. doi: 10.1007/s11060-005-9059-z. PubMed DOI
Wang F., Gao F., Lan M., Yuan H., Huang Y., Liu J. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol. In Vitro. 2009;23:808–815. doi: 10.1016/j.tiv.2009.04.009. PubMed DOI
Shang L., Nienhaus K., Nienhaus G.U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014;12:5. doi: 10.1186/1477-3155-12-5. PubMed DOI PMC
Zhang K. Integration of er stress, oxidative stress and the inflammatory response in health and disease. Int. J. Clin. Exp. Med. 2010;3:33–40. PubMed PMC
Ceccon A., Tugarinov V., Bax A., Clore G.M. Global dynamics and exchange kinetics of a protein on the surface of nanoparticles revealed by relaxation-based solution NMR spectroscopy. J. Am. Chem. Soc. 2016;138:5789–5792. PubMed PMC
Pham N., Radajewski D., Round A., Brennich M., Pernot P., Biscans B., Bonneté F., Teychené S. Coupling high throughput microfluidics and small-angle X-ray scattering to study protein crystallization from solution. Anal. Chem. 2017;89:2282–2287. doi: 10.1021/acs.analchem.6b03492. PubMed DOI
Pishkar L., Taheri S., Makarem S., Alizadeh Zeinabad H., Rahimi A., Saboury A.A., Falahati M. Studies on the interaction between nanodiamond and human hemoglobin by surface tension measurement and spectroscopy methods. J. Biomol. Struct. Dyn. 2017;35:603–615. doi: 10.1080/07391102.2016.1155172. PubMed DOI
Huang R., Lau B.L. Biomolecule–nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry. Biochim. Biophys. Acta Gen. Subj. 2016;1860:945–956. doi: 10.1016/j.bbagen.2016.01.027. PubMed DOI
Manyanga F., Sithole A., Rivera R., Karamehmedovic N., Martin N. Use of differential scanning calorimetry (DSC) to study the thermodynamics of DNA-based interactions and nucleic acid-based therapeutics. J. Anal. Pharm. Res. 2016;2:00013.
Esfandfar P., Falahati M., Saboury A. Spectroscopic studies of interaction between cuo nanoparticles and bovine serum albumin. J. Biomol. Struct. Dyn. 2016;34:1962–1968. doi: 10.1080/07391102.2015.1096213. PubMed DOI
Jafari Azad V., Kasravi S., Alizadeh Zeinabad H., Memar Bashi Aval M., Saboury A.A., Rahimi A., Falahati M. Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles. J. Biomol. Struct. Dyn. 2017;35:2565–2577. doi: 10.1080/07391102.2016.1222972. PubMed DOI
Zeinabad H.A., Zarrabian A., Saboury A.A., Alizadeh A.M., Falahati M. Interaction of single and multi wall carbon nanotubes with the biological systems: Tau protein and PC12 cells as targets. Sci. Rep. 2016;6:26508. PubMed PMC
Zeinabad H.A., Kachooei E., Saboury A.A., Kostova I., Attar F., Vaezzadeh M., Falahati M. Thermodynamic and conformational changes of protein toward interaction with nanoparticles: A spectroscopic overview. RSC Adv. 2016;6:105903–105919. doi: 10.1039/C6RA16422F. DOI
Hajsalimi G., Taheri S., Shahi F., Attar F., Ahmadi H., Falahati M. Interaction of iron nanoparticles with nervous system: An in vitro study. J. Biomol. Struct. Dyn. 2018;36:928–937. doi: 10.1080/07391102.2017.1302819. PubMed DOI
Vroman L., Adams A., Fischer G., Munoz P. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood. 1980;55:156–159. PubMed
Walkey C.D., Chan W.C. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012;41:2780–2799. doi: 10.1039/C1CS15233E. PubMed DOI
Lundqvist M., Stigler J., Cedervall T., Berggård T., Flanagan M.B., Lynch I., Elia G., Dawson K. The evolution of the protein corona around nanoparticles: A test study. ACS Nano. 2011;5:7503–7509. doi: 10.1021/nn202458g. PubMed DOI
Ge C., Du J., Zhao L., Wang L., Liu Y., Li D., Yang Y., Zhou R., Zhao Y., Chai Z. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. USA. 2011;108:16968–16973. doi: 10.1073/pnas.1105270108. PubMed DOI PMC
Hu W., Peng C., Lv M., Li X., Zhang Y., Chen N., Fan C., Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5:3693–3700. doi: 10.1021/nn200021j. PubMed DOI
Peng Q., Zhang S., Yang Q., Zhang T., Wei X.-Q., Jiang L., Zhang C.-L., Chen Q.-M., Zhang Z.-R., Lin Y.-F. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials. 2013;34:8521–8530. doi: 10.1016/j.biomaterials.2013.07.102. PubMed DOI
Wang L., Li J., Pan J., Jiang X., Ji Y., Li Y., Qu Y., Zhao Y., Wu X., Chen C. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: Understanding the reduced damage in cell membranes. J. Am. Chem. Soc. 2013;135:17359–17368. doi: 10.1021/ja406924v. PubMed DOI
Corbo C., Molinaro R., Parodi A., Furman N.E.T., Salvatore F., Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 2016;11:81–100. doi: 10.2217/nnm.15.188. PubMed DOI PMC
Treuel L., Brandholt S., Maffre P., Wiegele S., Shang L., Nienhaus G.U. Impact of protein modification on the protein corona on nanoparticles and nanoparticle–cell interactions. ACS Nano. 2014;8:503–513. doi: 10.1021/nn405019v. PubMed DOI
Lee K.J., Browning L.M., Nallathamby P.D., Xu X.-H.N. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem. Res. Toxicol. 2013;26:904–917. doi: 10.1021/tx400087d. PubMed DOI PMC
Piao M.J., Kang K.A., Lee I.K., Kim H.S., Kim S., Choi J.Y., Choi J., Hyun J.W. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 2011;201:92–100. doi: 10.1016/j.toxlet.2010.12.010. PubMed DOI
Carlson C., Hussain S.M., Schrand A.M., Braydich-Stolle L.K., Hess K.L., Jones R.L., Schlager J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 2008;112:13608–13619. doi: 10.1021/jp712087m. PubMed DOI
Sharma V.K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—A review. J. Environ. Sci. Health Part A. 2009;44:1485–1495. doi: 10.1080/10934520903263231. PubMed DOI
Nel A., Xia T., Mädler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI
Liu W., Wu Y., Wang C., Li H.C., Wang T., Liao C.Y., Cui L., Zhou Q.F., Yan B., Jiang G.B. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology. 2010;4:319–330. doi: 10.3109/17435390.2010.483745. PubMed DOI
Chithrani B.D., Chan W.C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007;7:1542–1550. doi: 10.1021/nl070363y. PubMed DOI
Kim T.H., Kim M., Park H.S., Shin U.S., Gong M.S., Kim H.W. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. Part A. 2012;100:1033–1043. doi: 10.1002/jbm.a.34053. PubMed DOI
Favi P.M., Gao M., Johana Sepúlveda Arango L., Ospina S.P., Morales M., Pavon J.J., Webster T.J. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus gold nanostars. J. Biomed. Mater. Res. Part A. 2015;103:3449–3462. doi: 10.1002/jbm.a.35491. PubMed DOI
Verma A., Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6:12–21. doi: 10.1002/smll.200901158. PubMed DOI
Champion J.A., Mitragotri S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA. 2006;103:4930–4934. doi: 10.1073/pnas.0600997103. PubMed DOI PMC
Li X., Gao H., Uo M., Sato Y., Akasaka T., Abe S., Feng Q., Cui F., Watari F. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes. Biomed. Mater. 2008;4:015005. doi: 10.1088/1748-6041/4/1/015005. PubMed DOI
Zhang Y., Ali S.F., Dervishi E., Xu Y., Li Z., Casciano D., Biris A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4:3181–3186. doi: 10.1021/nn1007176. PubMed DOI
Gurr J.-R., Wang A.S., Chen C.-H., Jan K.-Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213:66–73. doi: 10.1016/j.tox.2005.05.007. PubMed DOI
Georgieva J.V., Kalicharan D., Couraud P.-O., Romero I.A., Weksler B., Hoekstra D., Zuhorn I.S. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood–brain barrier endothelial cells in vitro. Mol. Ther. 2011;19:318–325. doi: 10.1038/mt.2010.236. PubMed DOI PMC
Shahbazi M.A., Hamidi M., Makila E.M., Zhang H., Almeida P.V., Kaasalainen M., Salonen J.J., Hirvonen J.T., Santos H.A. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials. 2013;34:7776–7789. doi: 10.1016/j.biomaterials.2013.06.052. PubMed DOI
Calatayud M.P., Sanz B., Raffa V., Riggio C., Ibarra M.R., Goya G.F. The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake. Biomaterials. 2014;35:6389–6399. doi: 10.1016/j.biomaterials.2014.04.009. PubMed DOI
Santos H.A., Riikonen J., Salonen J., Mäkilä E., Heikkilä T., Laaksonen T., Peltonen L., Lehto V.-P., Hirvonen J. In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 2010;6:2721–2731. doi: 10.1016/j.actbio.2009.12.043. PubMed DOI
Kiss B., Bíró T., Czifra G., Tóth B.I., Kertész Z., Szikszai Z., Kiss Á.Z., Juhász I., Zouboulis C.C., Hunyadi J. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp. Dermatol. 2008;17:659–667. doi: 10.1111/j.1600-0625.2007.00683.x. PubMed DOI
Korani M., Rezayat S.M., Bidgoli S.A. Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: Special emphasis to heart, bone and kidney toxicities. Iran. J. Pharm. Res. 2013;12:511–519. PubMed PMC
Narayanan D., Geena M., Lakshmi H., Koyakutty M., Nair S., Menon D. Poly-(ethylene glycol) modified gelatin nanoparticles for sustained delivery of the anti-inflammatory drug ibuprofen-sodium: An in vitro and in vivo analysis. Nanomed. Nanotechnol. Biol. Med. 2013;9:818–828. doi: 10.1016/j.nano.2013.02.001. PubMed DOI
Ema M., Matsuda A., Kobayashi N., Naya M., Nakanishi J. Evaluation of dermal and eye irritation and skin sensitization due to carbon nanotubes. Regul. Toxicol. Pharm. 2011;61:276–281. doi: 10.1016/j.yrtph.2011.08.007. PubMed DOI
Kato S., Itoh K., Yaoi T., Tozawa T., Yoshikawa Y., Yasui H., Kanamura N., Hoshino A., Manabe N., Yamamoto K. Organ distribution of quantum dots after intraperitoneal administration, with special reference to area-specific distribution in the brain. Nanotechnology. 2010;21:335103. doi: 10.1088/0957-4484/21/33/335103. PubMed DOI
Zhang T., Hu Y., Tang M., Kong L., Ying J., Wu T., Xue Y., Pu Y. Liver toxicity of cadmium telluride quantum dots (CdTe QDs) due to oxidative stress in vitro and in vivo. Int. J. Mol. Sci. 2015;16:23279–23299. doi: 10.3390/ijms161023279. PubMed DOI PMC
Trickler W.J., Lantz S.M., Murdock R.C., Schrand A.M., Robinson B.L., Newport G.D., Schlager J.J., Oldenburg S.J., Paule M.G., Slikker W., Jr. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol. Sci. 2010;118:160–170. doi: 10.1093/toxsci/kfq244. PubMed DOI
Truong L., Saili K.S., Miller J.M., Hutchison J.E., Tanguay R.L. Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2012;155:269–274. doi: 10.1016/j.cbpc.2011.09.006. PubMed DOI PMC
Sharma H.S. Hyperthermia induced brain oedema: Current status and future perspectives. Indian J. Med. Res. 2006;123:629–652. PubMed
Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006;114:165–172. doi: 10.1289/ehp.8284. PubMed DOI PMC
Muldoon L.L., Sàndor M., Pinkston K.E., Neuwelt E.A. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery. 2005;57:785–796. doi: 10.1227/01.NEU.0000175731.25414.4c. PubMed DOI
Pongrac I.M., Pavičić I., Milić M., Ahmed L.B., Babič M., Horák D., Vrček I.V., Gajović S. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 2016;11:1701–1715. PubMed PMC
Jeng H.A., Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health Part A. 2006;41:2699–2711. doi: 10.1080/10934520600966177. PubMed DOI
Dal Bosco L., Weber G.E., Parfitt G.M., Paese K., Gonçalves C.O., Serodre T.M., Furtado C.A., Santos A.P., Monserrat J.M., Barros D.M. Pegylated carbon nanotubes impair retrieval of contextual fear memory and alter oxidative stress parameters in the rat hippocampus. Biomed. Res. Int. 2015;2015:104135. doi: 10.1155/2015/104135. PubMed DOI PMC
Wang J., Sun P., Bao Y., Liu J., An L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol. In Vitro. 2011;25:242–250. doi: 10.1016/j.tiv.2010.11.010. PubMed DOI
Mahto S.K., Yoon T.H., Rhee S.W. Cytotoxic effects of surface-modified quantum dots on neuron-like pc12 cells cultured inside microfluidic devices. Biochip J. 2010;4:82–88. doi: 10.1007/s13206-010-4113-0. DOI
Sung J.H., Ji J.H., Yoon J.U., Kim D.S., Song M.Y., Jeong J., Han B.S., Han J.H., Chung Y.H., Kim J. Lung function changes in sprague-dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol. 2008;20:567–574. doi: 10.1080/08958370701874671. PubMed DOI
Lanone S., Rogerieux F., Geys J., Dupont A., Maillot-Marechal E., Boczkowski J., Lacroix G., Hoet P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009;6:14. doi: 10.1186/1743-8977-6-14. PubMed DOI PMC
Ahamed M., Siddiqui M.A., Akhtar M.J., Ahmad I., Pant A.B., Alhadlaq H.A. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem. Biophys. Res. Commun. 2010;396:578–583. doi: 10.1016/j.bbrc.2010.04.156. PubMed DOI
Brunner T.J., Wick P., Manser P., Spohn P., Grass R.N., Limbach L.K., Bruinink A., Stark W.J. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 2006;40:4374–4381. doi: 10.1021/es052069i. PubMed DOI
Könczöl M., Ebeling S., Goldenberg E., Treude F., Gminski R., Gieré R., Grobéty B., Rothen-Rutishauser B., Merfort I., Mersch-Sundermann V. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: Role of ROS, JNK, and NF-κB. Chem. Res. Toxicol. 2011;24:1460–1475. doi: 10.1021/tx200051s. PubMed DOI
Guan R., Kang T., Lu F., Zhang Z., Shen H., Liu M. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to zno nanoparticles. Nanoscale Res. Lett. 2012;7:602. doi: 10.1186/1556-276X-7-602. PubMed DOI PMC
Davoren M., Herzog E., Casey A., Cottineau B., Chambers G., Byrne H.J., Lyng F.M. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol. In Vitro. 2007;21:438–448. doi: 10.1016/j.tiv.2006.10.007. PubMed DOI
Huang G.G., Wang C.-T., Tang H.-T., Huang Y.-S., Yang J. Zno nanoparticle-modified infrared internal reflection elements for selective detection of volatile organic compounds. Anal. Chem. 2006;78:2397–2404. doi: 10.1021/ac051930+. PubMed DOI
Choi Y.J., Kim Y.J., Lee J.W., Lee Y., Lim Y.-B., Chung H.W. Cyto-/genotoxic effect of CdSe/ZnS quantum dots in human lung adenocarcinoma cells for potential photodynamic UV therapy applications. J. Nanosci. Nanotechnol. 2012;12:2160–2168. doi: 10.1166/jnn.2012.5781. PubMed DOI
Taju G., Majeed S.A., Nambi K., Hameed A.S. In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of catla catla and gill cell line of labeo rohita. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2014;161:41–52. doi: 10.1016/j.cbpc.2014.01.007. PubMed DOI
Baratli Y., Charles A.-L., Wolff V., Tahar L.B., Smiri L., Bouitbir J., Zoll J., Piquard F., Tebourbi O., Sakly M. Impact of iron oxide nanoparticles on brain, heart, lung, liver and kidneys mitochondrial respiratory chain complexes activities and coupling. Toxic. In Vitro. 2013;27:2142–2148. doi: 10.1016/j.tiv.2013.09.006. PubMed DOI
Hosseinpour M., Azimirad V., Alimohammadi M., Shahabi P., Sadighi M., Nejad G.G. The cardiac effects of carbon nanotubes in rat. BioImpacts BI. 2016;6:79–84. doi: 10.15171/bi.2016.11. PubMed DOI PMC
Harvey J., Dong L., Kim K., Hayden J., Wang J. Uptake of single-walled carbon nanotubes conjugated with DNA by microvascular endothelial cells. J. Nanotechnol. 2011;2012:196189. doi: 10.1155/2012/196189. DOI
Nguyen K.C., Rippstein P., Tayabali A.F., Willmore W.G. Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicol. Sci. 2015;146:31–42. doi: 10.1093/toxsci/kfv068. PubMed DOI PMC
Trop M., Novak M., Rodl S., Hellbom B., Kroell W., Goessler W. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J. Trauma Acute Care Surg. 2006;60:648–652. doi: 10.1097/01.ta.0000208126.22089.b6. PubMed DOI
Mavon A., Miquel C., Lejeune O., Payre B., Moretto P. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Sharm. Physiol. 2007;20:10–20. doi: 10.1159/000096167. PubMed DOI
Alili L., Chapiro S., Marten G.U., Schmidt A.M., Zanger K., Brenneisen P. Effect of Fe3O4 nanoparticles on skin tumor cells and dermal fibroblasts. BioMed Res. Int. 2015;2015:530957. PubMed PMC
Zhang L.W., Zeng L., Barron A.R., Monteiro-Riviere N.A. Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicol. 2007;26:103–113. doi: 10.1080/10915810701225133. PubMed DOI
Patlolla A., Knighten B., Tchounwou P. Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethn. Dis. 2010;20:65–72. PubMed PMC
Ryman-Rasmussen J.P., Riviere J.E., Monteiro-Riviere N.A. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci. 2006;91:159–165. doi: 10.1093/toxsci/kfj122. PubMed DOI
Samberg M.E., Oldenburg S.J., Monteiro-Riviere N.A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect. 2010;118:407–413. doi: 10.1289/ehp.0901398. PubMed DOI PMC
Arora S., Jain J., Rajwade J., Paknikar K. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol. Appl. Pharm. 2009;236:310–318. doi: 10.1016/j.taap.2009.02.020. PubMed DOI
Derfus A.M., Chan W.C., Bhatia S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–18. doi: 10.1021/nl0347334. PubMed DOI PMC
Murali M., Suganthi P., Athif P., Bukhari A.S., Mohamed H.S., Basu H., Singhal R. Histological alterations in the hepatic tissues of Al2O3 nanoparticles exposed freshwater fish oreochromis mossambicus. J. Trace Elem. Med. Biol. 2017;44:125–131. doi: 10.1016/j.jtemb.2017.07.001. PubMed DOI
Liu H., Ma L., Liu J., Zhao J., Yan J., Hong F. Toxicity of nano-anatase TiO2 to mice: Liver injury, oxidative stress. Toxic. Environ. Chem. 2010;92:175–186. doi: 10.1080/02772240902732530. DOI
Buford M.C., Hamilton R.F., Holian A. A comparison of dispersing media for various engineered carbon nanoparticles. Part. Fibre Toxicol. 2007;4:6. doi: 10.1186/1743-8977-4-6. PubMed DOI PMC
Kermanizadeh A., Gaiser B.K., Hutchison G.R., Stone V. An in vitro liver model-assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part. Fibre Toxicol. 2012;9:28. doi: 10.1186/1743-8977-9-28. PubMed DOI PMC
Lin P., Chen J.-W., Chang L.W., Wu J.-P., Redding L., Chang H., Yeh T.-K., Yang C.S., Tsai M.-H., Wang H.-J. Computational and ultrastructural toxicology of a nanoparticle, quantum dot 705, in mice. Environ. Sci. Technol. 2008;42:6264–6270. doi: 10.1021/es800254a. PubMed DOI
Zhang X.-D., Wu D., Shen X., Liu P.-X., Fan F.-Y., Fan S.-J. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials. 2012;33:4628–4638. doi: 10.1016/j.biomaterials.2012.03.020. PubMed DOI
Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011;40:1647–1671. doi: 10.1039/C0CS00018C. PubMed DOI
Yan G., Huang Y., Bu Q., Lv L., Deng P., Zhou J., Wang Y., Yang Y., Liu Q., Cen X. Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J. Environ. Sci. Health Part A. 2012;47:577–588. doi: 10.1080/10934529.2012.650576. PubMed DOI
Privalova L.I., Katsnelson B.A., Loginova N.V., Gurvich V.B., Shur V.Y., Valamina I.E., Makeyev O.H., Sutunkova M.P., Minigalieva I.A., Kireyeva E.P. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int. J. Mol. Sci. 2014;15:12379–12406. doi: 10.3390/ijms150712379. PubMed DOI PMC
Lewinski N., Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49. doi: 10.1002/smll.200700595. PubMed DOI
Demir E., Burgucu D., Turna F., Aksakal S., Kaya B. Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in human peripheral blood lymphocytes and cultured embyronic kidney cells. J. Toxic. Environ. Health Part A. 2013;76:990–1002. doi: 10.1080/15287394.2013.830584. PubMed DOI
Shang S., Yang S.-Y., Liu Z.-M., Yang X. Oxidative damage in the kidney and brain of mice induced by different nano-materials. Front. Biol. 2015;10:91–96. doi: 10.1007/s11515-015-1345-3. DOI
Reddy A.R.N., Krishna D., Himabindu V., Reddy Y.N. Single walled carbon nanotubes induce cytotoxicity and oxidative stress in hek293 cells. Toxicol. Environ. Chem. 2014;96:931–940. doi: 10.1080/02772248.2014.993112. DOI
Mao W.-P., Ye J.-L., Guan Z.-B., Zhao J.-M., Zhang C., Zhang N.-N., Jiang P., Tian T. Cadmium induces apoptosis in human embryonic kidney (HEK) 293 cells by caspase-dependent and-independent pathways acting on mitochondria. Toxicol. In Vitro. 2007;21:343–354. doi: 10.1016/j.tiv.2006.09.004. PubMed DOI
Sardari R.R.R., Zarchi S.R., Talebi A., Nasri S., Imani S., Khoradmehr A., Sheshde S.A.R. Toxicological effects of silver nanoparticles in rats. Afr. J. Microbiol. Res. 2012;6:5587–5593.
Krug L.T., Moser J.M., Dickerson S.M., Speck S.H. Inhibition of NF-κB activation in vivo impairs establishment of gammaherpesvirus latency. PLoS Pathog. 2007;3:e11. doi: 10.1371/journal.ppat.0030011. PubMed DOI PMC
Ates M., Demir V., Arslan Z., Kaya H., Yılmaz S., Camas M. Chronic exposure of tilapia (oreochromis niloticus) to iron oxide nanoparticles: Effects of particle morphology on accumulation, elimination, hematology and immune responses. Aquat. Toxicol. 2016;177:22–32. doi: 10.1016/j.aquatox.2016.05.005. PubMed DOI PMC
Clichici S., Biris A.R., Catoi C., Filip A., Tabaran F. Short-term splenic impact of single-strand DNA functionalized multi-walled carbon nanotubes intraperitoneally injected in rats. J. Appl. Toxicol. JAT. 2014;34:332–344. doi: 10.1002/jat.2883. PubMed DOI
Gagné F., Auclair J., Turcotte P., Fournier M., Gagnon C., Sauvé S., Blaise C. Ecotoxicity of cdte quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity. Aquat. Toxicol. 2008;86:333–340. doi: 10.1016/j.aquatox.2007.11.013. PubMed DOI
Wang T., Hsieh H., Hsieh Y., Chiang C., Sun Y., Wang C. The in vivo biodistribution and fate of cdse quantum dots in the murine model: A laser ablation inductively coupled plasma mass spectrometry study. Anal. Bioanal. Chem. 2012;404:3025–3036. doi: 10.1007/s00216-012-6417-5. PubMed DOI
Chen L.-D., Liu J., Yu X.-F., He M., Pei X.-F., Tang Z.-Y., Wang Q.-Q., Pang D.-W., Li Y. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials. 2008;29:4170–4176. doi: 10.1016/j.biomaterials.2008.07.025. PubMed DOI
Loeschner K., Hadrup N., Qvortrup K., Larsen A., Gao X., Vogel U., Mortensen A., Lam H.R., Larsen E.H. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part. Fibre Toxicol. 2011;8:18. doi: 10.1186/1743-8977-8-18. PubMed DOI PMC
Singh M., Harris-Birtill D.C., Markar S.R., Hanna G.B., Elson D.S. Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review. Nanomed. Nanotechnol. Biol. Med. 2015;11:2083–2098. doi: 10.1016/j.nano.2015.05.010. PubMed DOI
Wang Z.M., Kunets V.P., Xie Y.Z., Schmidbauer M., Dorogan V.G., Mazur Y.I., Salamo G.J. Multilayer self-organization of ingaas quantum wires on GaAs surfaces. Phys. Lett. A. 2010;375:170–173. doi: 10.1016/j.physleta.2010.10.051. DOI
Takenaka S., Karg E., Roth C., Schulz H., Ziesenis A., Heinzmann U., Schramel P., Heyder J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect. 2001;109:547–551. doi: 10.1289/ehp.01109s4547. PubMed DOI PMC
Pasupuleti S., Alapati S., Ganapathy S., Anumolu G., Pully N.R., Prakhya B.M. Toxicity of zinc oxide nanoparticles through oral route. Toxicol. Ind. Health. 2012;28:675–686. doi: 10.1177/0748233711420473. PubMed DOI
Upadhyayula V.K., Deng S., Mitchell M.C., Smith G.B. Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 2009;408:1–13. doi: 10.1016/j.scitotenv.2009.09.027. PubMed DOI
Poland C.A., Duffin R., Kinloch I., Maynard A., Wallace W.A., Seaton A., Stone V., Brown S., MacNee W., Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnol. 2008;3:423–428. doi: 10.1038/nnano.2008.111. PubMed DOI
Simkó M., Nentwich M., Gazsó A., Fiedeler U. How Nanoparticles Enter the Human Body and Their Effects There. Institute of Technology Assessment of the Austrian Academy of Sciences; Vienna, Austria: 2010. Nanotrust Dossier No. 003en.
Savolainen K., Alenius H., Norppa H., Pylkkänen L., Tuomi T., Kasper G. Risk assessment of engineered nanomaterials and nanotechnologies—A review. Toxicology. 2010;269:92–104. doi: 10.1016/j.tox.2010.01.013. PubMed DOI
Wang L., Nagesha D.K., Selvarasah S., Dokmeci M.R., Carrier R.L. Toxicity of cdse nanoparticles in Caco-2 cell cultures. J. Nanobiotechnol. 2008;6:11. doi: 10.1186/1477-3155-6-11. PubMed DOI PMC
Stensberg M.C., Wei Q., McLamore E.S., Porterfield D.M., Wei A., Sepúlveda M.S. Toxicological studies on silver nanoparticles: Challenges and opportunities in assessment, monitoring and imaging. Nanomedicine. 2011;6:879–898. doi: 10.2217/nnm.11.78. PubMed DOI PMC
He Y., Du Z., Ma S., Liu Y., Li D., Huang H., Jiang S., Cheng S., Wu W., Zhang K. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int. J. Nanomed. 2016;11:1879–1887. doi: 10.2147/IJN.S103695. PubMed DOI PMC
Selim M.E., Abd-Elhakim Y.M., Al-Ayadhi L.Y. Pancreatic response to gold nanoparticles includes decrease of oxidative stress and inflammation in autistic diabetic model. Cell. Phys. Biochem. 2015;35:586–600. doi: 10.1159/000369721. PubMed DOI
Pašukonienė V., Mlynska A., Steponkienė S., Poderys V., Matulionytė M., Karabanovas V., Statkutė U., Purvinienė R., Kraśko J.A., Jagminas A. Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells. Medicina. 2014;50:237–244. doi: 10.1016/j.medici.2014.09.009. PubMed DOI
Park H.-S., Kim S.-J., Lee T.-J., Kim G.-Y., Meang E., Hong J.-S., Kim S.-H., Koh S.-B., Hong S.-G., Sun Y.-S. A 90-day study of sub-chronic oral toxicity of 20 nm positively charged zinc oxide nanoparticles in Sprague Dawley rats. Int. J. Nanomed. 2014;9:93–107. PubMed PMC
Nakayama M., Sasaki R., Ogino C., Tanaka T., Morita K., Umetsu M., Ohara S., Tan Z., Nishimura Y., Akasaka H. Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiat. Oncol. 2016;11:91. doi: 10.1186/s13014-016-0666-y. PubMed DOI PMC
Mocan T., Matea C.T., Cojocaru I., Ilie I., Tabaran F.A., Zaharie F., Iancu C., Bartos D., Mocan L. Photothermal treatment of human pancreatic cancer using pegylated multi-walled carbon nanotubes induces apoptosis by triggering mitochondrial membrane depolarization mechanism. J. Cancer. 2014;5:679–688. doi: 10.7150/jca.9481. PubMed DOI PMC
Chang S.-Q., Dai Y.-D., Kang B., Han W., Mao L., Chen D. Uv-enhanced cytotoxicity of thiol-capped cdte quantum dots in human pancreatic carcinoma cells. Toxicol. Lett. 2009;188:104–111. doi: 10.1016/j.toxlet.2009.03.013. PubMed DOI
Zou J., Feng H., Mannerström M., Heinonen T., Pyykkö I. Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line. J. Nanobiotechnol. 2014;12:52. doi: 10.1186/s12951-014-0052-6. PubMed DOI PMC
Kong S.D., Lee J., Ramachandran S., Eliceiri B.P., Shubayev V.I., Lal R., Jin S. Magnetic targeting of nanoparticles across the intact blood–brain barrier. J. Control. Release. 2012;164:49–57. doi: 10.1016/j.jconrel.2012.09.021. PubMed DOI PMC
Thompson J., Hipwell E., Loo H.V., Bannigan J. Effects of cadmium on cell death and cell proliferation in chick embryos. Reprod. Toxic. 2005;20:539–548. doi: 10.1016/j.reprotox.2005.04.016. PubMed DOI
Gerber A., Bundschuh M., Klingelhofer D., Groneberg D.A. Gold nanoparticles: Recent aspects for human toxicology. J. Occup. Med. Toxicol. 2013;8:32. doi: 10.1186/1745-6673-8-32. PubMed DOI PMC
Park J.-H., Jeong H., Hong J., Chang M., Kim M., Chuck R.S., Lee J.K., Park C.-Y. The effect of silica nanoparticles on human corneal epithelial cells. Sci. Rep. 2016;6:37762. doi: 10.1038/srep37762. PubMed DOI PMC
Olson J.L., Velez-Montoya R., Mandava N., Stoldt C.R. Intravitreal silicon-based quantum dots as neuroprotective factors in a model of retinal photoreceptor degenerationsilicon quantum dots as neuroprotective factors. Investig. Ophthalmol. Vis. Sci. 2012;53:5713–5721. doi: 10.1167/iovs.12-9745. PubMed DOI