The Differential Effect of Carbon Dots on Gene Expression and DNA Methylation of Human Embryonic Lung Fibroblasts as a Function of Surface Charge and Dose
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1508
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000754
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000754
Univerzita Palackého v Olomouci
PubMed
32635498
PubMed Central
PMC7369946
DOI
10.3390/ijms21134763
PII: ijms21134763
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, carbon dots, gene expression, human lung fibroblasts, surface charge,
- MeSH
- apoptóza účinky léků genetika MeSH
- exprese genu účinky léků genetika MeSH
- extracelulární matrix genetika MeSH
- fibroblasty účinky léků MeSH
- kultivované buňky MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- metylace DNA účinky léků genetika MeSH
- mikro RNA genetika MeSH
- nádory genetika MeSH
- oxidační stres účinky léků genetika MeSH
- plíce účinky léků MeSH
- proliferace buněk účinky léků genetika MeSH
- signální transdukce účinky léků genetika MeSH
- stanovení celkové genové exprese metody MeSH
- uhlík farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH
- uhlík MeSH
This study presents a toxicological evaluation of two types of carbon dots (CD), similar in size (<10 nm) but differing in surface charge. Whole-genome mRNA and miRNA expression (RNAseq), as well as gene-specific DNA methylation changes, were analyzed in human embryonic lung fibroblasts (HEL 12469) after 4 h and 24 h exposure to concentrations of 10 and 50 µg/mL (for positive charged CD; pCD) or 10 and 100 µg/mL (for negative charged CD, nCD). The results showed a distinct response for the tested nanomaterials (NMs). The exposure to pCD induced the expression of a substantially lower number of mRNAs than those to nCD, with few commonly differentially expressed genes between the two CDs. For both CDs, the number of deregulated mRNAs increased with the dose and exposure time. The pathway analysis revealed a deregulation of processes associated with immune response, tumorigenesis and cell cycle regulation, after exposure to pCD. For nCD treatment, pathways relating to cell proliferation, apoptosis, oxidative stress, gene expression, and cycle regulation were detected. The expression of miRNAs followed a similar pattern: more pronounced changes after nCD exposure and few commonly differentially expressed miRNAs between the two CDs. For both CDs the pathway analysis based on miRNA-mRNA interactions, showed a deregulation of cancer-related pathways, immune processes and processes involved in extracellular matrix interactions. DNA methylation was not affected by exposure to any of the two CDs. In summary, although the tested CDs induced distinct responses on the level of mRNA and miRNA expression, pathway analyses revealed a potential common biological impact of both NMs independent of their surface charge.
Zobrazit více v PubMed
Xu X., Ray R., Gu Y., Ploehn H., Gearheart L., Raker K., Scrivens W. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004;126:12736–12737. doi: 10.1021/ja040082h. PubMed DOI
Duran N., Simoes M.B., de Moraes A.C.M., Favaro W.J., Seabra A.B. Nanobiotechnology of Carbon Dots: A Review. J. Biomed. Nanotechnol. 2016;12:1323–1347. doi: 10.1166/jbn.2016.2225. PubMed DOI
Zhao F., Zhao Y., Liu Y., Chang X., Chen C., Zhao Y. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small. 2011;7:1322–1337. doi: 10.1002/smll.201100001. PubMed DOI
Tao H., Yang K., Ma Z., Wan J., Zhang Y., Kang Z., Liu Z. In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots Produced from Carbon Nanotubes and Graphite. Small. 2012;8:281–290. doi: 10.1002/smll.201101706. PubMed DOI
Yang S.-T., Wang X., Wang H., Lu F., Luo P.G., Cao L., Meziani M.J., Liu J.-H., Liu Y., Chen M., et al. Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. J. Phys. Chem. 2009;113:18110–18114. doi: 10.1021/jp9085969. PubMed DOI PMC
Wang Y., Anilkumar P., Cao L., Liu J.-H., Luo P.G., Tackett K.N., II, Sahu S., Wang P., Wang X., Sun Y.-P. Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging. Exp. Biol. Med. 2011;236:1231–1238. doi: 10.1258/ebm.2011.011132. PubMed DOI
Havrdova M., Hola K., Skopalik J., Tomankova K., Martin P.A., Cepe K., Polakova K., Tucek J., Bourlinos A.B., Zboril R. Toxicity of carbon dots—Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon. 2016;99:238–248. doi: 10.1016/j.carbon.2015.12.027. DOI
Hsu P.-C., Chen P.-C., Ou C.-M., Chang H.-Y., Chang H.-T. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J. Mater. Chem. B. 2013;1:1774–1781. doi: 10.1039/c3tb00545c. PubMed DOI
Li C.-L., Ou C.-M., Huang C.-C., Wu W.-C., Chen Y.-P., Lin T.-E., Ho L.-C., Wang C.-W., Shih C.-C., Zhou H.-C., et al. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J. Mater. Chem. B. 2014;2:4564–4571. doi: 10.1039/c4tb00216d. PubMed DOI
Das B., Pal P., Dadhich P., Dutta J., Dhara S. In Vivo Cell Tracking, Reactive Oxygen Species Scavenging, and Antioxidative Gene Down Regulation by Long-Term Exposure of Biomass-Derived Carbon Dots. ACS Biomater-Sci. Eng. 2019;5:346–356. doi: 10.1021/acsbiomaterials.8b01101. PubMed DOI
Li M., Gu M.-M., Tian X., Xiao B.-B., Lu S., Zhu W., Yu L., Shang Z.-F. Hydroxylated-Graphene Quantum Dots Induce DNA Damage and Disrupt Microtubule Structure in Human Esophageal Epithelial Cells. Toxicol. Sci. 2018;164:339–352. doi: 10.1093/toxsci/kfy090. PubMed DOI PMC
Sharma A., Panwar V., Chopra V., Thomas J., Kaushik S., Ghosh D. Interaction of Carbon Dots with Endothelial Cells: Implications for Biomedical Applications. ACS Appl. Nano Mater. 2019;2:5483–5491. doi: 10.1021/acsanm.9b01080. DOI
Chen J., Liu B., Yang Z., Qu J., Xun H., Dou R., Gao X., Wang L. Phenotypic, transcriptional, physiological and metabolic responses to carbon nanodot exposure in Arabidopsis thaliana (L.) Environ. Sci. Nano. 2018;5:2672–2685. doi: 10.1039/C8EN00674A. DOI
Maiti S., Das K., Das P.K. Label-free fluorimetric detection of histone using quaternized carbon dot-DNA nanobiohybrid. Chem. Commun. 2013;49:8851–8853. doi: 10.1039/c3cc44492a. PubMed DOI
Datta K.K.R., Kozak O., Ranc V., Havrdova M., Bourlinos A.B., Safarova K., Hola K., Tomankova K., Zoppellaro G., Otyepka M., et al. Quaternized carbon dot-modified graphene oxide for selective cell labelling—Controlled nucleus and cytoplasm imaging. Chem. Commun. 2014;50:10782–10785. doi: 10.1039/C4CC02637C. PubMed DOI
Malina T., Polakova K., Skopalik J., Milotova V., Hola K., Havrdova M., Tomankova K.B., Cmiel V., Sefc L., Zboril R. Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon. 2019;152:434–443. doi: 10.1016/j.carbon.2019.05.061. DOI
Bourlinos A.B., Zboril R., Petr J., Bakandritsos A., Krysmann M., Giannelis E.P. Luminescent Surface Quaternized Carbon Dots. Chem. Mater. 2012;24:6–8. doi: 10.1021/cm2026637. DOI
Hola K., Sudolska M., Kalytchuk S., Nachtigallova D., Rogach A.L., Otyepka M., Zboril R. Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. ACS Nano. 2017;11:12402–12410. doi: 10.1021/acsnano.7b06399. PubMed DOI
Lin-Vien D., Colthup N.B., Fateley W.G., Grasselli J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Elsevier; Amsterdam, The Netherlands: 1991. p. 503.
Alley D.F., Langley-Turnbaugh S., Gordon N.R., Wise J.P., Van Eps G., Jalbert A. The effect of PM10 on human lung fibroblasts. Toxicol. Ind. Health. 2009;25:111–120. doi: 10.1177/0748233709103185. PubMed DOI PMC
Li Y., Wang P., Hu C., Wang K., Chang Q., Liu L., Han Z., Shao Y., Zhai Y., Zuo Z., et al. Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Sci. Rep. 2018;8:1939. doi: 10.1038/s41598-018-20445-7. PubMed DOI PMC
Durantie E., Barosova H., Drasler B., Rodriguez-Lorenzo L., Urban D.A., Vanhecke D., Septiadi D., Hirschi-Ackermann L., Petri-Fink A., Rothen-Rutishauser B. Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier. Biointerphases. 2018;13:06D404. doi: 10.1116/1.5043373. PubMed DOI
Tennis M.A., Van Scoyk M.M., Freeman S.V., Vandervest K.M., Nemenoff R.A., Winn R.A. Sprouty-4 Inhibits Transformed Cell Growth, Migration and Invasion, and Epithelial-Mesenchymal Transition, and Is Regulated by Wnt7A through PPAR in Non-Small Cell Lung Cancer. Mol. Cancer Res. 2010;8:833–843. doi: 10.1158/1541-7786.MCR-09-0400. PubMed DOI PMC
Beers M.F., Mulugeta S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res. 2017;367:481–493. doi: 10.1007/s00441-016-2554-z. PubMed DOI PMC
Irigoyen M., Pajares M.J., Agorreta J., Ponz-Sarvisé M., Salvo E., Lozano M.D., Pío R., Gil-Bazo I., Rouzaut A. TGFBI expression is associated with a better response to chemotherapy in NSCLC. Mol. Cancer. 2010;9:130. doi: 10.1186/1476-4598-9-130. PubMed DOI PMC
Ballard P.L., Lee J.W., Fang X., Chapin C., Allen L., Segal M.R., Fischer H., Illek B., Gonzales L.W., Kolla V., et al. Regulated gene expression in cultured type II cells of adult human lung. Am. J. Physiol-Lung. C. 2010;299:L36–L50. doi: 10.1152/ajplung.00427.2009. PubMed DOI PMC
Nie J.-H., Chen Z.-H., Shao C.-L., Pei W.-W., Zhang J., Zhang S.-Y., Jiao Y., Tong J. Analysis of the miRNA-mRNA networks in malignant transformation BEAS-2B cells induced by alpha-particles. J. Toxicol. Environ. Health A. 2016;79:427–435. doi: 10.1080/15287394.2016.1176628. PubMed DOI
Du Y.-Z., Gu X.-H., Cheng S.-F., Li L., Liu H., Hu L.-P., Gao F. The oncogenetic role of stanniocalcin 1 in lung adenocarcinoma: A promising serum candidate biomarker for tracking lung adenocarcinoma progression. Tumour Biol. 2016;37:5633–5644. doi: 10.1007/s13277-015-4431-x. PubMed DOI
Adams M.N., Burgess J.T., He Y., Gately K., Snell C., Zhang S.-D., Hooper J.D., Richard D.J., O’Byrne K.J. Expression of CDCA3 Is a Prognostic Biomarker and Potential Therapeutic Target in Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2017;12:1071–1084. doi: 10.1016/j.jtho.2017.04.018. PubMed DOI
Zhang M.-Y., Liu X.-X., Li H., Li R., Liu X., Qu Y.-Q. Elevated mRNA Levels of AURKA, CDC20 and TPX2 are associated with poor prognosis of smoking related lung adenocarcinoma using bioinformatics analysis. Int. J. Med. Sci. 2018;15:1676–1685. doi: 10.7150/ijms.28728. PubMed DOI PMC
Chen L., Wu L.-Y., Yang W.-X. Nanoparticles induce apoptosis via mediating diverse cellular pathways. Nanomedicine. 2018;13:2939–2955. doi: 10.2217/nnm-2018-0167. PubMed DOI
Li C., Park S., Zhang X., Eisenberg L.M., Zhao H., Darzynkiewicz Z., Xu D. Nuclear Gene 33/Mig6 regulates the DNA damage response through an ATM serine/threonine kinase-dependent mechanism. J. Biol. Chem. 2017;292:16746–16759. doi: 10.1074/jbc.M117.803338. PubMed DOI PMC
Knight D. Epithelium-fibroblast interactions in response to airway inflammation. Immunol. Cell Biol. 2001;79:160–164. doi: 10.1046/j.1440-1711.2001.00988.x. PubMed DOI
Lei Y.-Y., Wang W.-J., Mei J.-H., Wang C.-L. Mitogen-Activated Protein Kinase Signal Transduction in Solid Tumors. Asian Pac. J. Cancer Prev. 2014;15:8539–8548. doi: 10.7314/APJCP.2014.15.20.8539. PubMed DOI
Eymin B., Gazzeri S. Role of cell cycle regulators in lung carcinogenesis. Cell Adh. Migr. 2010;4:114–123. doi: 10.4161/cam.4.1.10977. PubMed DOI PMC
Jin H., Kang G.-Y., Jeon S., Kim J.-M., Park Y.N., Cho J., Lee Y.-S. Identification of molecular signatures involved in radiation-induced lung fibrosis. J. Mol. Med. 2019;97:37–47. doi: 10.1007/s00109-018-1715-9. PubMed DOI PMC
Zhao H., Zhang H., Du Y., Gu X. Prognostic significance of BRCA1, ERCC1, RRM1, and RRM2 in patients with advanced non-small cell lung cancer receiving chemotherapy. Tumour Biol. 2014;35:12679–12688. doi: 10.1007/s13277-014-2592-7. PubMed DOI
Mok M.T., Zhou J., Tang W., Zeng X., Oliver A.W., Ward S.E., Cheng A.S. CCRK is a novel signalling hub exploitable in cancer immunotherapy. Pharmacol. Therapeut. 2018;186:138–151. doi: 10.1016/j.pharmthera.2018.01.008. PubMed DOI
Ko J.-W., Shin N.-R., Park J.-W., Park S.-H., Lee I.-C., Kim J.-S., Kim J.-C., Ahn K.-S., Shin I.-S. Copper oxide nanoparticles induce collagen deposition via TGF-beta 1/Smad3 signaling in human airway epithelial cells. Nanotoxicology. 2018;12:239–250. doi: 10.1080/17435390.2018.1432778. PubMed DOI
Hu J., Lin W., Lin B., Wu K., Fan H., Yu Y. Persistent DNA methylation changes in zebrafish following graphene quantum dots exposure in surface chemistry-dependent manner. Ecotoxicol. Environ. Saf. 2019;169:370–375. doi: 10.1016/j.ecoenv.2018.11.053. PubMed DOI
Rossner P., Jr., Vrbova K., Rossnerova A., Zavodna T., Milcova A., Klema J., Vecera Z., Mikuska P., Coufalik P., Capka L., et al. Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles. Nanomaterials. 2020;10:550. doi: 10.3390/nano10030550. PubMed DOI PMC
Chen J., Bardes E.E., Aronow B.J., Jegga A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–W311. doi: 10.1093/nar/gkp427. PubMed DOI PMC
Vila-Casadesus M., Gironella M., Jose Lozano J. MiRComb: An R Package to Analyse miRNA-mRNA Interactions. Examples across Five Digestive Cancers. PLoS ONE. 2016;11:e0151127. doi: 10.1371/journal.pone.0151127. PubMed DOI PMC
Maksimovic J., Phipson B., Oshlack A. A cross-package Bioconductor workflow for analysing methylation array data. F1000Research. 2016;5:1281. doi: 10.12688/f1000research.8839.2. PubMed DOI PMC
Carbon dots for virus detection and therapy