The Differential Effect of Carbon Dots on Gene Expression and DNA Methylation of Human Embryonic Lung Fibroblasts as a Function of Surface Charge and Dose

. 2020 Jul 04 ; 21 (13) : . [epub] 20200704

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32635498

Grantová podpora
LO1508 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000754 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000754 Univerzita Palackého v Olomouci

This study presents a toxicological evaluation of two types of carbon dots (CD), similar in size (<10 nm) but differing in surface charge. Whole-genome mRNA and miRNA expression (RNAseq), as well as gene-specific DNA methylation changes, were analyzed in human embryonic lung fibroblasts (HEL 12469) after 4 h and 24 h exposure to concentrations of 10 and 50 µg/mL (for positive charged CD; pCD) or 10 and 100 µg/mL (for negative charged CD, nCD). The results showed a distinct response for the tested nanomaterials (NMs). The exposure to pCD induced the expression of a substantially lower number of mRNAs than those to nCD, with few commonly differentially expressed genes between the two CDs. For both CDs, the number of deregulated mRNAs increased with the dose and exposure time. The pathway analysis revealed a deregulation of processes associated with immune response, tumorigenesis and cell cycle regulation, after exposure to pCD. For nCD treatment, pathways relating to cell proliferation, apoptosis, oxidative stress, gene expression, and cycle regulation were detected. The expression of miRNAs followed a similar pattern: more pronounced changes after nCD exposure and few commonly differentially expressed miRNAs between the two CDs. For both CDs the pathway analysis based on miRNA-mRNA interactions, showed a deregulation of cancer-related pathways, immune processes and processes involved in extracellular matrix interactions. DNA methylation was not affected by exposure to any of the two CDs. In summary, although the tested CDs induced distinct responses on the level of mRNA and miRNA expression, pathway analyses revealed a potential common biological impact of both NMs independent of their surface charge.

Zobrazit více v PubMed

Xu X., Ray R., Gu Y., Ploehn H., Gearheart L., Raker K., Scrivens W. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004;126:12736–12737. doi: 10.1021/ja040082h. PubMed DOI

Duran N., Simoes M.B., de Moraes A.C.M., Favaro W.J., Seabra A.B. Nanobiotechnology of Carbon Dots: A Review. J. Biomed. Nanotechnol. 2016;12:1323–1347. doi: 10.1166/jbn.2016.2225. PubMed DOI

Zhao F., Zhao Y., Liu Y., Chang X., Chen C., Zhao Y. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small. 2011;7:1322–1337. doi: 10.1002/smll.201100001. PubMed DOI

Tao H., Yang K., Ma Z., Wan J., Zhang Y., Kang Z., Liu Z. In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots Produced from Carbon Nanotubes and Graphite. Small. 2012;8:281–290. doi: 10.1002/smll.201101706. PubMed DOI

Yang S.-T., Wang X., Wang H., Lu F., Luo P.G., Cao L., Meziani M.J., Liu J.-H., Liu Y., Chen M., et al. Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. J. Phys. Chem. 2009;113:18110–18114. doi: 10.1021/jp9085969. PubMed DOI PMC

Wang Y., Anilkumar P., Cao L., Liu J.-H., Luo P.G., Tackett K.N., II, Sahu S., Wang P., Wang X., Sun Y.-P. Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging. Exp. Biol. Med. 2011;236:1231–1238. doi: 10.1258/ebm.2011.011132. PubMed DOI

Havrdova M., Hola K., Skopalik J., Tomankova K., Martin P.A., Cepe K., Polakova K., Tucek J., Bourlinos A.B., Zboril R. Toxicity of carbon dots—Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon. 2016;99:238–248. doi: 10.1016/j.carbon.2015.12.027. DOI

Hsu P.-C., Chen P.-C., Ou C.-M., Chang H.-Y., Chang H.-T. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J. Mater. Chem. B. 2013;1:1774–1781. doi: 10.1039/c3tb00545c. PubMed DOI

Li C.-L., Ou C.-M., Huang C.-C., Wu W.-C., Chen Y.-P., Lin T.-E., Ho L.-C., Wang C.-W., Shih C.-C., Zhou H.-C., et al. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J. Mater. Chem. B. 2014;2:4564–4571. doi: 10.1039/c4tb00216d. PubMed DOI

Das B., Pal P., Dadhich P., Dutta J., Dhara S. In Vivo Cell Tracking, Reactive Oxygen Species Scavenging, and Antioxidative Gene Down Regulation by Long-Term Exposure of Biomass-Derived Carbon Dots. ACS Biomater-Sci. Eng. 2019;5:346–356. doi: 10.1021/acsbiomaterials.8b01101. PubMed DOI

Li M., Gu M.-M., Tian X., Xiao B.-B., Lu S., Zhu W., Yu L., Shang Z.-F. Hydroxylated-Graphene Quantum Dots Induce DNA Damage and Disrupt Microtubule Structure in Human Esophageal Epithelial Cells. Toxicol. Sci. 2018;164:339–352. doi: 10.1093/toxsci/kfy090. PubMed DOI PMC

Sharma A., Panwar V., Chopra V., Thomas J., Kaushik S., Ghosh D. Interaction of Carbon Dots with Endothelial Cells: Implications for Biomedical Applications. ACS Appl. Nano Mater. 2019;2:5483–5491. doi: 10.1021/acsanm.9b01080. DOI

Chen J., Liu B., Yang Z., Qu J., Xun H., Dou R., Gao X., Wang L. Phenotypic, transcriptional, physiological and metabolic responses to carbon nanodot exposure in Arabidopsis thaliana (L.) Environ. Sci. Nano. 2018;5:2672–2685. doi: 10.1039/C8EN00674A. DOI

Maiti S., Das K., Das P.K. Label-free fluorimetric detection of histone using quaternized carbon dot-DNA nanobiohybrid. Chem. Commun. 2013;49:8851–8853. doi: 10.1039/c3cc44492a. PubMed DOI

Datta K.K.R., Kozak O., Ranc V., Havrdova M., Bourlinos A.B., Safarova K., Hola K., Tomankova K., Zoppellaro G., Otyepka M., et al. Quaternized carbon dot-modified graphene oxide for selective cell labelling—Controlled nucleus and cytoplasm imaging. Chem. Commun. 2014;50:10782–10785. doi: 10.1039/C4CC02637C. PubMed DOI

Malina T., Polakova K., Skopalik J., Milotova V., Hola K., Havrdova M., Tomankova K.B., Cmiel V., Sefc L., Zboril R. Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon. 2019;152:434–443. doi: 10.1016/j.carbon.2019.05.061. DOI

Bourlinos A.B., Zboril R., Petr J., Bakandritsos A., Krysmann M., Giannelis E.P. Luminescent Surface Quaternized Carbon Dots. Chem. Mater. 2012;24:6–8. doi: 10.1021/cm2026637. DOI

Hola K., Sudolska M., Kalytchuk S., Nachtigallova D., Rogach A.L., Otyepka M., Zboril R. Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. ACS Nano. 2017;11:12402–12410. doi: 10.1021/acsnano.7b06399. PubMed DOI

Lin-Vien D., Colthup N.B., Fateley W.G., Grasselli J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Elsevier; Amsterdam, The Netherlands: 1991. p. 503.

Alley D.F., Langley-Turnbaugh S., Gordon N.R., Wise J.P., Van Eps G., Jalbert A. The effect of PM10 on human lung fibroblasts. Toxicol. Ind. Health. 2009;25:111–120. doi: 10.1177/0748233709103185. PubMed DOI PMC

Li Y., Wang P., Hu C., Wang K., Chang Q., Liu L., Han Z., Shao Y., Zhai Y., Zuo Z., et al. Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Sci. Rep. 2018;8:1939. doi: 10.1038/s41598-018-20445-7. PubMed DOI PMC

Durantie E., Barosova H., Drasler B., Rodriguez-Lorenzo L., Urban D.A., Vanhecke D., Septiadi D., Hirschi-Ackermann L., Petri-Fink A., Rothen-Rutishauser B. Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier. Biointerphases. 2018;13:06D404. doi: 10.1116/1.5043373. PubMed DOI

Tennis M.A., Van Scoyk M.M., Freeman S.V., Vandervest K.M., Nemenoff R.A., Winn R.A. Sprouty-4 Inhibits Transformed Cell Growth, Migration and Invasion, and Epithelial-Mesenchymal Transition, and Is Regulated by Wnt7A through PPAR in Non-Small Cell Lung Cancer. Mol. Cancer Res. 2010;8:833–843. doi: 10.1158/1541-7786.MCR-09-0400. PubMed DOI PMC

Beers M.F., Mulugeta S. The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res. 2017;367:481–493. doi: 10.1007/s00441-016-2554-z. PubMed DOI PMC

Irigoyen M., Pajares M.J., Agorreta J., Ponz-Sarvisé M., Salvo E., Lozano M.D., Pío R., Gil-Bazo I., Rouzaut A. TGFBI expression is associated with a better response to chemotherapy in NSCLC. Mol. Cancer. 2010;9:130. doi: 10.1186/1476-4598-9-130. PubMed DOI PMC

Ballard P.L., Lee J.W., Fang X., Chapin C., Allen L., Segal M.R., Fischer H., Illek B., Gonzales L.W., Kolla V., et al. Regulated gene expression in cultured type II cells of adult human lung. Am. J. Physiol-Lung. C. 2010;299:L36–L50. doi: 10.1152/ajplung.00427.2009. PubMed DOI PMC

Nie J.-H., Chen Z.-H., Shao C.-L., Pei W.-W., Zhang J., Zhang S.-Y., Jiao Y., Tong J. Analysis of the miRNA-mRNA networks in malignant transformation BEAS-2B cells induced by alpha-particles. J. Toxicol. Environ. Health A. 2016;79:427–435. doi: 10.1080/15287394.2016.1176628. PubMed DOI

Du Y.-Z., Gu X.-H., Cheng S.-F., Li L., Liu H., Hu L.-P., Gao F. The oncogenetic role of stanniocalcin 1 in lung adenocarcinoma: A promising serum candidate biomarker for tracking lung adenocarcinoma progression. Tumour Biol. 2016;37:5633–5644. doi: 10.1007/s13277-015-4431-x. PubMed DOI

Adams M.N., Burgess J.T., He Y., Gately K., Snell C., Zhang S.-D., Hooper J.D., Richard D.J., O’Byrne K.J. Expression of CDCA3 Is a Prognostic Biomarker and Potential Therapeutic Target in Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2017;12:1071–1084. doi: 10.1016/j.jtho.2017.04.018. PubMed DOI

Zhang M.-Y., Liu X.-X., Li H., Li R., Liu X., Qu Y.-Q. Elevated mRNA Levels of AURKA, CDC20 and TPX2 are associated with poor prognosis of smoking related lung adenocarcinoma using bioinformatics analysis. Int. J. Med. Sci. 2018;15:1676–1685. doi: 10.7150/ijms.28728. PubMed DOI PMC

Chen L., Wu L.-Y., Yang W.-X. Nanoparticles induce apoptosis via mediating diverse cellular pathways. Nanomedicine. 2018;13:2939–2955. doi: 10.2217/nnm-2018-0167. PubMed DOI

Li C., Park S., Zhang X., Eisenberg L.M., Zhao H., Darzynkiewicz Z., Xu D. Nuclear Gene 33/Mig6 regulates the DNA damage response through an ATM serine/threonine kinase-dependent mechanism. J. Biol. Chem. 2017;292:16746–16759. doi: 10.1074/jbc.M117.803338. PubMed DOI PMC

Knight D. Epithelium-fibroblast interactions in response to airway inflammation. Immunol. Cell Biol. 2001;79:160–164. doi: 10.1046/j.1440-1711.2001.00988.x. PubMed DOI

Lei Y.-Y., Wang W.-J., Mei J.-H., Wang C.-L. Mitogen-Activated Protein Kinase Signal Transduction in Solid Tumors. Asian Pac. J. Cancer Prev. 2014;15:8539–8548. doi: 10.7314/APJCP.2014.15.20.8539. PubMed DOI

Eymin B., Gazzeri S. Role of cell cycle regulators in lung carcinogenesis. Cell Adh. Migr. 2010;4:114–123. doi: 10.4161/cam.4.1.10977. PubMed DOI PMC

Jin H., Kang G.-Y., Jeon S., Kim J.-M., Park Y.N., Cho J., Lee Y.-S. Identification of molecular signatures involved in radiation-induced lung fibrosis. J. Mol. Med. 2019;97:37–47. doi: 10.1007/s00109-018-1715-9. PubMed DOI PMC

Zhao H., Zhang H., Du Y., Gu X. Prognostic significance of BRCA1, ERCC1, RRM1, and RRM2 in patients with advanced non-small cell lung cancer receiving chemotherapy. Tumour Biol. 2014;35:12679–12688. doi: 10.1007/s13277-014-2592-7. PubMed DOI

Mok M.T., Zhou J., Tang W., Zeng X., Oliver A.W., Ward S.E., Cheng A.S. CCRK is a novel signalling hub exploitable in cancer immunotherapy. Pharmacol. Therapeut. 2018;186:138–151. doi: 10.1016/j.pharmthera.2018.01.008. PubMed DOI

Ko J.-W., Shin N.-R., Park J.-W., Park S.-H., Lee I.-C., Kim J.-S., Kim J.-C., Ahn K.-S., Shin I.-S. Copper oxide nanoparticles induce collagen deposition via TGF-beta 1/Smad3 signaling in human airway epithelial cells. Nanotoxicology. 2018;12:239–250. doi: 10.1080/17435390.2018.1432778. PubMed DOI

Hu J., Lin W., Lin B., Wu K., Fan H., Yu Y. Persistent DNA methylation changes in zebrafish following graphene quantum dots exposure in surface chemistry-dependent manner. Ecotoxicol. Environ. Saf. 2019;169:370–375. doi: 10.1016/j.ecoenv.2018.11.053. PubMed DOI

Rossner P., Jr., Vrbova K., Rossnerova A., Zavodna T., Milcova A., Klema J., Vecera Z., Mikuska P., Coufalik P., Capka L., et al. Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles. Nanomaterials. 2020;10:550. doi: 10.3390/nano10030550. PubMed DOI PMC

Chen J., Bardes E.E., Aronow B.J., Jegga A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–W311. doi: 10.1093/nar/gkp427. PubMed DOI PMC

Vila-Casadesus M., Gironella M., Jose Lozano J. MiRComb: An R Package to Analyse miRNA-mRNA Interactions. Examples across Five Digestive Cancers. PLoS ONE. 2016;11:e0151127. doi: 10.1371/journal.pone.0151127. PubMed DOI PMC

Maksimovic J., Phipson B., Oshlack A. A cross-package Bioconductor workflow for analysing methylation array data. F1000Research. 2016;5:1281. doi: 10.12688/f1000research.8839.2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...