Intracellular Trafficking of Cationic Carbon Dots in Cancer Cell Lines MCF-7 and HeLa-Time Lapse Microscopy, Concentration-Dependent Uptake, Viability, DNA Damage, and Cell Cycle Profile
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000754
Nano4Future
CZ.02.1.01/0.0/0.0/17_048/0007323
Development of pre-applied research in nanotechnogy and biotechnology
NU21-09-00357
The Ministry of Health of the Czech Republic - MZČR
CZ. 02. 1. 01/0.0/0.0/16_019/0000868
The work was supported also by the European Regional Development Fund - Project ENOCH
P1-0060
Slovenian Research Agency for funding
PubMed
35162996
PubMed Central
PMC8835431
DOI
10.3390/ijms23031077
PII: ijms23031077
Knihovny.cz E-zdroje
- Klíčová slova
- HeLa, MCF-7, cancer cells, cationic carbon dots, cytotoxicity, fluorescence microspectroscopy, genotoxicity, nucleus,
- MeSH
- biologický transport MeSH
- buněčné linie MeSH
- časosběrné zobrazování metody MeSH
- fibroblasty cytologie účinky léků metabolismus MeSH
- HeLa buňky MeSH
- kontrolní body fáze G2 buněčného cyklu účinky léků MeSH
- kvantové tečky chemie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- myši MeSH
- nádory farmakoterapie genetika metabolismus MeSH
- optické zobrazování MeSH
- poškození DNA MeSH
- proliferace buněk MeSH
- reaktivní formy kyslíku metabolismus MeSH
- uhlík chemie farmakokinetika farmakologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
- uhlík MeSH
Fluorescent carbon dots (CDs) are potential tools for the labeling of cells with many advantages such as photostability, multicolor emission, small size, rapid uptake, biocompatibility, and easy preparation. Affinity towards organelles can be influenced by the surface properties of CDs which affect the interaction with the cell and cytoplasmic distribution. Organelle targeting by carbon dots is promising for anticancer treatment; thus, intracellular trafficking and cytotoxicity of cationic CDs was investigated. Based on our previous study, we used quaternized carbon dots (QCDs) for treatment and monitoring the behavior of two human cancer cell MCF-7 and HeLa lines. We found similarities between human cancer cells and mouse fibroblasts in the case of QCDs uptake. Time lapse microscopy of QCDs-labeled MCF-7 cells showed that cells are dying during the first two hours, faster at lower doses than at higher ones. QCDs at a concentration of 100 µg/mL entered into the nucleus before cellular death; however, at a dose of 200 µg/mL, blebbing of the cellular membrane occurred, with a subsequent penetration of QCDs into the nuclear area. In the case of HeLa cells, the dose-depended effect did not happen; however, the labeled cells were also dying in mitosis and genotoxicity occurred nearly at all doses. Moreover, contrasted intracellular compartments, probably mitochondria, were obvious after 24 h incubation with 100 µg/mL of QCDs. The levels of reactive oxygen species (ROS) slightly increased after 24 h, depending on the concentration, thus the genotoxicity was likely evoked by the nanomaterial. A decrease in viability did not reach IC 50 as the DNA damage was probably partly repaired in the prolonged G0/G1 phase of the cell cycle. Thus, the defects in the G2/M phase may have allowed a damaged cell to enter mitosis and undergo apoptosis. The anticancer effect in both cell lines was manifested mainly through genotoxicity.
Zobrazit více v PubMed
Baker S.N., Baker G.A. Luminescent carbon nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI
Li H., Kang Z., Liu Y., Lee S.-T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012;22:24230–24253. doi: 10.1039/c2jm34690g. DOI
Song Y., Shi W., Chen W., Li X., Ma H. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J. Mater. Chem. 2012;22:12568–12573. doi: 10.1039/c2jm31582c. DOI
Ruan S., Qian J., Shen S., Zhu J., Jiang X., He Q., Gao H. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale. 2014;6:10040–10047. doi: 10.1039/C4NR02657H. PubMed DOI
Liu J.-M., Lin L.-P., Wang X.-X., Lin S.-Q., Cai W.-L., Zhang L.-H., Zheng Z.-Y. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst. 2012;137:2637–2642. doi: 10.1039/c2an35130g. PubMed DOI
Kuo T.R., Sung S.Y., Hsu C.W., Chang C.J., Chiu T.C., Hu C.C. One-pot green hydrothermal synthesis of fluorescent nitrogen-doped carbon nanodots for in vivo bioimaging. Anal. Bioanal. Chem. 2016;408:77–82. doi: 10.1007/s00216-015-9138-8. PubMed DOI
Wisniewski M., Czarnecka J., Bolibok P., Swidzinski M., Roszek K. New insight into the fluorescence quenching of nitrogen-containing carbonaceous quantum dots—From surface chemistry to biomedical applications. Materials. 2021;14:2454. doi: 10.3390/ma14092454. PubMed DOI PMC
Havrdova M., Hola K., Skopalik J., Tomankova K., Petr M., Cepe K., Polakova K., Tucek J., Bourlinos A.B., Zboril R. Toxicity of carbon dots—Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon. 2016;99:238–248. doi: 10.1016/j.carbon.2015.12.027. DOI
Zhu Z., Li Q., Li P., Xun X., Zheng L., Ning D., Su M. Surface charge controlled nucleoli selective staining with nanoscale carbon dots. PLoS ONE. 2019;14:e0216230. doi: 10.1371/journal.pone.0216230. PubMed DOI PMC
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012;7:5577–5591. doi: 10.2147/IJN.S36111. PubMed DOI PMC
Zhou L., Li Z., Liu Z., Ren J., Qu X. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging. Langmuir. 2013;29:6396–6403. doi: 10.1021/la400479n. PubMed DOI
Patra S., Roy E., Madhuri R., Sharma P.K. The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin. Biomater. Sci. 2016;4:418–429. doi: 10.1039/C5BM00433K. PubMed DOI
Fahmi M.Z., Chen J.K., Huang C.C., Ling Y.C., Chang J.Y. Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery. J. Mater. Chem. B. 2015;3:5532–5543. doi: 10.1039/C5TB00289C. PubMed DOI
Misra S.K., Ohoka A., Kolmodin N.J., Pan D. Next generation carbon nanoparticles for efficient gene therapy. Mol. Pharm. 2015;12:375–385. doi: 10.1021/mp500742y. PubMed DOI
Pierrat P., Wang R., Kereselidze D., Lux M., Didier P., Kichler A., Pons F., Lebeau L. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials. 2015;51:290–302. doi: 10.1016/j.biomaterials.2015.02.017. PubMed DOI
Wang L., Wang X., Bhirde A., Cao J., Zeng Y., Huang X., Sun Y., Liu G., Chen X. Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA. Adv. Healthc. Mater. 2014;3:1203–1209. doi: 10.1002/adhm.201300611. PubMed DOI PMC
Das S., Debnath N., Cui Y., Unrine J., Palli S.R. Chitosan, Carbon Quantum Dot, and Silica Nanoparticle Mediated dsRNA Delivery for Gene Silencing in Aedes aegypti: A Comparative Analysis. ACS Appl. Mater. Interfaces. 2015;7:19530–19535. doi: 10.1021/acsami.5b05232. PubMed DOI
Shi H., Wei J., Qiang L., Chen X., Meng X. Fluorescent carbon dots for bioimaging and biosensing applications. J. Biomed. Nanotech. 2014;10:2677–2699. doi: 10.1166/jbn.2014.1881. PubMed DOI
Yang W., Ni J. Cationic carbon dots for modification-free detection of hyaluronidase. Anal. Chem. 2017;89:8384–8390. doi: 10.1021/acs.analchem.7b01705. PubMed DOI
Feng F., Miao C. Positively charged and pH/sensitive carbon dots for fluorescence detection of copper ion. Bull. Korean Chem. Soc. 2020;42:227–234. doi: 10.1002/bkcs.12178. DOI
Fang H.Y., Huang W.M., Chen D.H. One step synthesis of positively charged bifunctional carbon dot/silver composite. Nanotechnology. 2019;30:365603. doi: 10.1088/1361-6528/ab1fef. PubMed DOI
Wang H., Lu F., Ma C., Ma Y., Zhang M., Wang B., Zhang Y., Liu Y., Huang H., Kang Z. Carbon dots with positive surface charge from teraric acid and m-aminophenol for selective killing of Gram-positive bacteria. J. Mater. Chem. B. 2021;9:125–130. doi: 10.1039/D0TB02332A. PubMed DOI
Bourlinos A.B., Zboril R., Petr J., Bakandritsos A., Krysmann M., Giannelis E.P. Luminescent surface quaternized carbon dots. Chem. Mater. 2012;24:6–8. doi: 10.1021/cm2026637. DOI
Song Y., Wang Y., Zhang N., Li X., Bai X., Li T. Quaternized carbon-based nanoparticles embedded positively charged composite membranes towards efficient removal of cationic small-sized contaminants. J. Membr. Sci. 2021;630:119332. doi: 10.1016/j.memsci.2021.119332. DOI
Hao X., Huang L., Zhao C., Chen S., Lin W., Lin Y., Zhang L., Sun A., Miao C., Lin X., et al. Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Mater. Sci. Eng. C. 2021;123:111971. doi: 10.1016/j.msec.2021.111971. PubMed DOI
Zuo G., Xie A., Pan X., Su T., Li J., Dong W. Fluorine-Doped Cationic Carbon Dots for Efficient Gene Delivery. ACS Appl. Nano Mater. 2018;1:2376–2385. doi: 10.1021/acsanm.8b00521. DOI
Guo R.B., Chen B., Li F.L., Weng S.H., Zheng Z.F., Chen M., Wu W., Lin X.H., Yang C.Y. Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sens. Actuators B Chem. 2018;264:193–201. doi: 10.1016/j.snb.2018.02.175. DOI
Yue L.J., Wei Y.Y., Fan J.B., Chen L., Li Q., Du J.L., Yu S.P., Yang Y.Z. Research progress in the use of cationic carbon dots for the integration of cancer diagnosis with gene treatment. New Carbon Mater. 2021;36:373–389. doi: 10.1016/S1872-5805(21)60025-2. DOI
Havrdova M., Urbancic I., Barton Tomankova K., Malina L., Strancar J., Bourlinos A.B. Self-targeting of carbon dots into the cell nucleus: Diverse mechanisms of toxicity in NIH/3T3 and L929 cells. Int. J. Mol. Sci. 2021;22:5608. doi: 10.3390/ijms22115608. PubMed DOI PMC
Malina T., Polakova K., Skopalik J., Milotova V., Hola K., Havrdova M., Tomankova K.B., Cmiel V., Sefc L., Zboril R. Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon. 2019;152:434–443. doi: 10.1016/j.carbon.2019.05.061. DOI
Unnikrishnan B., Wu R.S., Wei S.C., Huang C.C., Chang H., Chang H.T. Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega. 2020;5:11248–11261. doi: 10.1021/acsomega.9b04301. PubMed DOI PMC
Jung Y.K., Shin E., Kim B.-S. Cell nucleus-targeting zwitterionic carbon dots. Sci. Rep. 2015;5:18807. doi: 10.1038/srep18807. PubMed DOI PMC
Hill S.A., Sheikh S., Zhang Q., Sueiro Ballesteros L., Herman A., Davis S.A., Morgan D.J., Berry M., Benito-Alifonso D., Galan M.C. Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. Nanoscale Adv. 2019;1:2840–2846. doi: 10.1039/C9NA00293F. PubMed DOI PMC
Yang L., Jiang W., Qiu L., Jiang X., Zuo D., Wang D., Yang L. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale. 2015;7:6104–6113. doi: 10.1039/C5NR01080B. PubMed DOI
Ci J., Tian Y., Kuga S., Niu Z., Wu M., Huang Y. One-pot green synthesis of nitrogen-doped carbon quantum dots for cell nucleus labeling and copper(II) detection. Chem.—Asian J. 2017;12:2916–2921. doi: 10.1002/asia.201700880. PubMed DOI
Yuan Y., Guo B., Hao L., Liu N., Lin Y., Guo W., Li X., Gu B. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids Surf. B. 2017;159:349–359. doi: 10.1016/j.colsurfb.2017.07.030. PubMed DOI
Şimşek S., Şüküroğlu A.A., Yetkin D., Özbek B., Battal D., Genç R. DNA-damage and cell cycle arrest initiated anti-cancer potency of super tiny carbon dots on MCF7 cell line. Sci Rep. 2020;10:13880. doi: 10.1038/s41598-020-70796-3. PubMed DOI PMC
Zhang J., Zhao X., Xian M., Dong C., Shuang S. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta. 2018;183:39–47. doi: 10.1016/j.talanta.2018.02.009. PubMed DOI
Wang J., Liu S., Chang Y., Fang L., Han K., Li M. High efficient delivery of siRNA into tumor cells by positively charged carbon dots. J. Macromol. Sci. A. 2018;55:770–774. doi: 10.1080/10601325.2018.1526043. DOI
Abe J., Yamada Y., Harashima H. Validation of a Strategy for Cancer Therapy: Delivering Aminoglycoside Drugs to Mitochondria in HeLa Cells. J. Pharm. Sci. 2016;105:734–740. doi: 10.1002/jps.24686. PubMed DOI
Sima M., Vrbova K., Zavodna T., Honkova K., Chvojkova I., Ambroz A., Klema J., Rossnerova A., Polakova K., Malina T., et al. The Differential Effect of Carbon Dots on Gene Expression and DNA Methylation of Human Embryonic Lung Fibroblasts as a Function of Surface Charge and Dose. Int. J. Mol. Sci. 2020;21:4763. doi: 10.3390/ijms21134763. PubMed DOI PMC
Singh S., Singh M.K., Das P. Biosensing of solitary and clustered abasic site DNA damage lesions with copper nanoclusters and carbon dots. Sens. Actuators B Chem. 2018;255:763–774. doi: 10.1016/j.snb.2017.08.100. DOI
Wang Y., Wang S., Ge S., Wang S., Yan M., Zang D., Yu J. Facile and sensitive paper-based chemiluminescence DNA biosensor using carbon dots dotted nanoporous gold signal amplification label. Anal. Methods. 2013;5:1328–1336. doi: 10.1039/c2ay26485d. DOI
Huang Q.T., Lin X.F., Zhu J.J., Tong Q.X. Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens. Bioelectron. 2017;94:507–512. doi: 10.1016/j.bios.2017.03.048. PubMed DOI
Kudr J., Richtera L., Xhaxhiu K., Hynek D., Heger Z., Zitka O., Adam V. Carbon dots based FRET for the detection of DNA damage. Biosens. Bioelectron. 2017;92:133–139. doi: 10.1016/j.bios.2017.01.067. PubMed DOI
Zhang L.W., Monteiro-Riviere N.A. Mechanisms of Quantum Dot Nanoparticle Cellular Uptake. Toxicol. Sci. 2009;110:138–155. doi: 10.1093/toxsci/kfp087. PubMed DOI
Czarnecka J., Kwiatkowski M., Wisniewski M., Roszek K. Protein corona hinders N-CQDs oxidative potential and favors their application as nanobiocatalytic system. Int. J. Mol. Sci. 2021;22:8136. doi: 10.3390/ijms22158136. PubMed DOI PMC
Sies H., Berndt C., Jones D.J. Oxidative Stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI
Zhou Y., Sun H., Wang F., Ren J., Qu X. How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots. Chem. Commun. 2017;53:10588–10591. doi: 10.1039/C7CC04831A. PubMed DOI
Tomankova K., Horakova J., Harvanova M., Malina L., Soukupova J., Hradilova S., Kejlova K., Malohlava J., Licman L., Dvorakova M., et al. Cytotoxicity, cell uptake and microscopic analysis of titanium dioxide and silver nanoparticles in vitro. Food Chem. Toxicol. 2015;82:106–115. doi: 10.1016/j.fct.2015.03.027. PubMed DOI
Periasamy V.S., Athinarayanan J., Alfawaz M.A., Alshatwi A.A. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes. Chemosphere. 2016;144:275–284. doi: 10.1016/j.chemosphere.2015.08.018. PubMed DOI
Foster I. Cancer: A cell cycle defect. Radiography. 2008;14:144–149. doi: 10.1016/j.radi.2006.12.001. DOI
DiPaola R.S. To arrest or not to G2-M cell-cycle arrest. Clin. Cancer Res. 2002;8:3512–3519. PubMed
Essner J.B., Kist J.A., Polo-Parada L., Baker G.A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 2018;30:1878–1887. doi: 10.1021/acs.chemmater.7b04446. DOI
Krysmann M.J., Kelarakis A., Dallas P., Giannelis E.P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 2012;134:747–750. doi: 10.1021/ja204661r. PubMed DOI
Arsov Z., Urbančič I., Garvas M., Biglino D., Ljubetič A., Koklič T., Štrancar J. Fluorescence microspectroscopy as a tool to study mechanism of nanoparticles delivery into living cancer cells. Biomed. Opt. Express. 2011;2:2083–2095. doi: 10.1364/BOE.2.002083. PubMed DOI PMC
Urbančič I., Arsov Z., Ljubetič A., Biglino D., Štrancar J. Bleaching-corrected fluorescence microspectroscopy with nanometer peak position resolution. Opt. Express. 2013;21:25291–25306. doi: 10.1364/OE.21.025291. PubMed DOI
Collins A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol. 2004;26:249–261. doi: 10.1385/MB:26:3:249. PubMed DOI
Tomankova K., Kejlova K., Binder S., Daskova A., Zapletalova J., Bendova H., Kolarova H., Jirova D. In vitro cytotoxicity and phototoxicity study of cosmetics colorants. Toxicol Vitr. 2011;25:1242–1250. doi: 10.1016/j.tiv.2011.04.026. PubMed DOI
Tomankova K., Kolarova H., Bajgar R., Jirova D., Kejlova K., Mosinger J. Study of the photodyamic effect on the A549 cell line by atomic force microscopy and the influence of greeen tea extract on the production of reactive oxygen species. Ann. N. Y. Acad. Sci. 2009;1171:549–558. doi: 10.1111/j.1749-6632.2009.04730.x. PubMed DOI