Intracellular Trafficking of Cationic Carbon Dots in Cancer Cell Lines MCF-7 and HeLa-Time Lapse Microscopy, Concentration-Dependent Uptake, Viability, DNA Damage, and Cell Cycle Profile

. 2022 Jan 19 ; 23 (3) : . [epub] 20220119

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35162996

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000754 Nano4Future
CZ.02.1.01/0.0/0.0/17_048/0007323 Development of pre-applied research in nanotechnogy and biotechnology
NU21-09-00357 The Ministry of Health of the Czech Republic - MZČR
CZ. 02. 1. 01/0.0/0.0/16_019/0000868 The work was supported also by the European Regional Development Fund - Project ENOCH
P1-0060 Slovenian Research Agency for funding

Fluorescent carbon dots (CDs) are potential tools for the labeling of cells with many advantages such as photostability, multicolor emission, small size, rapid uptake, biocompatibility, and easy preparation. Affinity towards organelles can be influenced by the surface properties of CDs which affect the interaction with the cell and cytoplasmic distribution. Organelle targeting by carbon dots is promising for anticancer treatment; thus, intracellular trafficking and cytotoxicity of cationic CDs was investigated. Based on our previous study, we used quaternized carbon dots (QCDs) for treatment and monitoring the behavior of two human cancer cell MCF-7 and HeLa lines. We found similarities between human cancer cells and mouse fibroblasts in the case of QCDs uptake. Time lapse microscopy of QCDs-labeled MCF-7 cells showed that cells are dying during the first two hours, faster at lower doses than at higher ones. QCDs at a concentration of 100 µg/mL entered into the nucleus before cellular death; however, at a dose of 200 µg/mL, blebbing of the cellular membrane occurred, with a subsequent penetration of QCDs into the nuclear area. In the case of HeLa cells, the dose-depended effect did not happen; however, the labeled cells were also dying in mitosis and genotoxicity occurred nearly at all doses. Moreover, contrasted intracellular compartments, probably mitochondria, were obvious after 24 h incubation with 100 µg/mL of QCDs. The levels of reactive oxygen species (ROS) slightly increased after 24 h, depending on the concentration, thus the genotoxicity was likely evoked by the nanomaterial. A decrease in viability did not reach IC 50 as the DNA damage was probably partly repaired in the prolonged G0/G1 phase of the cell cycle. Thus, the defects in the G2/M phase may have allowed a damaged cell to enter mitosis and undergo apoptosis. The anticancer effect in both cell lines was manifested mainly through genotoxicity.

Zobrazit více v PubMed

Baker S.N., Baker G.A. Luminescent carbon nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI

Li H., Kang Z., Liu Y., Lee S.-T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012;22:24230–24253. doi: 10.1039/c2jm34690g. DOI

Song Y., Shi W., Chen W., Li X., Ma H. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J. Mater. Chem. 2012;22:12568–12573. doi: 10.1039/c2jm31582c. DOI

Ruan S., Qian J., Shen S., Zhu J., Jiang X., He Q., Gao H. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale. 2014;6:10040–10047. doi: 10.1039/C4NR02657H. PubMed DOI

Liu J.-M., Lin L.-P., Wang X.-X., Lin S.-Q., Cai W.-L., Zhang L.-H., Zheng Z.-Y. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst. 2012;137:2637–2642. doi: 10.1039/c2an35130g. PubMed DOI

Kuo T.R., Sung S.Y., Hsu C.W., Chang C.J., Chiu T.C., Hu C.C. One-pot green hydrothermal synthesis of fluorescent nitrogen-doped carbon nanodots for in vivo bioimaging. Anal. Bioanal. Chem. 2016;408:77–82. doi: 10.1007/s00216-015-9138-8. PubMed DOI

Wisniewski M., Czarnecka J., Bolibok P., Swidzinski M., Roszek K. New insight into the fluorescence quenching of nitrogen-containing carbonaceous quantum dots—From surface chemistry to biomedical applications. Materials. 2021;14:2454. doi: 10.3390/ma14092454. PubMed DOI PMC

Havrdova M., Hola K., Skopalik J., Tomankova K., Petr M., Cepe K., Polakova K., Tucek J., Bourlinos A.B., Zboril R. Toxicity of carbon dots—Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon. 2016;99:238–248. doi: 10.1016/j.carbon.2015.12.027. DOI

Zhu Z., Li Q., Li P., Xun X., Zheng L., Ning D., Su M. Surface charge controlled nucleoli selective staining with nanoscale carbon dots. PLoS ONE. 2019;14:e0216230. doi: 10.1371/journal.pone.0216230. PubMed DOI PMC

Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012;7:5577–5591. doi: 10.2147/IJN.S36111. PubMed DOI PMC

Zhou L., Li Z., Liu Z., Ren J., Qu X. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging. Langmuir. 2013;29:6396–6403. doi: 10.1021/la400479n. PubMed DOI

Patra S., Roy E., Madhuri R., Sharma P.K. The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin. Biomater. Sci. 2016;4:418–429. doi: 10.1039/C5BM00433K. PubMed DOI

Fahmi M.Z., Chen J.K., Huang C.C., Ling Y.C., Chang J.Y. Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery. J. Mater. Chem. B. 2015;3:5532–5543. doi: 10.1039/C5TB00289C. PubMed DOI

Misra S.K., Ohoka A., Kolmodin N.J., Pan D. Next generation carbon nanoparticles for efficient gene therapy. Mol. Pharm. 2015;12:375–385. doi: 10.1021/mp500742y. PubMed DOI

Pierrat P., Wang R., Kereselidze D., Lux M., Didier P., Kichler A., Pons F., Lebeau L. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials. 2015;51:290–302. doi: 10.1016/j.biomaterials.2015.02.017. PubMed DOI

Wang L., Wang X., Bhirde A., Cao J., Zeng Y., Huang X., Sun Y., Liu G., Chen X. Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA. Adv. Healthc. Mater. 2014;3:1203–1209. doi: 10.1002/adhm.201300611. PubMed DOI PMC

Das S., Debnath N., Cui Y., Unrine J., Palli S.R. Chitosan, Carbon Quantum Dot, and Silica Nanoparticle Mediated dsRNA Delivery for Gene Silencing in Aedes aegypti: A Comparative Analysis. ACS Appl. Mater. Interfaces. 2015;7:19530–19535. doi: 10.1021/acsami.5b05232. PubMed DOI

Shi H., Wei J., Qiang L., Chen X., Meng X. Fluorescent carbon dots for bioimaging and biosensing applications. J. Biomed. Nanotech. 2014;10:2677–2699. doi: 10.1166/jbn.2014.1881. PubMed DOI

Yang W., Ni J. Cationic carbon dots for modification-free detection of hyaluronidase. Anal. Chem. 2017;89:8384–8390. doi: 10.1021/acs.analchem.7b01705. PubMed DOI

Feng F., Miao C. Positively charged and pH/sensitive carbon dots for fluorescence detection of copper ion. Bull. Korean Chem. Soc. 2020;42:227–234. doi: 10.1002/bkcs.12178. DOI

Fang H.Y., Huang W.M., Chen D.H. One step synthesis of positively charged bifunctional carbon dot/silver composite. Nanotechnology. 2019;30:365603. doi: 10.1088/1361-6528/ab1fef. PubMed DOI

Wang H., Lu F., Ma C., Ma Y., Zhang M., Wang B., Zhang Y., Liu Y., Huang H., Kang Z. Carbon dots with positive surface charge from teraric acid and m-aminophenol for selective killing of Gram-positive bacteria. J. Mater. Chem. B. 2021;9:125–130. doi: 10.1039/D0TB02332A. PubMed DOI

Bourlinos A.B., Zboril R., Petr J., Bakandritsos A., Krysmann M., Giannelis E.P. Luminescent surface quaternized carbon dots. Chem. Mater. 2012;24:6–8. doi: 10.1021/cm2026637. DOI

Song Y., Wang Y., Zhang N., Li X., Bai X., Li T. Quaternized carbon-based nanoparticles embedded positively charged composite membranes towards efficient removal of cationic small-sized contaminants. J. Membr. Sci. 2021;630:119332. doi: 10.1016/j.memsci.2021.119332. DOI

Hao X., Huang L., Zhao C., Chen S., Lin W., Lin Y., Zhang L., Sun A., Miao C., Lin X., et al. Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Mater. Sci. Eng. C. 2021;123:111971. doi: 10.1016/j.msec.2021.111971. PubMed DOI

Zuo G., Xie A., Pan X., Su T., Li J., Dong W. Fluorine-Doped Cationic Carbon Dots for Efficient Gene Delivery. ACS Appl. Nano Mater. 2018;1:2376–2385. doi: 10.1021/acsanm.8b00521. DOI

Guo R.B., Chen B., Li F.L., Weng S.H., Zheng Z.F., Chen M., Wu W., Lin X.H., Yang C.Y. Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sens. Actuators B Chem. 2018;264:193–201. doi: 10.1016/j.snb.2018.02.175. DOI

Yue L.J., Wei Y.Y., Fan J.B., Chen L., Li Q., Du J.L., Yu S.P., Yang Y.Z. Research progress in the use of cationic carbon dots for the integration of cancer diagnosis with gene treatment. New Carbon Mater. 2021;36:373–389. doi: 10.1016/S1872-5805(21)60025-2. DOI

Havrdova M., Urbancic I., Barton Tomankova K., Malina L., Strancar J., Bourlinos A.B. Self-targeting of carbon dots into the cell nucleus: Diverse mechanisms of toxicity in NIH/3T3 and L929 cells. Int. J. Mol. Sci. 2021;22:5608. doi: 10.3390/ijms22115608. PubMed DOI PMC

Malina T., Polakova K., Skopalik J., Milotova V., Hola K., Havrdova M., Tomankova K.B., Cmiel V., Sefc L., Zboril R. Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon. 2019;152:434–443. doi: 10.1016/j.carbon.2019.05.061. DOI

Unnikrishnan B., Wu R.S., Wei S.C., Huang C.C., Chang H., Chang H.T. Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega. 2020;5:11248–11261. doi: 10.1021/acsomega.9b04301. PubMed DOI PMC

Jung Y.K., Shin E., Kim B.-S. Cell nucleus-targeting zwitterionic carbon dots. Sci. Rep. 2015;5:18807. doi: 10.1038/srep18807. PubMed DOI PMC

Hill S.A., Sheikh S., Zhang Q., Sueiro Ballesteros L., Herman A., Davis S.A., Morgan D.J., Berry M., Benito-Alifonso D., Galan M.C. Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. Nanoscale Adv. 2019;1:2840–2846. doi: 10.1039/C9NA00293F. PubMed DOI PMC

Yang L., Jiang W., Qiu L., Jiang X., Zuo D., Wang D., Yang L. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale. 2015;7:6104–6113. doi: 10.1039/C5NR01080B. PubMed DOI

Ci J., Tian Y., Kuga S., Niu Z., Wu M., Huang Y. One-pot green synthesis of nitrogen-doped carbon quantum dots for cell nucleus labeling and copper(II) detection. Chem.—Asian J. 2017;12:2916–2921. doi: 10.1002/asia.201700880. PubMed DOI

Yuan Y., Guo B., Hao L., Liu N., Lin Y., Guo W., Li X., Gu B. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids Surf. B. 2017;159:349–359. doi: 10.1016/j.colsurfb.2017.07.030. PubMed DOI

Şimşek S., Şüküroğlu A.A., Yetkin D., Özbek B., Battal D., Genç R. DNA-damage and cell cycle arrest initiated anti-cancer potency of super tiny carbon dots on MCF7 cell line. Sci Rep. 2020;10:13880. doi: 10.1038/s41598-020-70796-3. PubMed DOI PMC

Zhang J., Zhao X., Xian M., Dong C., Shuang S. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta. 2018;183:39–47. doi: 10.1016/j.talanta.2018.02.009. PubMed DOI

Wang J., Liu S., Chang Y., Fang L., Han K., Li M. High efficient delivery of siRNA into tumor cells by positively charged carbon dots. J. Macromol. Sci. A. 2018;55:770–774. doi: 10.1080/10601325.2018.1526043. DOI

Abe J., Yamada Y., Harashima H. Validation of a Strategy for Cancer Therapy: Delivering Aminoglycoside Drugs to Mitochondria in HeLa Cells. J. Pharm. Sci. 2016;105:734–740. doi: 10.1002/jps.24686. PubMed DOI

Sima M., Vrbova K., Zavodna T., Honkova K., Chvojkova I., Ambroz A., Klema J., Rossnerova A., Polakova K., Malina T., et al. The Differential Effect of Carbon Dots on Gene Expression and DNA Methylation of Human Embryonic Lung Fibroblasts as a Function of Surface Charge and Dose. Int. J. Mol. Sci. 2020;21:4763. doi: 10.3390/ijms21134763. PubMed DOI PMC

Singh S., Singh M.K., Das P. Biosensing of solitary and clustered abasic site DNA damage lesions with copper nanoclusters and carbon dots. Sens. Actuators B Chem. 2018;255:763–774. doi: 10.1016/j.snb.2017.08.100. DOI

Wang Y., Wang S., Ge S., Wang S., Yan M., Zang D., Yu J. Facile and sensitive paper-based chemiluminescence DNA biosensor using carbon dots dotted nanoporous gold signal amplification label. Anal. Methods. 2013;5:1328–1336. doi: 10.1039/c2ay26485d. DOI

Huang Q.T., Lin X.F., Zhu J.J., Tong Q.X. Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens. Bioelectron. 2017;94:507–512. doi: 10.1016/j.bios.2017.03.048. PubMed DOI

Kudr J., Richtera L., Xhaxhiu K., Hynek D., Heger Z., Zitka O., Adam V. Carbon dots based FRET for the detection of DNA damage. Biosens. Bioelectron. 2017;92:133–139. doi: 10.1016/j.bios.2017.01.067. PubMed DOI

Zhang L.W., Monteiro-Riviere N.A. Mechanisms of Quantum Dot Nanoparticle Cellular Uptake. Toxicol. Sci. 2009;110:138–155. doi: 10.1093/toxsci/kfp087. PubMed DOI

Czarnecka J., Kwiatkowski M., Wisniewski M., Roszek K. Protein corona hinders N-CQDs oxidative potential and favors their application as nanobiocatalytic system. Int. J. Mol. Sci. 2021;22:8136. doi: 10.3390/ijms22158136. PubMed DOI PMC

Sies H., Berndt C., Jones D.J. Oxidative Stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI

Zhou Y., Sun H., Wang F., Ren J., Qu X. How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots. Chem. Commun. 2017;53:10588–10591. doi: 10.1039/C7CC04831A. PubMed DOI

Tomankova K., Horakova J., Harvanova M., Malina L., Soukupova J., Hradilova S., Kejlova K., Malohlava J., Licman L., Dvorakova M., et al. Cytotoxicity, cell uptake and microscopic analysis of titanium dioxide and silver nanoparticles in vitro. Food Chem. Toxicol. 2015;82:106–115. doi: 10.1016/j.fct.2015.03.027. PubMed DOI

Periasamy V.S., Athinarayanan J., Alfawaz M.A., Alshatwi A.A. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes. Chemosphere. 2016;144:275–284. doi: 10.1016/j.chemosphere.2015.08.018. PubMed DOI

Foster I. Cancer: A cell cycle defect. Radiography. 2008;14:144–149. doi: 10.1016/j.radi.2006.12.001. DOI

DiPaola R.S. To arrest or not to G2-M cell-cycle arrest. Clin. Cancer Res. 2002;8:3512–3519. PubMed

Essner J.B., Kist J.A., Polo-Parada L., Baker G.A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 2018;30:1878–1887. doi: 10.1021/acs.chemmater.7b04446. DOI

Krysmann M.J., Kelarakis A., Dallas P., Giannelis E.P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 2012;134:747–750. doi: 10.1021/ja204661r. PubMed DOI

Arsov Z., Urbančič I., Garvas M., Biglino D., Ljubetič A., Koklič T., Štrancar J. Fluorescence microspectroscopy as a tool to study mechanism of nanoparticles delivery into living cancer cells. Biomed. Opt. Express. 2011;2:2083–2095. doi: 10.1364/BOE.2.002083. PubMed DOI PMC

Urbančič I., Arsov Z., Ljubetič A., Biglino D., Štrancar J. Bleaching-corrected fluorescence microspectroscopy with nanometer peak position resolution. Opt. Express. 2013;21:25291–25306. doi: 10.1364/OE.21.025291. PubMed DOI

Collins A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol. 2004;26:249–261. doi: 10.1385/MB:26:3:249. PubMed DOI

Tomankova K., Kejlova K., Binder S., Daskova A., Zapletalova J., Bendova H., Kolarova H., Jirova D. In vitro cytotoxicity and phototoxicity study of cosmetics colorants. Toxicol Vitr. 2011;25:1242–1250. doi: 10.1016/j.tiv.2011.04.026. PubMed DOI

Tomankova K., Kolarova H., Bajgar R., Jirova D., Kejlova K., Mosinger J. Study of the photodyamic effect on the A549 cell line by atomic force microscopy and the influence of greeen tea extract on the production of reactive oxygen species. Ann. N. Y. Acad. Sci. 2009;1171:549–558. doi: 10.1111/j.1749-6632.2009.04730.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...