Self-Targeting of Carbon Dots into the Cell Nucleus: Diverse Mechanisms of Toxicity in NIH/3T3 and L929 Cells

. 2021 May 25 ; 22 (11) : . [epub] 20210525

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34070594

It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.

Zobrazit více v PubMed

Liu H., Bai Y., Zhou Y., Feng C., Liu L., Fang L., Liang J., Xiao S. Blue and cyan fluorescent carbon dots: One-pot synthesis, selective cell imaging and their antiviral activity. RSC Adv. 2017;7:28016–28023. doi: 10.1039/C7RA03167J. DOI

Georgakilas V., Perman J.A., Tucek J., Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f. PubMed DOI

Lim S.Y., Shen W., Gao Z.Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E. PubMed DOI

Wang Y., Hu A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C. 2014;2:6921–6939. doi: 10.1039/C4TC00988F. DOI

Hu Y., Yang J., Jia L., Yu J.S. Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon. 2015;93:999–1007. doi: 10.1016/j.carbon.2015.06.018. DOI

Zhai Y.L., Zhu Z.J., Zhu C.Z., Ren J.T., Wang E.K., Dong S.J. Multifunctional water-soluble luminescent carbon dots for imaging and Hg2+ sensing. J. Mater. Chem. B. 2014;2:6995–6999. doi: 10.1039/C4TB01035C. PubMed DOI

Shi W., Li X.H., Ma H.M. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells. Angew. Chem. Int. Ed. 2012;51:6432–6435. doi: 10.1002/anie.201202533. PubMed DOI

Feng J., Wang W.J., Hai X., Yu Y.L., Wang J.H. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J. Mater. Chem. B. 2016;4:387–393. doi: 10.1039/C5TB01999K. PubMed DOI

Yu H., Zhao Y., Zhou C., Shang L., Peng Y., Cao Y., Wu L.Z., Tung C.H., Zhang T.R. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A. 2014;2:3344–3351. doi: 10.1039/c3ta14108j. DOI

Fernando K.A.S., Sahu S., Liu Y.M., Lewis W.K., Guliants E.A., Jafariyan A., Wang P., Bunker C.E., Sun Y.P. Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces. 2015;7:8363–8376. doi: 10.1021/acsami.5b00448. PubMed DOI

Pan J., Sheng Y., Zhang J., Wei J., Huang P., Zhang X., Feng B. Preparation of carbon quantum dots/TiO2 nanotubes composites and their visible light catalytic applications. J. Mater. Chem. A. 2014;2:18082–18086. doi: 10.1039/C4TA03528C. DOI

Zhang X., Zhang Y., Wang Y., Kalytchuk S., Kershaw S., Wang Y., Wang P., Zhang T., Zhao Y., Zhang H., et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano. 2013;7:11234–11241. doi: 10.1021/nn405017q. PubMed DOI

Batmunkh M., Shearer C.J., Biggs M.J., Shapter J.G. Nanocarbons for mesoscopic perovskite solar cells. J. Mater. Chem. A. 2015;3:9020–9031. doi: 10.1039/C5TA00873E. DOI

Wei Z., Yan K., Chen H., Yi Y., Zhang T., Long X., Li J., Zhang L., Wang J., Yang S. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ. Sci. 2014;7:3326–3333. doi: 10.1039/C4EE01983K. DOI

Cai Q.Y., Li J., Ge J., Zhang L., Hu Y.L., Li Z.H., Qu L.B. A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosens. Bioelectron. 2015;72:31–36. doi: 10.1016/j.bios.2015.04.077. PubMed DOI

Pandey S., Thakur M., Mewada A., Anjarlekar D., Mishra N., Sharon M. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: Tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J. Mater. Chem. B. 2013;1:4972–4982. doi: 10.1039/c3tb20761g. PubMed DOI

Huang P., Lin J., Wang X., Wang Z., Zhang C., He M., Wang K., Chen F., Li Z., Shen G., et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012;24:5104–5110. doi: 10.1002/adma.201200650. PubMed DOI PMC

Mewada A., Pandey S., Thakur M., Jadhav D., Sharon M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J. Mater. Chem. B. 2014;2:698–705. doi: 10.1039/C3TB21436B. PubMed DOI

Kim J., Park J., Kim H., Singha K., Kim W.J. Transfection and intracellular properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials. 2013;34:7168–7180. doi: 10.1016/j.biomaterials.2013.05.072. PubMed DOI

Liu C.J., Zhang P., Zhai X.Y., Tian F., Li W.C., Yang J.H., Liu Y., Wang H.B., Wang W., Liu W.G. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012;33:3604–3613. doi: 10.1016/j.biomaterials.2012.01.052. PubMed DOI

Shao D., Lu M., Xu D., Zheng X., Pan Y., Song Y., Xu J., Li M., Zhang M., Li J., et al. Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomater. Sci. 2017;5:1820. doi: 10.1039/C7BM00358G. PubMed DOI

Pasinszki T., Krebsz M., Tung T.T., Losic D. Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors. 2017;17:1919. doi: 10.3390/s17081919. PubMed DOI PMC

Guerrero E.D., Lopez-Velazquez A.M., Ahlawat J., Narayan M. Carbon Quantum Dots for Treatment of Amyloid Disorders. ACS Appl. Nano Mater. 2021;4:2423–2433. doi: 10.1021/acsanm.0c02792. PubMed DOI PMC

Pirsaheba M., Mohammadi S., Salimi A. Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. TrAC Trends Anal. Chem. 2019;115:83–99. doi: 10.1016/j.trac.2019.04.003. DOI

Ghosh S., Ghosal K., Mohammad S.A., Sarkar K. Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy. Chem. Eng. J. 2019;373:468–484. doi: 10.1016/j.cej.2019.05.023. DOI

Mohammadi S., Salimi A., Hamd-Ghadareh S., Fathi F., Soleimani F. A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Anal. Biochem. 2018;557:18–26. doi: 10.1016/j.ab.2018.06.008. PubMed DOI

Ehtesabi H., Amirfazli M., Massah F., Bagheri Z. Application of functionalized carbon dots in detection, diagnostic, disease treatment, and desalination: A review. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020;11:025017. doi: 10.1088/2043-6254/ab9191. DOI

Sun Y.P., Zhou B., Lin Y., Wang W., Fernando K.A.S., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H.F., et al. Quantum-sized carbon dot for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006;128:7756–7757. doi: 10.1021/ja062677d. PubMed DOI

Hu Y.P., Yang J., Tian J.W., Jia L., Yu J.S. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon. 2014;77:775–782. doi: 10.1016/j.carbon.2014.05.081. DOI

Bao L., Zhang Z.L., Tian Z.Q., Zhang L., Liu C., Lin Y., Qi B.P., Pang D.W. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Adv. Mater. 2011;23:5801–5806. doi: 10.1002/adma.201102866. PubMed DOI

Algarra M., Perez-Martin M., Cifuentes-Rueda M., Jimenez-Jimenez J., Esteves da Silva J.C.G., Bandosz T.J., Rodriguez-Castellon E., Lopez Navarrete J.T., Casado J. Carbon dots obtained using hydrothermal treatment of formaldehyde. Cell imaging in vitro. Nanoscale. 2014;6:9071–9077. doi: 10.1039/C4NR01585A. PubMed DOI

Chen J., Li Y., Lv K., Zhong W., Wang H., Wu Z., Yi P., Jiang J. Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sens. Actuators B Chem. 2016;224:298–306. doi: 10.1016/j.snb.2015.10.046. DOI

Yang X., Zhuo Y., Zhu S., Luo Y., Feng Y., Dou Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens. Bioelectron. 2014;60:292–298. doi: 10.1016/j.bios.2014.04.046. PubMed DOI

Wang L., Zhou H.S. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal. Chem. 2014;86:8902–8905. doi: 10.1021/ac502646x. PubMed DOI

Zhao S., Lan M., Zhu X., Xue H., Ng T.W., Meng X., Lee C.S., Wang P., Zhang W. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl. Mater. Interfaces. 2015;7:17054–17060. doi: 10.1021/acsami.5b03228. PubMed DOI

Sahu S., Behera B., Maiti T.K., Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 2012;48:8835–8837. doi: 10.1039/c2cc33796g. PubMed DOI

Xue M., Zhan Z., Zou M., Zhang L., Zhao S. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New J. Chem. 2016;40:1698–1703. doi: 10.1039/C5NJ02181B. DOI

Yang L., Jiang W., Qiu L., Jiang X., Zuo D., Wang D., Yang L. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale. 2015;7:6104–6113. doi: 10.1039/C5NR01080B. PubMed DOI

Kang Y.F., Fang Y.W., Li Y.H., Li W., Yin X.B. Nucleus-staining with biomolecule-mimicking nitrogen-doped carbon dots prepared by a fast neutralization heat strategy. Chem. Commun. 2015;51:16956–16959. doi: 10.1039/C5CC06304C. PubMed DOI

Datta K.K.R., Kozak O., Ranc V., Havrdova M., Bourlinos A.B., Safarova K., Hola K., Tomankova K., Zoppellaro G., Otyepka M., et al. Quaternized carbon dot-modified graphene oxide for selective cell labelling–controlled nucleus and cytoplasm imaging. Chem. Commun. 2014;50:10782–10785. doi: 10.1039/C4CC02637C. PubMed DOI

Kim S., Choi Y., Park G., Won C., Park Y.J., Lee Y., Kim B.S., Min D.H. Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res. 2017;10:503–519. doi: 10.1007/s12274-016-1309-1. DOI

Zhang M., Zhao X., Fang Z., Niu Y., Lou J., Wu Y., Zou S., Xia S., Sun M., Du F. Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv. 2017;7:3369–3375. doi: 10.1039/C6RA26048A. DOI

Gao G., Jiang Y.W., Yang J.J., Wu F.G. Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale. 2017;9:18368–18378. doi: 10.1039/C7NR06764J. PubMed DOI

Hua X.W., Bao Y.W., Chen Z., Wu F.G. Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale. 2017;9:10948–10960. doi: 10.1039/C7NR03658B. PubMed DOI

Yuan M.K., Guo Y.J., Wei J.J., Li J.Z., Long T.F., Liu Z.D. Optically active blue-emitting carbon dots to specifically target the Golgi apparatus. RSC Adv. 2017;7:49931–49936. doi: 10.1039/C7RA09271G. DOI

Li R.S., Gao P.F., Zhang H.Z., Zheng L.L., Li C.M., Wang J., Li Y.F., Liu F., Li N., Huang C.Z. Chiral nanoprobes for targeting and long-term imaging of the Golgi apparatus. Chem. Sci. 2017;8:6829–6835. doi: 10.1039/C7SC01316G. PubMed DOI PMC

Wu L., Li X., Ling Y., Huang C., Jia N. Morpholine derivate-functionalized carbon dots-based fluorescent probe for highly selective lysosomal imaging in living cells. ACS Appl. Mater. Interfaces. 2017;9:28222–28232. doi: 10.1021/acsami.7b08148. PubMed DOI

Raices M.A., D’Angelo M. Nuclear pore complex composition: A new regulator of tissue-specific and developmental functions. Mol. Cell Biol. 2012;13:687–699. doi: 10.1038/nrm3461. PubMed DOI

Patel S.S., Belmont J.B., Sante J.M., Rexach M.F. Natively unfolded nucloporins gate protein diffusion across the nuclear pore complex. Cell. 2007;129:83–86. doi: 10.1016/j.cell.2007.01.044. PubMed DOI

Schmidt H.B., Görlich D. Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem. Sci. 2016;41:46–61. doi: 10.1016/j.tibs.2015.11.001. PubMed DOI

Samudram A., Mangalassery B.M., Kowshik M., Patincharath N., Varier G.K. Passive permeability and effective pore size of HeLa cell nuclear membranes. Cell Biol. Int. 2016;40:991–998. doi: 10.1002/cbin.10640. PubMed DOI

Ori A., Banterle N., Iskar M., Andrés-Pons A., Escher C., Bui H.K., Sparks L., Solis-Meyarino V., Rinner O., Bork P., et al. Cell type-specific nuclear pores: A case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 2013;9:648. doi: 10.1038/msb.2013.4. PubMed DOI PMC

Fahrenkrog B., Aebi U. The nuclear pore complex: Nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 2003;4:757–766. doi: 10.1038/nrm1230. PubMed DOI

Stoffler D., Feja B., Fahrenkrog B., Walz J., Typke D., Aebi U. Cryo-electron tomography provides novel insights into nuclear pore architecture—Implications for nucleocytoplasmic transport. J. Mol. Biol. 2003;328:119–130. doi: 10.1016/S0022-2836(03)00266-3. PubMed DOI

Stoffler D., Fahrenkrog B., Aebi U. The nuclear pore complex: From molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 1999;11:391–401. doi: 10.1016/S0955-0674(99)80055-6. PubMed DOI

Hinshaw J.E., Carragher B.O., Milligan R.A. Architecture and design of the nuclear pore complex. Cell. 1992;69:1133–1141. doi: 10.1016/0092-8674(92)90635-P. PubMed DOI

Akey C.W., Radermacher M. Architecture of the Xenopus nuclear pore complex revealed by 3-dimensional cryo-electron microscopy. J. Cell Biol. 1993;122:1–19. doi: 10.1083/jcb.122.1.1. PubMed DOI PMC

Wang R., Brattain M.G. The maximal size of protein to diffuse through the nuclear pore is larger than 60 kDa. FEBS Lett. 2007;581:3164–3170. doi: 10.1016/j.febslet.2007.05.082. PubMed DOI PMC

Barua S., Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today. 2014;9:223–243. doi: 10.1016/j.nantod.2014.04.008. PubMed DOI PMC

Tkachenko A.G., Xie H., Liu Y., Coleman D., Ryan J., Glomm W.R., Shipton M.K., Franzen S., Feldheim D.L. Cellular trajectories of peptide-modified gold particle complex: Comparison of nuclear localization signals and peptide transduction domains. Bioconjug. Chem. 2004;15:482–490. doi: 10.1021/bc034189q. PubMed DOI

Havrdova M., Hola K., Skopalik J., Tomankova K., Petr M., Cepe K., Polakova K., Tucek J., Bourlinous A.B., Zboril R. Toxicity of carbon dots—Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon. 2016;99:238–248. doi: 10.1016/j.carbon.2015.12.027. DOI

Moghimi S., Symonds P., Murray J., Hunter A., Debska G., Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol. Ther. 2005;11:990–995. doi: 10.1016/j.ymthe.2005.02.010. PubMed DOI

Iida T., Mori T., Katayama Y., Niidome T. Overall interaction of cytosolic proteins with the PEI/DNA complex. J. Control Release. 2007;18:364–369. doi: 10.1016/j.jconrel.2006.12.027. PubMed DOI

Sahinturk V., Kacar S., Vejselova D., Kutlu H.M. Acrylamide exerts its cytotoxicity in NIH/3T3 fibroblast cells by apoptosis. Toxicol. Ind. Health. 2018;34:481–489. doi: 10.1177/0748233718769806. PubMed DOI

Cannella V., Altomare R., Chiaramonte G., Di Bella S., Mira F., Russotto L., Pisano P., Guercio A. Cytotoxicity Evaluation of Endodontic Pins on L929 Cell Line. BioMed Res. Int. 2019:3469525. doi: 10.1155/2019/3469525. PubMed DOI PMC

Ozdemir K.G., Yilmaz H., Yilmaz S. In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. J. Biomed. Mater. Res. B Appl. Biomater. 2009;90:82–86. doi: 10.1002/jbm.b.31256. PubMed DOI

Scita G., Paolo D.F.P. The endocytic matrix. Nature. 2010;28:464–473. doi: 10.1038/nature08910. PubMed DOI

Randow F., MacMicking J.D., James L.C. Cellular self-defense: How cell-autonomous immunity protects against pathogens. Science. 2013;340:701–706. doi: 10.1126/science.1233028. PubMed DOI PMC

Yang H., Liu Y., Guo Z., Lei B., Zhuang J., Zhang X., Liu Z., Hu C. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019;10:1789. doi: 10.1038/s41467-019-09830-6. PubMed DOI PMC

Arsov Z., Urbančič I., Štrancar J. Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018;190:486–493. doi: 10.1016/j.saa.2017.09.067. PubMed DOI

Zhou N., Zhu S., Maharjan S., Hao Z., Song Y., Zhao X., Jiang Y., Yang B., Lu L. Elucidating the endocytosis, intracellular trafficking, and exocytosis of carbon dots in neural cells. RSC Adv. 2014;4:62086–62095. doi: 10.1039/C4RA09525A. DOI

Francia V., Reker-Smit C., Boel G., Slavati A. Limits and challenges in using transport inhibitors to characterize how nano-sized drug carriers enter cells. Nanomedicine. 2019;14:1533–1549. doi: 10.2217/nnm-2018-0446. PubMed DOI

Ferreira P.A.A., Boucrot E. Mechanisms of carrier formation during clathrin-independent endocytosis. Trends Cell Biol. 2018;28:188–200. doi: 10.1016/j.tcb.2017.11.004. PubMed DOI

Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004;377:159–169. doi: 10.1042/bj20031253. PubMed DOI PMC

Vercauteren D., Vandenbroucke R.E., Jones A.T., Rejman J., Demeester J., De Smedt S.C., Sanders N.N., Braeckmans K. The use of inhibitors to study endocytic pathways of gene carriers: Optimization and pitfalls. Mol. Ther. 2010;18:561–569. doi: 10.1038/mt.2009.281. PubMed DOI PMC

Wang L.H., Rothberg K.G., Anderson R.G. Mis-assemblz of clatrin lattice on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 1993;123:1107–1117. doi: 10.1083/jcb.123.5.1107. PubMed DOI PMC

Chen F., Zhu L., Zhang Y., Kumar D., Cao G., Hu X., Liang Z., Kuang S., Xue R., Gong C. Clathrin-mediated endocytosis is a candidate entry sorting mechanism for Bombyx mori cypovirus. Sci. Rep. 2018;8:7268. doi: 10.1038/s41598-018-25677-1. PubMed DOI PMC

Subtil A., Dautry-Varsat A. Microtubule depolymerization inhibits clatrin coated-pit internalization in non-adherent cell lines while interleukin 2 endocytosis is not affected. J. Cell Sci. 1997;110:2441–2447. doi: 10.1242/jcs.110.19.2441. PubMed DOI

Mundz D.I., Machleidt T., Ying Y.S., Anderson R.G., Bloom G.S. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J. Cell Sci. 2002;115:4327–4339. doi: 10.1242/jcs.00117. PubMed DOI

Caviston J.P., Holzbaur E.L. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 2006;16:530–537. doi: 10.1016/j.tcb.2006.08.002. PubMed DOI

Jordan M.A., Thrower D., Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J. Cell Sci. 1992;102:401–416. doi: 10.1242/jcs.102.3.401. PubMed DOI

Dos Santos T., Varela J., Lynch I., Salvati A., Dawson K.A. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS ONE. 2011;6:e24438. doi: 10.1371/journal.pone.0024438. PubMed DOI PMC

Rémy-Kristensen A., Clamme J.P., Vuilleumier C., Kuhry J.G., Mély Y. Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim. Biophys. Acta Biomembr. 2001;1514:21–32. doi: 10.1016/S0005-2736(01)00359-5. PubMed DOI

Chithrani Devika B., Chan C.W.W. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano Lett. 2007;7:1542–1550. doi: 10.1021/nl070363y. PubMed DOI

Foster I. Cancer: A cell cycle defect. Radiography. 2008;14:144–149. doi: 10.1016/j.radi.2006.12.001. DOI

Bourlinos A.B., Zboril R., Petr J., Bakandritsos A., Krysmann M., Giannelis E.P. Luminescent surface quaternized carbon dots. Chem. Mater. 2012;24:6–8. doi: 10.1021/cm2026637. DOI

Malina T., Polakova K., Skopalik J., Milotova V., Hola K., Havrdova M., Tomankova K.B., Cmiel V., Sefc L., Zboril R. Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon. 2019;152:434–443. doi: 10.1016/j.carbon.2019.05.061. DOI

Krysmann M.J., Kelarakis A., Dallas P., Giannelis E.P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 2012;134:747–750. doi: 10.1021/ja204661r. PubMed DOI

Essner J.B., Kist J.A., Polo-Parada L., Baker G.A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 2018;30:1878–1887. doi: 10.1021/acs.chemmater.7b04446. DOI

Arsov Z., Urbančič I., Garvas M., Biglino D., Ljubetič A., Koklič T., Štrancar J. Fluorescence microspectroscopy as a tool to study mechanism of nanoparticles delivery into living cancer cells. Biomed. Opt. Express. 2011;2:2083–2095. doi: 10.1364/BOE.2.002083. PubMed DOI PMC

Urbančič I., Arsov Z., Ljubetič A., Biglino D., Štrancar J. Bleaching-corrected fluorescence microspectroscopy with nanometer peak position resolution. Opt. Express. 2013;21:25291–25306. doi: 10.1364/OE.21.025291. PubMed DOI

Wang Y., Kalytchuk S., Zhang Y., Shi H., Kershaw S.V., Rogach A.L. Thickness dependent full-color emission tunability in a flexible carbon dot ionogel. J. Phys. Chem. Lett. 2014;5:1412–1420. doi: 10.1021/jz5005335. PubMed DOI

Pan L., Sun S., Zhang A., Jiang K., Zhang L., Dong C., Huang Q., Wu A., Lin H. Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor. Cellular Imaging and Multidimensional Sensing. Adv. Mater. 2015;27:7782–7787. doi: 10.1002/adma.201503821. PubMed DOI

Collins A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol. 2004;26:249–261. doi: 10.1385/MB:26:3:249. PubMed DOI

Tomankova K., Kejlova K., Binder S., Daskova A., Zapletalová J., Bendová H., Kolarova H., Jirova D. In vitro cytotoxicity and phototoxicity study of cosmetics colorants. Toxicol. In Vitro. 2011;25:1242–1250. doi: 10.1016/j.tiv.2011.04.026. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...