Testing Strategies of the In Vitro Micronucleus Assay for the Genotoxicity Assessment of Nanomaterials in BEAS-2B Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-17720S
Grantová Agentura České Republiky
LM2018129, LM2018133, LM2018124
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34443765
PubMed Central
PMC8399994
DOI
10.3390/nano11081929
PII: nano11081929
Knihovny.cz E-zdroje
- Klíčová slova
- DLS, cell line, genotoxicity, micronucleus assay, nanomaterials,
- Publikační typ
- časopisecké články MeSH
The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.
Zobrazit více v PubMed
Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial (2011/696/EU) Off. J. Eur. Union. 2011;L275:38–40.
Gupta R., Xie H. Nanoparticles in Daily Life: Applications, Toxicity and Regulations. J. Environ. Pathol. Toxicol. Oncol. 2018;37:209–230. doi: 10.1615/JEnvironPatholToxicolOncol.2018026009. PubMed DOI PMC
Lewinski N., Colvin V., Drezek R. Cytotoxicity of Nanopartides. Small. 2008;4:26–49. doi: 10.1002/smll.200700595. PubMed DOI
Singh N., Manshian B., Jenkins G.J.S., Griffiths S.M., Williams P.M., Maffeis T.G.G., Wright C.J., Doak S.H. NanoGenotoxicology: The DNA Damaging Potential of Engineered Nanomaterials. Biomaterials. 2009;30:3891–3914. doi: 10.1016/j.biomaterials.2009.04.009. PubMed DOI
Lozano-Fernández T., Ballester-Antxordoki L., Pérez-Temprano N., Rojas E., Sanz D., Iglesias-Gaspar M., Moya S., González-Fernández Á., Rey M. Potential Impact of Metal Oxide Nanoparticles on the Immune System: The Role of Integrins, L-Selectin and the Chemokine Receptor CXCR4. Nanomed. Nanotechnol. Biol. Med. 2014;10:1301–1310. doi: 10.1016/j.nano.2014.03.007. PubMed DOI
Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials. 2015;5:1163–1180. doi: 10.3390/nano5031163. PubMed DOI PMC
Pelclova D., Zdimal V., Kacer P., Vlckova S., Fenclova Z., Navratil T., Komarc M., Schwarz J., Zikova N., Makes O., et al. Markers of Nucleic Acids and Proteins Oxidation among Office Workers Exposed to Air Pollutants Including (Nano)TiO2 Particles. Neuroendocrinol. Lett. 2016;37:13–16. PubMed
Sima M., Vrbova K., Zavodna T., Honkova K., Chvojkova I., Ambroz A., Klema J., Rossnerova A., Polakova K., Malina T., et al. The Differential Effect of Carbon Dots on Gene Expression and Dna Methylation of Human Embryonic Lung Fibroblasts as a Function of Surface Charge and Dose. Int. J. Mol. Sci. 2020;21:4763. doi: 10.3390/ijms21134763. PubMed DOI PMC
Pelclova D., Zdimal V., Fenclova Z., Vlckova S., Turci F., Corazzari I., Kacer P., Schwarz J., Zikova N., Makes O., et al. Markers of Oxidative Damage of Nucleic Acids and Proteins among Workers Exposed to TiO2(Nano) Particles. Occup. Environ. Med. 2016;73:110–118. doi: 10.1136/oemed-2015-103161. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Syslova K., Navratil T., Schwarz J., Zikova N., Barosova H., et al. Oxidative Stress Markers Are Elevated in Exhaled Breath Condensate of Workers Exposed to Nanoparticles during Iron Oxide Pigment Production. J. Breath Res. 2016;10:016004. doi: 10.1088/1752-7155/10/1/016004. PubMed DOI
Fatkhutdinova L.M., Khaliullin T.O., Vasil’yeva O.L., Zalyalov R.R., Mustafin I.G., Kisin E.R., Birch M.E., Yanamala N., Shvedova A.A. Fibrosis Biomarkers in Workers Exposed to MWCNTs. Toxicol. Appl. Pharmacol. 2016;299:125–131. doi: 10.1016/j.taap.2016.02.016. PubMed DOI PMC
Rossnerova A., Honkova K., Pelclova D., Zdimal V., Hubacek J.A., Chvojkova I., Vrbova K., Rossner P., Topinka J., Vlckova S., et al. DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles. Int. J. Mol. Sci. 2020;21:2420. doi: 10.3390/ijms21072420. PubMed DOI PMC
Novotna B., Pelclova D., Rossnerova A., Zdimal V., Ondracek J., Lischkova L., Vlckova S., Fenclova Z., Klusackova P., Zavodna T., et al. The Genotoxic Effects in the Leukocytes of Workers Handling Nanocomposite Materials. Mutagenesis. 2020;35:331–340. doi: 10.1093/mutage/geaa016. PubMed DOI
Fenech M., Morley A.A. Measurement of Micronuclei in Lymphocytes. Mutat. Res. Mutagen. Relat. Subj. 1985;147:29–36. doi: 10.1016/0165-1161(85)90015-9. PubMed DOI
Nersesyan A., Fenech M., Bolognesi C., Mišík M., Setayesh T., Wultsch G., Bonassi S., Thomas P., Knasmüller S. Use of the Lymphocyte Cytokinesis-Block Micronucleus Assay in Occupational Biomonitoring of Genome Damage Caused by in Vivo Exposure to Chemical Genotoxins: Past, Present and Future. Mutat. Res. Rev. Mutat. Res. 2016;770:1–11. doi: 10.1016/j.mrrev.2016.05.003. PubMed DOI
Gonzalez L., Kirsch-Volders M. Reprint of “Biomonitoring of Genotoxic Effects for Human Exposure to Nanomaterials: The Challenge Ahead". Mutat. Res. Rev. Mutat. Res. 2016;770:204–216. doi: 10.1016/j.mrrev.2016.11.001. PubMed DOI
Rossnerova A., Pelclova D., Zdimal V., Rossner P., Elzeinova F., Vrbova K., Topinka J., Schwarz J., Ondracek J., Kostejn M., et al. The Repeated Cytogenetic Analysis of Subjects Occupationally Exposed to Nanoparticles: A Pilot Study. Mutagenesis. 2019;34:253–263. doi: 10.1093/mutage/gez016. PubMed DOI
Rössnerová A., Pelclová D., Ždímal V., Elzeinová F., Margaryan H., Chvojková I., Topinka J., Schwarz J., Ondráček J., Koštejn M., et al. Males-Females Differences in the Spectrum of Chromosomal Aberrations in the Group of Nanocomposites Production Workers; Proceedings of the NANOCON Conference Proceedings–International Conference on Nanomaterials; Brno, Czech Republic. 16–18 October 2019; pp. 502–507. DOI
Kazimirova A., Baranokova M., Staruchova M., Drlickova M., Volkovova K., Dusinska M. Titanium Dioxide Nanoparticles Tested for Genotoxicity with the Comet and Micronucleus Assays in Vitro, Ex Vivo and in Vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019;843:57–65. doi: 10.1016/j.mrgentox.2019.05.001. PubMed DOI
Doak S.H., Griffiths S.M., Manshian B., Singh N., Williams P.M., Brown A.P., Jenkins G.J.S. Confounding Experimental Considerations in Nanogenotoxicology. Mutagenesis. 2009;24:285–293. doi: 10.1093/mutage/gep010. PubMed DOI
Gonzalez L., Sanderson B.J.S., Kirsch-Volders M. Adaptations of the in Vitro MN Assay for the Genotoxicity Assessment of Nanomaterials. Mutagenesis. 2011;26:185–191. doi: 10.1093/mutage/geq088. PubMed DOI
Chou L.Y.T., Ming K., Chan W.C.W. Strategies for the Intracellular Delivery of Nanoparticles. Chem. Soc. Rev. 2011;40:233–245. doi: 10.1039/C0CS00003E. PubMed DOI
Rasmussen K., Mast J., De Temmerman P.-J., Verleysen E., Waegeneers N., Van Steen F., Pizzolon J.C., De Temmerman L., Van Doren E., Jensen K.A., et al. Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico- Chemical Properties. Science and Policy Report by the Joint Research Centre of the European Commission; Luxembourg: 2014. DOI
Rasmussen K., Mech A., Mast J., de Temmerman P.-J., Waegeneers N., Van Steen F., Pizzolon J.C., de Temmerman L., van Doren E., Jensen A., et al. Synthetic Amorphous Silicon Dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): Characterisation and Physico-Chemical Properties. Science and Policy Report by the Joint Research Centre of the European Commission; Luxembourg: 2013. DOI
Klein C.L., Comero S., Stahlmecke B., Romazanov J., Kuhlbusch T.A.J., Van Doren E., Mast P.-J.D.T.J., Wick P., Krug H., Locoro G., et al. NM-Series of Representative Manufactured Nanomaterials, NM-300 Silver Characterisation, Stability, Homogeneity. Science and Policy Report by the Joint Research Centre of the European Commission; Luxembourg: 2011. DOI
Robinson K., Tantra R., Fry T., Sarantaridis D., Gohli D., Allen C., Quincy P., Minelli C. Global NanoMappp Report: Physico-Chemical Properties of NM 302 Nano-Silver Reference Material. National Physical Laboratory; Teddington, UK: 2014. DOI
Jensen K.A., Kembouche Y., Christiansen E., Jacobsen N.R., Wallin H., Guiot C., Spalla O., Witschger O., Jakobsen N.R., Eallin H., et al. NANOGENOTOX Dispersion Protocol–Standard Operation Procedure (SOP) The National Research Centre for the Working Environment; Copenhagen, Denmark: 2011.
Reddel R.R., Ke Y., Gerwin B.I., McMenamin M.G., Lechner J.F., Su R.T., Brash D.E., Park J.B., Rhim J.S., Harris C.C. Transformation of Human Bronchial Epithelial Cells by Infection with SV40 or Adenovirus-12 SV40 Hybrid Virus, or Transfection via Strontium Phosphate Coprecipitation with a Plasmid Containing SV40 Early Region Genes. Cancer Res. 1988;48:1904–1909. PubMed
OECD . In: OECD Guideline for Testing of Chemicals No. 487. Intergovernmental Panel on Climate Change, editor. Cambridge University Press; Cambridge, UK: 2016. DOI
Fenech M. Cytokinesis-Block Micronucleus Cytome Assay. Nat. Protoc. 2007;2:1084–1104. doi: 10.1038/nprot.2007.77. PubMed DOI
Brzicova T., Sikorova J., Milcova A., Vrbova K., Klema J., Pikal P., Lubovska Z., Philimonenko V., Franco F., Topinka J., et al. Nano-TiO2 Stability in Medium and Size as Important Factors of Toxicity in Macrophage-like Cells. Toxicol. Vitr. 2019;54:178–188. doi: 10.1016/j.tiv.2018.09.019. PubMed DOI
Cervena T., Rossnerova A., Sikorova J., Beranek V., Vojtisek-Lom M., Ciganek M., Topinka J., Rossner P. DNA Damage Potential of Engine Emissions Measured In Vitro by Micronucleus Test in Human Bronchial Epithelial Cells. Basic Clin. Pharmacol. Toxicol. 2016:1–7. doi: 10.1111/bcpt.12693. PubMed DOI
Kirsch-Volders M., Sofuni T., Aardema M., Albertini S., Eastmond D., Fenech M., Ishidate M., Kirchner S., Lorge E., Morita T., et al. Report from the in Vitro Micronucleus Assay Working Group. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2003;540:153–163. doi: 10.1016/j.mrgentox.2003.07.005. PubMed DOI
Dynamic Light Scattering: Common Terms Define. MALVERN PANALYTICAL. Malvern Instruments; Malvern, UK: 2011.
Agrawal Y., Patel V. Nanosuspension: An Approach to Enhance Solubility of Drugs. J. Adv. Pharm. Technol. Res. 2011;2:81–87. doi: 10.4103/2231-4040.82950. PubMed DOI PMC
Bhattacharjee S. DLS and Zeta Potential–What They Are and What They Are Not? J. Control. Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI
Ling C., An H., Li L., Wang J., Lu T., Wang H., Hu Y., Song G., Liu S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vitro: A Systematic Review of the Literature and Meta-Analysis. Biol. Trace Elem. Res. 2021 doi: 10.1007/s12011-020-02311-8. PubMed DOI
Rodriguez-Garraus A., Azqueta A., Vettorazzi A., de Cerain A.L. Genotoxicity of Silver Nanoparticles. Nanomaterials. 2020;10:251. doi: 10.3390/nano10020251. PubMed DOI PMC
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC Monogr. Eval. Carcinog. Risks Hum. 2010;93:9–38. doi: 10.1136/jcp.48.7.691-a. DOI
Xu Y., Wei M.T., Ou-Yang H.D., Walker S.G., Wang H.Z., Gordon C.R., Guterman S., Zawacki E., Applebaum E., Brink P.R., et al. Exposure to TiO2 Nanoparticles Increases Staphylococcus Aureus Infection of HeLa Cells. J. Nanobiotechnol. 2016;14:29–31. doi: 10.1186/s12951-016-0184-y. PubMed DOI PMC
Gurr J.R., Wang A.S.S., Chen C.H., Jan K.Y. Ultrafine Titanium Dioxide Particles in the Absence of Photoactivation Can Induce Oxidative Damage to Human Bronchial Epithelial Cells. Toxicology. 2005;213:66–73. doi: 10.1016/j.tox.2005.05.007. PubMed DOI
Kang S.J., Kim B.M., Lee Y.J., Chung H.W. Titanium Dioxide Nanoparticles Trigger P53-Mediated Damage Response in Peripheral Blood Lymphocytes. Environ. Mol. Mutagen. 2008;49:399–405. doi: 10.1002/em.20399. PubMed DOI
Shi Y., Zhang J.-H., Jiang M., Zhu L.-H., Tan H.-Q., Lu B. Synergistic Genotoxicity Caused by Low Concentration of Titanium Dioxide Nanoparticles and p,p ′-DDT in Human Hepatocytes. Environ. Mol. Mutagen. 2009;405:192–204. doi: 10.1002/em.20527. PubMed DOI
Demir E., Akça H., Turna F., Aksakal S., Burgucu D., Kaya B., Tokgün O., Vales G., Creus A., Marcos R. Genotoxic and Cell-Transforming Effects of Titanium Dioxide Nanoparticles. Environ. Res. 2015;136:300–308. doi: 10.1016/j.envres.2014.10.032. PubMed DOI
Wang J.J., Sanderson B.J.S., Wang H. Cytotoxicity and Genotoxicity of Ultrafine Crystalline SiO2 Particulate in Cultured Human Lymphoblastoid Cells. Environ. Mol. Mutagen. 2007;48:151–157. doi: 10.1002/em.20287. PubMed DOI
Gonzalez L., Thomassen L.C.J., Plas G., Rabolli V., Napierska D., Decordier I., Roelants M., Hoet P.H., Kirschhock C.E.A., Martens J.A., et al. Exploring the Aneugenic and Clastogenic Potential in the Nanosize Range: A549 Human Lung Carcinoma Cells and Amorphous Monodisperse Silica Nanoparticles as Models. Nanotoxicology. 2010;4:382–395. doi: 10.3109/17435390.2010.501913. PubMed DOI
AshaRani P.V., Mun G.L.K., Hande M.P., Valiyaveettil S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano. 2009;3:279–290. doi: 10.1021/nn800596w. PubMed DOI
Guo X., Li Y., Yan J., Ingle T., Jones M.Y., Mei N., Boudreau M.D., Cunningham C.K., Abbas M., Paredes A.M., et al. Size- and Coating-Dependent Cytotoxicity and Genotoxicity of Silver Nanoparticles Evaluated Using in Vitro Standard Assays. Nanotoxicology. 2016;10 doi: 10.1080/17435390.2016.1214764. PubMed DOI
Yin H., Casey P.S., McCall M.J., Fenech M. Size-Dependent Cytotoxicity and Genotoxicity of ZnO Particles to Human Lymphoblastoid (WIL2-NS) Cells. Environ. Mol. Mutagen. 2015;56:767–776. doi: 10.1002/em.21962. PubMed DOI
Roszak J., Catalán J., Järventaus H., Lindberg H.K., Suhonen S., Vippola M., Stępnik M., Norppa H. Effect of Particle Size and Dispersion Status on Cytotoxicity and Genotoxicity of Zinc Oxide in Human Bronchial Epithelial Cells. Mutat. Res. Toxicol. Environ. Mutagen. 2016;805:7–18. doi: 10.1016/j.mrgentox.2016.05.008. PubMed DOI
Xia Q., Li H., Liu Y., Zhang S., Feng Q., Xiao K. The Effect of Particle Size on the Genotoxicity of Gold Nanoparticles. J. Biomed. Mater. Res. Part A. 2017;105:710–719. doi: 10.1002/jbm.a.35944. PubMed DOI
Li Y., Doak S.H., Yan J., Chen D.H., Zhou M., Mittelstaedt R.A., Chen Y., Li C., Chen T. Factors Affecting the in Vitro Micronucleus Assay for Evaluation of Nanomaterials. Mutagenesis. 2017;32:151–159. doi: 10.1093/mutage/gew040. PubMed DOI
Gonzalez L., Lukamowicz-Rajska M., Thomassen L.C.J.J., Kirschhock C.E.A.A., Leyns L., Lison D., Martens J.A., Elhajouji A., Kirsch-Volders M. Co-Assessment of Cell Cycle and Micronucleus Frequencies Demonstrates the Influence of Serum on the in Vitro Genotoxic Response to Amorphous Monodisperse Silica Nanoparticles of Varying Sizes. Nanotoxicology. 2014;8:876–884. doi: 10.3109/17435390.2013.842266. PubMed DOI
Drescher D., Orts-Gil G., Laube G., Natte K., Veh R.W., Österle W., Kneipp J. Toxicity of Amorphous Silica Nanoparticles on Eukaryotic Cell Model Is Determined by Particle Agglomeration and Serum Protein Adsorption Effects. Anal. Bioanal. Chem. 2011;400:1367–1373. doi: 10.1007/s00216-011-4893-7. PubMed DOI
Tedja R., Lim M., Amal R., Marquis C. Effects of Serum Adsorption on Cellular Uptake Profile and Consequent Impact of Titanium Dioxide Nanoparticles on Human Lung Cell Lines. ACS Nano. 2012;6:4083–4093. doi: 10.1021/nn3004845. PubMed DOI
Maruyama K., Haniu H., Saito N., Matsuda Y., Tsukahara T., Kobayashi S., Tanaka M., Aoki K., Takanashi S., Okamoto M., et al. Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells. Biomed Res. Int. 2015;2015 doi: 10.1155/2015/793186. PubMed DOI PMC
Precupas A., Gheorghe D., Botea-Petcu A., Leonties A.R., Sandu R., Popa V.T., Mariussen E., Naouale E.Y., Rundén-Pran E., Dumit V., et al. Thermodynamic Parameters at Bio-Nano Interface and Nanomaterial Toxicity: A Case Study on BSA Interaction with ZnO, SiO2, and TiO2. Chem. Res. Toxicol. 2020;33:2054–2071. doi: 10.1021/acs.chemrestox.9b00468. PubMed DOI
Prasad R.Y., Wallace K., Daniel K.M., Tennant A.H., Zucker R.M., Strickland J., Dreher K., Kligerman A.D., Blackman C.F., Demarini D.M. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle. ACS Nano. 2013;7:1929–1942. doi: 10.1021/nn302280n. PubMed DOI
Dusinska M., Boland S., Saunders M., Juillerat-Jeanneret L., Tran L., Pojana G., Marcomini A., Volkovova K., Tulinska J., Knudsen L.E., et al. Towards an Alternative Testing Strategy for Nanomaterials Used in Nanomedicine: Lessons from NanoTEST. Nanotoxicology. 2015;9(Suppl. 1):118–132. doi: 10.3109/17435390.2014.991431. PubMed DOI
Xi W., Li J., Liu Y., Wu H., Cao A., Wang H. Cytotoxicity and Genotoxicity of Low-Dose Vanadium Dioxide Nanoparticles to Lung Cells Following Long-Term Exposure. Toxicology. 2021;459:152859. doi: 10.1016/j.tox.2021.152859. PubMed DOI