Testing Strategies of the In Vitro Micronucleus Assay for the Genotoxicity Assessment of Nanomaterials in BEAS-2B Cells

. 2021 Jul 27 ; 11 (8) : . [epub] 20210727

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34443765

Grantová podpora
21-17720S Grantová Agentura České Republiky
LM2018129, LM2018133, LM2018124 Ministerstvo Školství, Mládeže a Tělovýchovy

The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.

Zobrazit více v PubMed

Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial (2011/696/EU) Off. J. Eur. Union. 2011;L275:38–40.

Gupta R., Xie H. Nanoparticles in Daily Life: Applications, Toxicity and Regulations. J. Environ. Pathol. Toxicol. Oncol. 2018;37:209–230. doi: 10.1615/JEnvironPatholToxicolOncol.2018026009. PubMed DOI PMC

Lewinski N., Colvin V., Drezek R. Cytotoxicity of Nanopartides. Small. 2008;4:26–49. doi: 10.1002/smll.200700595. PubMed DOI

Singh N., Manshian B., Jenkins G.J.S., Griffiths S.M., Williams P.M., Maffeis T.G.G., Wright C.J., Doak S.H. NanoGenotoxicology: The DNA Damaging Potential of Engineered Nanomaterials. Biomaterials. 2009;30:3891–3914. doi: 10.1016/j.biomaterials.2009.04.009. PubMed DOI

Lozano-Fernández T., Ballester-Antxordoki L., Pérez-Temprano N., Rojas E., Sanz D., Iglesias-Gaspar M., Moya S., González-Fernández Á., Rey M. Potential Impact of Metal Oxide Nanoparticles on the Immune System: The Role of Integrins, L-Selectin and the Chemokine Receptor CXCR4. Nanomed. Nanotechnol. Biol. Med. 2014;10:1301–1310. doi: 10.1016/j.nano.2014.03.007. PubMed DOI

Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials. 2015;5:1163–1180. doi: 10.3390/nano5031163. PubMed DOI PMC

Pelclova D., Zdimal V., Kacer P., Vlckova S., Fenclova Z., Navratil T., Komarc M., Schwarz J., Zikova N., Makes O., et al. Markers of Nucleic Acids and Proteins Oxidation among Office Workers Exposed to Air Pollutants Including (Nano)TiO2 Particles. Neuroendocrinol. Lett. 2016;37:13–16. PubMed

Sima M., Vrbova K., Zavodna T., Honkova K., Chvojkova I., Ambroz A., Klema J., Rossnerova A., Polakova K., Malina T., et al. The Differential Effect of Carbon Dots on Gene Expression and Dna Methylation of Human Embryonic Lung Fibroblasts as a Function of Surface Charge and Dose. Int. J. Mol. Sci. 2020;21:4763. doi: 10.3390/ijms21134763. PubMed DOI PMC

Pelclova D., Zdimal V., Fenclova Z., Vlckova S., Turci F., Corazzari I., Kacer P., Schwarz J., Zikova N., Makes O., et al. Markers of Oxidative Damage of Nucleic Acids and Proteins among Workers Exposed to TiO2(Nano) Particles. Occup. Environ. Med. 2016;73:110–118. doi: 10.1136/oemed-2015-103161. PubMed DOI

Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Syslova K., Navratil T., Schwarz J., Zikova N., Barosova H., et al. Oxidative Stress Markers Are Elevated in Exhaled Breath Condensate of Workers Exposed to Nanoparticles during Iron Oxide Pigment Production. J. Breath Res. 2016;10:016004. doi: 10.1088/1752-7155/10/1/016004. PubMed DOI

Fatkhutdinova L.M., Khaliullin T.O., Vasil’yeva O.L., Zalyalov R.R., Mustafin I.G., Kisin E.R., Birch M.E., Yanamala N., Shvedova A.A. Fibrosis Biomarkers in Workers Exposed to MWCNTs. Toxicol. Appl. Pharmacol. 2016;299:125–131. doi: 10.1016/j.taap.2016.02.016. PubMed DOI PMC

Rossnerova A., Honkova K., Pelclova D., Zdimal V., Hubacek J.A., Chvojkova I., Vrbova K., Rossner P., Topinka J., Vlckova S., et al. DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles. Int. J. Mol. Sci. 2020;21:2420. doi: 10.3390/ijms21072420. PubMed DOI PMC

Novotna B., Pelclova D., Rossnerova A., Zdimal V., Ondracek J., Lischkova L., Vlckova S., Fenclova Z., Klusackova P., Zavodna T., et al. The Genotoxic Effects in the Leukocytes of Workers Handling Nanocomposite Materials. Mutagenesis. 2020;35:331–340. doi: 10.1093/mutage/geaa016. PubMed DOI

Fenech M., Morley A.A. Measurement of Micronuclei in Lymphocytes. Mutat. Res. Mutagen. Relat. Subj. 1985;147:29–36. doi: 10.1016/0165-1161(85)90015-9. PubMed DOI

Nersesyan A., Fenech M., Bolognesi C., Mišík M., Setayesh T., Wultsch G., Bonassi S., Thomas P., Knasmüller S. Use of the Lymphocyte Cytokinesis-Block Micronucleus Assay in Occupational Biomonitoring of Genome Damage Caused by in Vivo Exposure to Chemical Genotoxins: Past, Present and Future. Mutat. Res. Rev. Mutat. Res. 2016;770:1–11. doi: 10.1016/j.mrrev.2016.05.003. PubMed DOI

Gonzalez L., Kirsch-Volders M. Reprint of “Biomonitoring of Genotoxic Effects for Human Exposure to Nanomaterials: The Challenge Ahead". Mutat. Res. Rev. Mutat. Res. 2016;770:204–216. doi: 10.1016/j.mrrev.2016.11.001. PubMed DOI

Rossnerova A., Pelclova D., Zdimal V., Rossner P., Elzeinova F., Vrbova K., Topinka J., Schwarz J., Ondracek J., Kostejn M., et al. The Repeated Cytogenetic Analysis of Subjects Occupationally Exposed to Nanoparticles: A Pilot Study. Mutagenesis. 2019;34:253–263. doi: 10.1093/mutage/gez016. PubMed DOI

Rössnerová A., Pelclová D., Ždímal V., Elzeinová F., Margaryan H., Chvojková I., Topinka J., Schwarz J., Ondráček J., Koštejn M., et al. Males-Females Differences in the Spectrum of Chromosomal Aberrations in the Group of Nanocomposites Production Workers; Proceedings of the NANOCON Conference Proceedings–International Conference on Nanomaterials; Brno, Czech Republic. 16–18 October 2019; pp. 502–507. DOI

Kazimirova A., Baranokova M., Staruchova M., Drlickova M., Volkovova K., Dusinska M. Titanium Dioxide Nanoparticles Tested for Genotoxicity with the Comet and Micronucleus Assays in Vitro, Ex Vivo and in Vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019;843:57–65. doi: 10.1016/j.mrgentox.2019.05.001. PubMed DOI

Doak S.H., Griffiths S.M., Manshian B., Singh N., Williams P.M., Brown A.P., Jenkins G.J.S. Confounding Experimental Considerations in Nanogenotoxicology. Mutagenesis. 2009;24:285–293. doi: 10.1093/mutage/gep010. PubMed DOI

Gonzalez L., Sanderson B.J.S., Kirsch-Volders M. Adaptations of the in Vitro MN Assay for the Genotoxicity Assessment of Nanomaterials. Mutagenesis. 2011;26:185–191. doi: 10.1093/mutage/geq088. PubMed DOI

Chou L.Y.T., Ming K., Chan W.C.W. Strategies for the Intracellular Delivery of Nanoparticles. Chem. Soc. Rev. 2011;40:233–245. doi: 10.1039/C0CS00003E. PubMed DOI

Rasmussen K., Mast J., De Temmerman P.-J., Verleysen E., Waegeneers N., Van Steen F., Pizzolon J.C., De Temmerman L., Van Doren E., Jensen K.A., et al. Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico- Chemical Properties. Science and Policy Report by the Joint Research Centre of the European Commission; Luxembourg: 2014. DOI

Rasmussen K., Mech A., Mast J., de Temmerman P.-J., Waegeneers N., Van Steen F., Pizzolon J.C., de Temmerman L., van Doren E., Jensen A., et al. Synthetic Amorphous Silicon Dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): Characterisation and Physico-Chemical Properties. Science and Policy Report by the Joint Research Centre of the European Commission; Luxembourg: 2013. DOI

Klein C.L., Comero S., Stahlmecke B., Romazanov J., Kuhlbusch T.A.J., Van Doren E., Mast P.-J.D.T.J., Wick P., Krug H., Locoro G., et al. NM-Series of Representative Manufactured Nanomaterials, NM-300 Silver Characterisation, Stability, Homogeneity. Science and Policy Report by the Joint Research Centre of the European Commission; Luxembourg: 2011. DOI

Robinson K., Tantra R., Fry T., Sarantaridis D., Gohli D., Allen C., Quincy P., Minelli C. Global NanoMappp Report: Physico-Chemical Properties of NM 302 Nano-Silver Reference Material. National Physical Laboratory; Teddington, UK: 2014. DOI

Jensen K.A., Kembouche Y., Christiansen E., Jacobsen N.R., Wallin H., Guiot C., Spalla O., Witschger O., Jakobsen N.R., Eallin H., et al. NANOGENOTOX Dispersion Protocol–Standard Operation Procedure (SOP) The National Research Centre for the Working Environment; Copenhagen, Denmark: 2011.

Reddel R.R., Ke Y., Gerwin B.I., McMenamin M.G., Lechner J.F., Su R.T., Brash D.E., Park J.B., Rhim J.S., Harris C.C. Transformation of Human Bronchial Epithelial Cells by Infection with SV40 or Adenovirus-12 SV40 Hybrid Virus, or Transfection via Strontium Phosphate Coprecipitation with a Plasmid Containing SV40 Early Region Genes. Cancer Res. 1988;48:1904–1909. PubMed

OECD . In: OECD Guideline for Testing of Chemicals No. 487. Intergovernmental Panel on Climate Change, editor. Cambridge University Press; Cambridge, UK: 2016. DOI

Fenech M. Cytokinesis-Block Micronucleus Cytome Assay. Nat. Protoc. 2007;2:1084–1104. doi: 10.1038/nprot.2007.77. PubMed DOI

Brzicova T., Sikorova J., Milcova A., Vrbova K., Klema J., Pikal P., Lubovska Z., Philimonenko V., Franco F., Topinka J., et al. Nano-TiO2 Stability in Medium and Size as Important Factors of Toxicity in Macrophage-like Cells. Toxicol. Vitr. 2019;54:178–188. doi: 10.1016/j.tiv.2018.09.019. PubMed DOI

Cervena T., Rossnerova A., Sikorova J., Beranek V., Vojtisek-Lom M., Ciganek M., Topinka J., Rossner P. DNA Damage Potential of Engine Emissions Measured In Vitro by Micronucleus Test in Human Bronchial Epithelial Cells. Basic Clin. Pharmacol. Toxicol. 2016:1–7. doi: 10.1111/bcpt.12693. PubMed DOI

Kirsch-Volders M., Sofuni T., Aardema M., Albertini S., Eastmond D., Fenech M., Ishidate M., Kirchner S., Lorge E., Morita T., et al. Report from the in Vitro Micronucleus Assay Working Group. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2003;540:153–163. doi: 10.1016/j.mrgentox.2003.07.005. PubMed DOI

Dynamic Light Scattering: Common Terms Define. MALVERN PANALYTICAL. Malvern Instruments; Malvern, UK: 2011.

Agrawal Y., Patel V. Nanosuspension: An Approach to Enhance Solubility of Drugs. J. Adv. Pharm. Technol. Res. 2011;2:81–87. doi: 10.4103/2231-4040.82950. PubMed DOI PMC

Bhattacharjee S. DLS and Zeta Potential–What They Are and What They Are Not? J. Control. Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI

Ling C., An H., Li L., Wang J., Lu T., Wang H., Hu Y., Song G., Liu S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vitro: A Systematic Review of the Literature and Meta-Analysis. Biol. Trace Elem. Res. 2021 doi: 10.1007/s12011-020-02311-8. PubMed DOI

Rodriguez-Garraus A., Azqueta A., Vettorazzi A., de Cerain A.L. Genotoxicity of Silver Nanoparticles. Nanomaterials. 2020;10:251. doi: 10.3390/nano10020251. PubMed DOI PMC

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC Monogr. Eval. Carcinog. Risks Hum. 2010;93:9–38. doi: 10.1136/jcp.48.7.691-a. DOI

Xu Y., Wei M.T., Ou-Yang H.D., Walker S.G., Wang H.Z., Gordon C.R., Guterman S., Zawacki E., Applebaum E., Brink P.R., et al. Exposure to TiO2 Nanoparticles Increases Staphylococcus Aureus Infection of HeLa Cells. J. Nanobiotechnol. 2016;14:29–31. doi: 10.1186/s12951-016-0184-y. PubMed DOI PMC

Gurr J.R., Wang A.S.S., Chen C.H., Jan K.Y. Ultrafine Titanium Dioxide Particles in the Absence of Photoactivation Can Induce Oxidative Damage to Human Bronchial Epithelial Cells. Toxicology. 2005;213:66–73. doi: 10.1016/j.tox.2005.05.007. PubMed DOI

Kang S.J., Kim B.M., Lee Y.J., Chung H.W. Titanium Dioxide Nanoparticles Trigger P53-Mediated Damage Response in Peripheral Blood Lymphocytes. Environ. Mol. Mutagen. 2008;49:399–405. doi: 10.1002/em.20399. PubMed DOI

Shi Y., Zhang J.-H., Jiang M., Zhu L.-H., Tan H.-Q., Lu B. Synergistic Genotoxicity Caused by Low Concentration of Titanium Dioxide Nanoparticles and p,p ′-DDT in Human Hepatocytes. Environ. Mol. Mutagen. 2009;405:192–204. doi: 10.1002/em.20527. PubMed DOI

Demir E., Akça H., Turna F., Aksakal S., Burgucu D., Kaya B., Tokgün O., Vales G., Creus A., Marcos R. Genotoxic and Cell-Transforming Effects of Titanium Dioxide Nanoparticles. Environ. Res. 2015;136:300–308. doi: 10.1016/j.envres.2014.10.032. PubMed DOI

Wang J.J., Sanderson B.J.S., Wang H. Cytotoxicity and Genotoxicity of Ultrafine Crystalline SiO2 Particulate in Cultured Human Lymphoblastoid Cells. Environ. Mol. Mutagen. 2007;48:151–157. doi: 10.1002/em.20287. PubMed DOI

Gonzalez L., Thomassen L.C.J., Plas G., Rabolli V., Napierska D., Decordier I., Roelants M., Hoet P.H., Kirschhock C.E.A., Martens J.A., et al. Exploring the Aneugenic and Clastogenic Potential in the Nanosize Range: A549 Human Lung Carcinoma Cells and Amorphous Monodisperse Silica Nanoparticles as Models. Nanotoxicology. 2010;4:382–395. doi: 10.3109/17435390.2010.501913. PubMed DOI

AshaRani P.V., Mun G.L.K., Hande M.P., Valiyaveettil S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano. 2009;3:279–290. doi: 10.1021/nn800596w. PubMed DOI

Guo X., Li Y., Yan J., Ingle T., Jones M.Y., Mei N., Boudreau M.D., Cunningham C.K., Abbas M., Paredes A.M., et al. Size- and Coating-Dependent Cytotoxicity and Genotoxicity of Silver Nanoparticles Evaluated Using in Vitro Standard Assays. Nanotoxicology. 2016;10 doi: 10.1080/17435390.2016.1214764. PubMed DOI

Yin H., Casey P.S., McCall M.J., Fenech M. Size-Dependent Cytotoxicity and Genotoxicity of ZnO Particles to Human Lymphoblastoid (WIL2-NS) Cells. Environ. Mol. Mutagen. 2015;56:767–776. doi: 10.1002/em.21962. PubMed DOI

Roszak J., Catalán J., Järventaus H., Lindberg H.K., Suhonen S., Vippola M., Stępnik M., Norppa H. Effect of Particle Size and Dispersion Status on Cytotoxicity and Genotoxicity of Zinc Oxide in Human Bronchial Epithelial Cells. Mutat. Res. Toxicol. Environ. Mutagen. 2016;805:7–18. doi: 10.1016/j.mrgentox.2016.05.008. PubMed DOI

Xia Q., Li H., Liu Y., Zhang S., Feng Q., Xiao K. The Effect of Particle Size on the Genotoxicity of Gold Nanoparticles. J. Biomed. Mater. Res. Part A. 2017;105:710–719. doi: 10.1002/jbm.a.35944. PubMed DOI

Li Y., Doak S.H., Yan J., Chen D.H., Zhou M., Mittelstaedt R.A., Chen Y., Li C., Chen T. Factors Affecting the in Vitro Micronucleus Assay for Evaluation of Nanomaterials. Mutagenesis. 2017;32:151–159. doi: 10.1093/mutage/gew040. PubMed DOI

Gonzalez L., Lukamowicz-Rajska M., Thomassen L.C.J.J., Kirschhock C.E.A.A., Leyns L., Lison D., Martens J.A., Elhajouji A., Kirsch-Volders M. Co-Assessment of Cell Cycle and Micronucleus Frequencies Demonstrates the Influence of Serum on the in Vitro Genotoxic Response to Amorphous Monodisperse Silica Nanoparticles of Varying Sizes. Nanotoxicology. 2014;8:876–884. doi: 10.3109/17435390.2013.842266. PubMed DOI

Drescher D., Orts-Gil G., Laube G., Natte K., Veh R.W., Österle W., Kneipp J. Toxicity of Amorphous Silica Nanoparticles on Eukaryotic Cell Model Is Determined by Particle Agglomeration and Serum Protein Adsorption Effects. Anal. Bioanal. Chem. 2011;400:1367–1373. doi: 10.1007/s00216-011-4893-7. PubMed DOI

Tedja R., Lim M., Amal R., Marquis C. Effects of Serum Adsorption on Cellular Uptake Profile and Consequent Impact of Titanium Dioxide Nanoparticles on Human Lung Cell Lines. ACS Nano. 2012;6:4083–4093. doi: 10.1021/nn3004845. PubMed DOI

Maruyama K., Haniu H., Saito N., Matsuda Y., Tsukahara T., Kobayashi S., Tanaka M., Aoki K., Takanashi S., Okamoto M., et al. Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells. Biomed Res. Int. 2015;2015 doi: 10.1155/2015/793186. PubMed DOI PMC

Precupas A., Gheorghe D., Botea-Petcu A., Leonties A.R., Sandu R., Popa V.T., Mariussen E., Naouale E.Y., Rundén-Pran E., Dumit V., et al. Thermodynamic Parameters at Bio-Nano Interface and Nanomaterial Toxicity: A Case Study on BSA Interaction with ZnO, SiO2, and TiO2. Chem. Res. Toxicol. 2020;33:2054–2071. doi: 10.1021/acs.chemrestox.9b00468. PubMed DOI

Prasad R.Y., Wallace K., Daniel K.M., Tennant A.H., Zucker R.M., Strickland J., Dreher K., Kligerman A.D., Blackman C.F., Demarini D.M. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle. ACS Nano. 2013;7:1929–1942. doi: 10.1021/nn302280n. PubMed DOI

Dusinska M., Boland S., Saunders M., Juillerat-Jeanneret L., Tran L., Pojana G., Marcomini A., Volkovova K., Tulinska J., Knudsen L.E., et al. Towards an Alternative Testing Strategy for Nanomaterials Used in Nanomedicine: Lessons from NanoTEST. Nanotoxicology. 2015;9(Suppl. 1):118–132. doi: 10.3109/17435390.2014.991431. PubMed DOI

Xi W., Li J., Liu Y., Wu H., Cao A., Wang H. Cytotoxicity and Genotoxicity of Low-Dose Vanadium Dioxide Nanoparticles to Lung Cells Following Long-Term Exposure. Toxicology. 2021;459:152859. doi: 10.1016/j.tox.2021.152859. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace