DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles

. 2020 Mar 31 ; 21 (7) : . [epub] 20200331

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32244494

Grantová podpora
18-02079S Grantová Agentura České Republiky

The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations.

Zobrazit více v PubMed

The European Commission Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU) Off. J. Eur. Union. 2011 Oct 18;L 275:38–40.

Gong C., Tao G., Yang L., Liu J., Liu Q., Zhuang Z. SiO2 nanoparticles induce global genomic hypomethylation in HaCaT cells. Biochem. Biophys. Commun. 2010;397:397–400. doi: 10.1016/j.bbrc.2010.05.076. PubMed DOI

Patil N.A., Gade W.N., Deobagkar D.D. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: Alterations in DNA methylation. Int. J. Nanomed. 2016;11:4509–4519. PubMed PMC

Li J., Tian M., Cui L., Dwyer J., Fullwood N.J., Shen H., Martin F.L. Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep20207. PubMed DOI PMC

Öner D., Ghosh M., Bové H., Moisse M., Boeckx B., Duca R.C., Poels K., Luyts K., Putzeys E., Landuydt K.V., et al. Differences in MWCNT- and SWCNT- induced DNA methylation alterations in association with the nuclear deposition. Part. Fibre Toxicol. 2018;15:1–19. doi: 10.1186/s12989-018-0244-6. PubMed DOI PMC

Sierra M.I., Rubio L., Bayón G.F., Cobo I., Menendez P., Morales P., Mangas C., Urdinguio R.C., Lopez V., Valdes A., et al. DNA methylation changes in human lung epithelia cells exposed to multi-walled carbon nanotubes. Nanotoxicology. 2017;11:857–870. doi: 10.1080/17435390.2017.1371350. PubMed DOI

Lu X., Miousse I.R., Pirela S.V., Melnyk S., Koturbash I., Demokritou P. Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology. 2016;10:140–150. doi: 10.3109/17435390.2015.1025115. PubMed DOI PMC

Bonadio R.S., Arcanjo A.C., Lima E.C., Vasconcelos A.T., Silva R.C., Horst F.H., Azevedo R.B., Poҫas-Fonseca M.J., Longo J.P.F. DNA methylation alteration induced by transient exposure of MCF-7 cells to maghemite nanoparticles. Nanomedicine. 2017;12:2637–2649. doi: 10.2217/nnm-2017-0241. PubMed DOI

Bonadio R.S., Cunha M.C.P.C.D., Longo J.P.F., Azevedo R.B., PoÇas-Fonseca M.J. Exposure to maghemite nanoparticles induces epigenetic alterations in human submandibular gland cells. J. Nanosci. Nanotechnol. 2020;20:1454–1462. doi: 10.1166/jnn.2020.16956. PubMed DOI

Brzóska K., Grądzka I., Kruszewski M. Silver, gold, and iron oxide nanoparticles alter miRNA expression but do not affect DNA methylation in HepG2 cells. Materials. 2019;12:1038. doi: 10.3390/ma12071038. PubMed DOI PMC

Tabish A.M., Poels K., Byun H.-M., Iuyts K., Baccarelli A.A., Martens J., Kerkhofs S., Seys S., Hoet P., Godderis L. Changes in DNA methylation in mouse lungs after a single intra-tracheal administration of nanomaterials. PLoS ONE. 2017;12:e0169886. doi: 10.1371/journal.pone.0169886. PubMed DOI PMC

Ma Y., Guo Y., Ye H., Huang K., Lv Z., Ke Y. Different effects of titanium dioxide nanoparticles instillation in young and adult mice on DNA methylation related with lung inflammation and fibrosis. Ecotoxicol. Environ. Saf. 2019;176:1–10. doi: 10.1016/j.ecoenv.2019.03.055. PubMed DOI

Ognik K., Cholewinńska E., Juśkiewicz J., Zduńczyk Z., Tutaj K., Szlązak R. The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J. Anim. Physiol. Anim. Nutr. 2019;103:675–686. doi: 10.1111/jpn.13025. PubMed DOI

Liou S.-H., Wu W.-T., Liao H.-Y., Chen C.-Y., Tsai C.-Y., Jung W.-T., Lee H.-L. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J. Hazard. Mater. 2017;331:329–335. doi: 10.1016/j.jhazmat.2017.02.042. PubMed DOI

Fraga M.F., Esteller M. DNA methylation: A profile of methods and applications. Biotechniques. 2002;33:636–649. doi: 10.2144/02333rv01. PubMed DOI

Laird P.W. Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 2010;11:191–203. doi: 10.1038/nrg2732. PubMed DOI

Sandoval J., Heyn H., Moran S., Serra-Musach J., Pujana M.A., Bibikova M., Esteller M. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6:692–702. doi: 10.4161/epi.6.6.16196. PubMed DOI

Noehammer C., Pulverer W., Hassler H.R., Hofner M., Wielscher M., Vierlinger K., Liloglou T., McCarthy D., Jensen T.J., Nygren A., et al. Strategies for validation and testing of DNA methylation biomarkers. Epigenomics. 2014;6:603–622. doi: 10.2217/epi.14.43. PubMed DOI

Moran S., Arribas C., Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8:389–399. doi: 10.2217/epi.15.114. PubMed DOI PMC

Pelclova D., Zdimal V., Schwarz J., Dvorackova S., Komarc M., Ondracek J., Kostejn M., Kacer P., Vlckova S., Fenclova Z., et al. Markers of oxidative stress in the exhaled breath condensate of workers handling nanocomposites. Nanomaterials. 2018;8:611. doi: 10.3390/nano8080611. PubMed DOI PMC

Pelclova D., Zdimal V., Komarc M., Vlckova S., Fenclova Z., Ondracek J., Schwarz J., Kostejn M., Kacer P., Vlckova S., et al. Deep airway inflammation and respiratory disorders in nanocomposite workers. Nanomaterials. 2018;8:731. doi: 10.3390/nano8090731. PubMed DOI PMC

Rossnerova A., Pelclova D., Zdimal V., Rossner P., Jr., Elzeinova F., Vrbova K., Topinka J., Schwarz J., Ondracek J., Kostejn M., et al. Micronucleus levels in nanocomposites production workers: Interpretation of results from two years of monitoring; Proceedings of the NANOCON 2018: 10th Anniversary International Conference on Nanomaterials—Research & Application; Brno, Czech Republic. 17–19 October 2018; pp. 554–559.

Rossnerova A., Pelclova D., Zdimal V., Rossner P., Jr., Elzeinova F., Vrbova K., Topinka J., Schwarz J., Ondracek J., Kostejn M., et al. The repeated cytogenetic analysis of subjects occupationally exposed to nanoparticles: A pilot study. Mutagenesis. 2019;34:253–256. doi: 10.1093/mutage/gez016. PubMed DOI

Hubacek J.A., Pelclova D., Dlouha D., Mikuska P., Dvorackova S., Vlckova S., Fenclova Z., Ondracek J., Kostejn M., Schwarz J., et al. Leukocyte telomere length is not affected by long-term occupational exposure to nano metal oxides. Ind. Health. 2019;57:741–744. doi: 10.2486/indhealth.2018-0146. PubMed DOI PMC

Novotna B., Pelclova D., Rossnerova A., Zdimal V., Lischkova L., Vlckova S., Fenclova Z., Klusackova P., Zavodna T., Topinka J., et al. The genotoxic effects in the leukocytes of workers handling nanocomposite materials. Mutagenesis. 2020 submitted. PubMed

Rossnerova A., Tulupova E., Tabashidze N., Schmuczerova J., Dostal M., Rossner P., Jr., Gmuender H., Sram R.J. Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat. Res. 2013;741–742:18–26. doi: 10.1016/j.mrfmmm.2013.02.003. PubMed DOI

Rossnerova A., Pokorna M., Svecova V., Sram R.J., Topinka J., Zölzer F., Rossner P., Jr. Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and “omics” biomonitoring studies and possible mechanisms. Mutat. Res. 2017;773:188–203. doi: 10.1016/j.mrrev.2017.07.002. PubMed DOI

Vandegehuchte M.B., Janssen C.R. Epigenetics in an ecotoxicological context. Mutat. Res. 2014;764–765:36–45. doi: 10.1016/j.mrgentox.2013.08.008. PubMed DOI

Mirbahai L., Chipman J.K. Epigenetic memory of environmental organisms: A reflection of lifetime stressor exposures. Mutat. Res. 2014;764–765:10–17. doi: 10.1016/j.mrgentox.2013.10.003. PubMed DOI

Giuliani C., Bacalini M.G., Sazzini M., Pirazzini C., Franceschi C., Garagnani P., Luiselli D. The epigenetic side of human adaptation: Hypotheses, evidences and theories. Ann. Hum. Biol. 2015;42:1–9. doi: 10.3109/03014460.2014.961960. PubMed DOI

Vineis P., Chatziioannou A., Cunliffe V.T., Flanagan J.M., Hanson M., Kirsch-Volders M., Kryptopoulos S. Epigenetic memory in response to environmental stressors. FASEB J. 2017;31:2241–2251. doi: 10.1096/fj.201601059RR. PubMed DOI

D’Urso A., Brickner J.H. Epigenetic transcriptional memory. Curr. Genet. 2017;63:435–439. doi: 10.1007/s00294-016-0661-8. PubMed DOI PMC

Wu Z., Yang H., Archana G., Rakshit M., Ng K.E., Tay C.Y. Human keratinocytes adapt to ZnO nanoparticles induced toxicity via complex paracrine crosstalk and Nrf2.proteasomal signal transduction. Nanotoxicology. 2018;12:1215–1229. doi: 10.1080/17435390.2018.1537409. PubMed DOI

Fabrizio P., Garvis S., Palladino F. Histone methylation and memory of environmental stress. Cells. 2019;8:339. doi: 10.3390/cells8040339. PubMed DOI PMC

Langie S.A., Szarc Vel Szic K., Declerck K., Traen S., Koppen G., Van Camp G., Schoeters G., Vanden Berghe W., De Boever P. Whole-genome saliva and blood DNA methylation profiling in individuals with a respiratory allergy. PLoS ONE. 2016;11:1–17. doi: 10.1371/journal.pone.0151109. PubMed DOI PMC

Alijagic A., Gaglio D., Napodano E., Russo R., Costa C., Benada O., Kofroňová O., Pinsino A. Titanium dioxide nanoparticles temporarity influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. J. Hazard. Mater. 2020;384:1–11. doi: 10.1016/j.jhazmat.2019.121389. PubMed DOI

Sevane N., Martinez R., Bruford M.W. Genome-wide differential DNA methylation in tropically adapted Creole cattle and their Iberian ancestors. Anim. Genet. 2019;50:15–26. doi: 10.1111/age.12731. PubMed DOI

Dodeller F., Gottar M., Huesken D., Ioutgeno V., Cenni B. The lysosomal transmembrane protein 9B regulates the activity of inflammatory signaling pathways. J. Biol. Chem. 2008;283:21487–21494. doi: 10.1074/jbc.M801908200. PubMed DOI

Rask-Andersen M., Almén M.S., Jacobsson J.A., Ameur A., Moschonis G., Dedoussis G., Marcus C., Gyllensten U., Fredriksson R., Schiöth H.B. Determination of obesity associated gene variants related to TMEM18 through ultra-deep targeted re-sequencing in a case-control cohort for pediatric obesity. Genet. Res. 2015;97:1–9. doi: 10.1017/S0016672315000117. PubMed DOI PMC

Zlatohlavek L., Maratka V., Tumova E., Ceska R., Lanska V., Vrablik M., Hubacek J.A. Body adiposity changes after lifestyle interventions in children/adolescents and the NYD-SP18 and TMEM18 variants. Med. Sci. Monit. 2018;24:7493–7498. doi: 10.12659/MSM.907180. PubMed DOI PMC

Rodhe K., Keller M., Klös M., Schleinitz D., Dietrich A., Schön M.R., Gärtner D., Lohmann T., Dreßler M., Stumvoll M., et al. Adipose tissue depot specific promoter methylation of TMEM18. Mol. Med. 2014;92:881–888. PubMed

Joseph P.V., Jaime-Lara R.B., Wang Y., Xiang L., Henderson W.A. Comprehensive and systematic analysis of gene expression patterns associated with body mass index. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-43881-5. PubMed DOI PMC

Tsai M.H., Chen W.C., Yu S.L., Chen C.C., Jao T.M., Huang C.Y., Tzeng S.T., Yen S.J., Yang Y.C. DNA hypermethylation of SHISA3 in colorectal cancer: An independent predictor of poor prognosis. Ann. Surg. Oncol. 2015;3:1481–1489. doi: 10.1245/s10434-015-4593-1. PubMed DOI

Oeser S.G., Bingham J.P., Collier A.C. Regulation of hepatic UGT2B15 by methylation in adults of Asian descent. Pharmaceutics. 2018;10:6. doi: 10.3390/pharmaceutics10010006. PubMed DOI PMC

Seaborne R.A., Strauss J., Cocks M., Shepherd S., O’Brien T.D., van Someren K.A., Bell P.G., Murgatroyd C., Morton J.P., Stewart C.E., et al. Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci. Rep. 2018;8:1–17. doi: 10.1038/s41598-018-20287-3. PubMed DOI PMC

West K.L., Kelliher J.L., Xu Z., An L., Reed M.R., Eoff R.L., Wang J., Huen M.S.Y., Leung J.W.C. LC8/DYNLL1 is a 53BP1 effector and regulates checkpoint activation. Nucleic Acids Res. 2019;47:6236–6249. doi: 10.1093/nar/gkz263. PubMed DOI PMC

Orr S.E., Gokulan K., Boudreau M., Cerniglia C.E., Khare S. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague-Dawley rats. J. Nanobiotechnol. 2019;17:1–10. doi: 10.1186/s12951-019-0499-6. PubMed DOI PMC

Rossnerova A., Pelclova D., Zdimal V., Elzeinova F., Margaryan H., Chvojkova I., Topinka J., Schwarz J., Ondracek J., Kostejn M., et al. Males-females differences in the spectrum of chromosomal aberrations in the group of nanocomposites production workers; Proceedings of the NANOCON 2019: 11th Anniversary International Conference on Nanomaterials—Research & Application; Brno, Czech Republic. 16–18 October 2019; in press.

Talbot N., Kubelova L., Makes O., Ondracek J., Cusack M., Schwarz J., Vodicka P., Zikova N., Zdimal V. Transformations of aerosol particles from an outdoor to indoor environment. Aerosol Air Qual. Res. 2017;17:653–665. doi: 10.4209/aaqr.2016.08.0355. DOI

Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC

Aryee M.J., Jaffe A.E., Corrada-Bravo H., Ladd-Acosta C., Feinberg A.P., Hansen K.D., Irizarry R.A. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–1369. doi: 10.1093/bioinformatics/btu049. PubMed DOI PMC

McCartney D.L., Walker R.M., Morris S.W., McIntosh A.M., Porteous D.J., Evans K.L. Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genom. Data. 2016;9:22–24. doi: 10.1016/j.gdata.2016.05.012. PubMed DOI PMC

Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Iimma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace