Three-Year Study of Markers of Oxidative Stress in Exhaled Breath Condensate in Workers Producing Nanocomposites, Extended by Plasma and Urine Analysis in Last Two Years

. 2020 Dec 06 ; 10 (12) : . [epub] 20201206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33291323

Grantová podpora
18-02079S Grantová Agentura České Republiky
Progres Q25 and Q29 Charles University in Prague

Human data concerning exposure to nanoparticles are very limited, and biomarkers for monitoring exposure are urgently needed. In a follow-up of a 2016 study in a nanocomposites plant, in which only exhaled breath condensate (EBC) was examined, eight markers of oxidative stress were analyzed in three bodily fluids, i.e., EBC, plasma and urine, in both pre-shift and post-shift samples in 2017 and 2018. Aerosol exposures were monitored. Mass concentration in 2017 was 0.351 mg/m3 during machining, and 0.179 and 0.217 mg/m3 during machining and welding, respectively, in 2018. In number concentrations, nanoparticles formed 96%, 90% and 59%, respectively. In both years, pre-shift elevations of 50.0% in EBC, 37.5% in plasma and 6.25% in urine biomarkers were observed. Post-shift elevation reached 62.5% in EBC, 68.8% in plasma and 18.8% in urine samples. The same trend was observed in all biological fluids. Individual factors were responsible for the elevation of control subjects' afternoon vs. morning markers in 2018; all were significantly lower compared to those of workers. Malondialdehyde levels were always acutely shifted, and 8-hydroxy-2-deoxyguanosine levels best showed chronic exposure effect. EBC and plasma analysis appear to be the ideal fluids for bio-monitoring of oxidative stress arising from engineered nanomaterials. Potential late effects need to be targeted and prevented, as there is a similarity of EBC findings in patients with silicosis and asbestosis.

Zobrazit více v PubMed

Shoman Y., Wild P., Hemmendinger M., Graille M., Sauvain J.J., Hopf N.B., Canu I.G. Reference Ranges of 8-Isoprostane Concentrations in Exhaled Breath Condensate (EBC): A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020;21:3822. doi: 10.3390/ijms21113822. PubMed DOI PMC

Graille M., Wild P., Sauvain J.J., Hemmendinger M., Canu I.G., Hopf N.B. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta-analysis. Toxicol. Lett. 2020;328:19–27. doi: 10.1016/j.toxlet.2020.04.006. PubMed DOI

Graille M., Wild P., Sauvain J.J., Hemmendinger M., Canu I.G., Hopf N.B. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int. J. Mol. Sci. 2020;21:3743. doi: 10.3390/ijms21113743. PubMed DOI PMC

Hemmendinger M., Wild P., Shoman Y., Graille M., Bergamaschi E., Hopf N., Canu I.G. Reference ranges of oxidative stress biomarkers selected for non-invasive biological surveillance of nanotechnology workers: Study protocol and meta-analysis results for 8-OHdG in exhaled breath condensate. Toxicol. Lett. 2020;327:41–47. doi: 10.1016/j.toxlet.2020.03.021. PubMed DOI

Pinchuk I., Weber D., Kochlik B., Stuetz W., Toussaint O., Debacq-Chainiaux F., Dolle M.E.T., Jansen E.H.J.M., Gonos E.S., Sikora E., et al. Gender- and age-dependencies of oxidative stress, as detected based on the steady state concentrations of different biomarkers in the MARK-AGE study. Redox Biol. 2019;24 doi: 10.1016/j.redox.2019.101204. PubMed DOI PMC

Lichtenberg D., Pinchuk I., Weber D. Oxidative stress, as assayed by a single test, cannot be used as a diagnostic tool. BioFactors. 2018;44:222–223. doi: 10.1002/biof.1420. PubMed DOI

Ghafari J., Moghadasi N., Shekaftik S.O. Oxidative stress induced by occupational exposure to nanomaterials: A systematic review. Ind. Health. 2020 doi: 10.2486/indhealth.2020-0073. PubMed DOI PMC

Miller M.R., Poland C.A. Nanotoxicology: The Need for a Human Touch? Small. 2020;16 doi: 10.1002/smll.202001516. PubMed DOI

Bradna P., Ondrackova L., Zdimal V., Navratil T., Pelclova D. Detection of nanoparticles released at finishing of dental composite materials. Mon. Chem. 2017;148:531–537. doi: 10.1007/s00706-016-1912-6. DOI

Larner F., Gulson B., McCall M., Oytam Y., Rehkamper M. An inter-laboratory comparison of high precision stable isotope ratio measurements for nanoparticle tracing in biological samples. J. Anal. At. Spectrom. 2014;29:471–477. doi: 10.1039/C3JA50322D. DOI

Pelclova D., Navratil T., Fenclova Z., Vlckova S. Markers of oxidative stress after three days of nanoTiO2 sunscreen use in humans: A pilot study. Cent. Eur. J. Public Health. 2020;28:S17–S21. doi: 10.21101/cejph.a6158. PubMed DOI

Wang Y.L., Ding L., Yao C.J., Li C.C., Xing X.J., Huang Y.A., Gu T.J., Wu M.H. Toxic effects of metal oxide nanoparticles and their underlying mechanisms. Sci. China-Mater. 2017;60:93–108. doi: 10.1007/s40843-016-5157-0. DOI

Pelclova D., Zdimal V., Schwarz J., Dvorackova S., Komarc M., Ondracek J., Kostejn M., Kacer P., Vlckova S., Fenclova Z., et al. Markers of Oxidative Stress in the Exhaled Breath Condensate of Workers Handling Nanocomposites. Nanomaterials. 2018;8:611. doi: 10.3390/nano8080611. PubMed DOI PMC

Pelclova D., Zdimal V., Komarc M., Vlckova S., Fenclova Z., Ondracek J., Schwarz J., Kostejn M., Kacer P., Dvorackova S., et al. Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers. Nanomaterials. 2018;8:731. doi: 10.3390/nano8090731. PubMed DOI PMC

Horvath I., Barnes P.J., Loukides S., Sterk P.J., Hogman M., Olin A.C., Amann A., Antus B., Baraldi E., Bikov A., et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017;49 doi: 10.1183/13993003.00965-2016. PubMed DOI

Hung T.D. New Generation of Geopolymer Composite for Fire-Resistance. IntechOpen; Rijeka, Croatia: 2011.

Novotna B., Pelclova D., Rossnerova A., Zdimal V., Ondracek J., Lischkova L., Vlckova S., Fenclova Z., Klusackova P., Zavodna T., et al. The genotoxic effects in the leukocytes of workers handling nanocomposite materials. Mutagenesis. 2020;35:331–340. doi: 10.1093/mutage/geaa016. PubMed DOI

Rossnerova A., Honkova K., Pelclova D., Zdimal V., Hubacek J.A., Chvojkova I., Vrbova K., Rossner P., Topinka J., Vlckova S., et al. DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles. Int. J. Mol. Sci. 2020;21:2420. doi: 10.3390/ijms21072420. PubMed DOI PMC

Stefancova L., Schwarz J., Makela T., Hillamo R., Smolik J. Comprehensive Characterization of Original 10-Stage and 7-Stage Modified Berner Type Impactors. Aerosol Sci. Technol. 2011;45:88–100. doi: 10.1080/02786826.2010.524266. DOI

Syslova K., Kacer P., Kuzma M., Klusackova P., Fenclova Z., Lebedova J., Pelclova D. Determination of 8-iso-prostaglandin F(2alpha) in exhaled breath condensate using combination of immunoseparation and LC-ESI-MS/MS. J. Chromatogr. B. 2008;867:8–14. doi: 10.1016/j.jchromb.2008.02.019. PubMed DOI

Syslova K., Kacer P., Kuzma M., Pankracova A., Fenclova Z., Vlckova S., Lebedova J., Pelclova D. LC-ESI-MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J. Breath Res. 2010;4:17104. doi: 10.1088/1752-7155/4/1/017104. PubMed DOI

Syslova K., Bohmova A., Mikoska M., Kuzma M., Pelclova D., Kacer P. Multimarker screening of oxidative stress in aging. Oxidative Med. Cell. Longev. 2014;2014:562860. doi: 10.1155/2014/562860. PubMed DOI PMC

Neprasova M., Maixnerova D., Novak J., Reily C., Julian B.A., Boron J., Novotny P., Suchanek M., Tesar V., Kacer P. Toward Noninvasive Diagnosis of IgA Nephropathy: A Pilot Urinary Metabolomic and Proteomic Study. Dis. Markers. 2016 doi: 10.1155/2016/3650909. PubMed DOI PMC

Delanghe J.R., Speeckaert M.M. Creatinine determination according to Jaffe-what does it stand for? NDT Plus. 2011;4:83–86. doi: 10.1093/ndtplus/sfq211. PubMed DOI PMC

Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials. 2015;5:1163–1180. doi: 10.3390/nano5031163. PubMed DOI PMC

Huang Y.W., Cambre M., Lee H.J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int. J. Mol. Sci. 2017;18:2702. doi: 10.3390/ijms18122702. PubMed DOI PMC

Runa S., Hussey M., Payne C.K. Nanoparticle-Cell Interactions: Relevance for Public Health. J. Phys. Chem. B. 2018;122:1009–1016. doi: 10.1021/acs.jpcb.7b08650. PubMed DOI PMC

Riccelli M.G., Goldoni M., Andreoli R., Mozzoni P., Pinelli S., Alinovi R., Selis L., Mutti A., Corradi M. Biomarkers of exposure to stainless steel tungsten inert gas welding fumes and the effect of exposure on exhaled breath condensate. Toxicol. Lett. 2018;292:108–114. doi: 10.1016/j.toxlet.2018.04.032. PubMed DOI

Wu C.M., Adetona A., Song C., Naeher L., Adetona O. Measuring acute pulmonary responses to occupational wildland fire smoke exposure using exhaled breath condensate. Arch. Environ. Occup. Health. 2020;75:65–69. doi: 10.1080/19338244.2018.1562413. PubMed DOI PMC

Graczyk H., Lewinski N., Zhao J.Y., Sauvain J.J., Suarez G., Wild P., Danuser B., Riediker M. Increase in oxidative stress levels following welding fume inhalation: A controlled human exposure study. Part. Fibre Toxicol. 2016;13 doi: 10.1186/s12989-016-0143-7. PubMed DOI PMC

Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Syslova K., Navratil T., Schwarz J., Zikova N., Barosova H., et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J. Breath Res. 2016;10:16004. doi: 10.1088/1752-7155/10/1/016004. PubMed DOI

Pelclova D., Zdimal V., Kacer P., Zikova N., Komarc M., Fenclova Z., Vlckova S., Schwarz J., Makes O., Syslova K., et al. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO2 production workers. Nanotoxicology. 2017;11:52–63. doi: 10.1080/17435390.2016.1262921. PubMed DOI

Pelclova D., Zdimal V., Fenclova Z., Vlckova S., Turci F., Corazzari I., Kacer P., Schwarz J., Zikova N., Makes O., et al. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med. 2016;73:110–118. doi: 10.1136/oemed-2015-103161. PubMed DOI

Pelclova D., Zdimal V., Kacer P., Vlckova S., Fenclova Z., Navratil T., Komarc M., Schwarz J., Zikova N., Makes O., et al. Markers of nucleic acids and proteins oxidation among office workers exposed to air pollutants including (nano) TiO2 particles. Neuro Endocrinol. Lett. 2016;37:13–16. PubMed

Pelclova D., Zdimal V., Kacer P., Komarc M., Fenclova Z., Vlckova S., Zikova N., Schwarz J., Makes O., Navratil T., et al. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Rev. Environ. Health. 2017;32:193–200. doi: 10.1515/reveh-2016-0030. PubMed DOI

Pelclova D., Fenclova Z., Syslova K., Vlckova S., Lebedova J., Pecha O., Belacek J., Navratil T., Kuzma M., Kacer P. Oxidative Stress Markers in Exhaled Breath Condensate in Lung Fibroses Are Not Significantly Affected by Systemic Diseases. Ind. Health. 2011;49:746–754. doi: 10.2486/indhealth.MS1237. PubMed DOI

Pelclova D., Navratil T., Kacerova T., Zamostna B., Fenclova Z., Vlckova S., Kacer P. NanoTiO2 Sunscreen Does Not Prevent Systemic Oxidative Stress Caused by UV Radiation and a Minor Amount of NanoTiO2 is Absorbed in Humans. Nanomaterials. 2019;9:888. doi: 10.3390/nano9060888. PubMed DOI PMC

Rossnerova A., Pelclova D., Zdimal V., Rossner P., Elzeinova F., Vrbova K., Topinka J., Schwarz J., Ondracek J., Kostejn M., et al. The repeated cytogenetic analysis of subjects occupationally exposed to nanoparticles: A pilot study. Mutagenesis. 2019;34:253–263. doi: 10.1093/mutage/gez016. PubMed DOI

Rossnerova A., Pokorna M., Svecova V., Sram R.J., Topinka J., Zolzer F., Rossner P. Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and “omics” biomonitoring studies and possible mechanisms. Mutat. Res. Rev. Mutat. Res. 2017;773:188–203. doi: 10.1016/j.mrrev.2017.07.002. PubMed DOI

Weber D., Stuetz W., Toussaint O., Debacq-Chainiaux F., Dolle M.E.T., Jansen E., Gonos E.S., Franceschi C., Sikora E., Hervonen A., et al. Associations between Specific Redox Biomarkers and Age in a Large European Cohort: The MARK-AGE Project. Oxidative Med. Cell. Longev. 2017;2017 doi: 10.1155/2017/1401452. PubMed DOI PMC

Hofer T., Fontana L., Anton S.D., Weiss E.P., Villareal D., Malayappan B., Leeuwenburgh C. Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans. Rejuvenation Res. 2008;11:793–799. doi: 10.1089/rej.2008.0712. PubMed DOI PMC

Brieger K., Schiavone S., Miller F.J., Krause K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012;142 doi: 10.4414/smw.2012.13659. PubMed DOI

Kurti S.P., Emerson S.R., Rosenkranz S.K., Teeman C.S., Emerson E.M., Cull B.J., Smith J.R., Harms C.A. Post-prandial systemic 8-isoprostane increases after consumption of moderate and high-fat meals in insufficiently active males. Nutr. Res. 2017;39:61–68. doi: 10.1016/j.nutres.2017.02.003. PubMed DOI

Kullmann T., Barta I., Antus B., Horvath I. Drinking influences exhaled breath condensate acidity. Lung. 2008;186:263–268. doi: 10.1007/s00408-008-9086-6. PubMed DOI

Kanabrocki E.L., Murray D., Hermida R.C., Scott G.S., Bremner W.F., Ryan M.D., Ayala D.E., Third J.L.H.C., Shirazi P., Nemchausky B.A., et al. Circadian variation in oxidative stress markers in healthy and type II diabetic men. Chronobiol. Int. 2002;19:423–439. doi: 10.1081/CBI-120002914. PubMed DOI

Morissette M.C., Murray N., Turmel J., Milot J., Boulet L.P., Bougault V. Increased exhaled breath condensate 8-isoprostane after a swimming session in competitive swimmers. Eur. J. Sport Sci. 2016;16:569–576. doi: 10.1080/17461391.2015.1063702. PubMed DOI

Kurti S.P., Emerson S.R., Smith J.R., Rosenkranz S.K., Alexander S.A., Lovoy G.M., Harms C.A. Older women exhibit greater airway 8-isoprostane responses to strenuous exercise compared with older men and younger controls. Appl. Physiol. Nutr. Metab. 2018;43:497–503. doi: 10.1139/apnm-2017-0565. PubMed DOI

Finkler M., Lichtenberg D., Hochman A., Pinchuk I. The relationship between oxidative stress and exercise. Free Radic. Biol. Med. 2012;53:S202–S203. doi: 10.1016/j.freeradbiomed.2012.08.425. DOI

Kuban P., Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal. Chim. Acta. 2013;805:1–18. doi: 10.1016/j.aca.2013.07.049. PubMed DOI

Pelclova D., Fenclova Z., Vlckova S., Klusackova P., Lebedova J., Syslova K., Belacek J., Kuzma M., Navratil T., Zakharov S., et al. Occupational asthma follow-up—Which markers are elevated in exhaled breath condensate and plasma? Int. J. Occup. Med. Environ. Health. 2014;27:206–215. doi: 10.2478/s13382-014-0243-2. PubMed DOI

Mallard A.R., Hollekim-Strand S.M., Ingul C.B., Coombes J.S. High day-to-day and diurnal variability of oxidative stress and inflammation biomarkers in people with type 2 diabetes mellitus and healthy individuals. Redox Rep. 2020;25:64–69. doi: 10.1080/13510002.2020.1795587. PubMed DOI PMC

Wilking M., Ndiaye M., Mukhtar H., Ahmad N. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health. Antioxid. Redox Signal. 2013;19:192–208. doi: 10.1089/ars.2012.4889. PubMed DOI PMC

Martinez-Moral M.P., Kannan K. How stable is oxidative stress level? An observational study of intra- and inter-individual variability in urinary oxidative stress biomarkers of DNA, proteins, and lipids in healthy individuals. Environ. Int. 2019;123:382–389. doi: 10.1016/j.envint.2018.12.009. PubMed DOI PMC

Barregard L., Moller P., Henriksen T., Mistry V., Koppen G., Rossner P., Sram R.J., Weimann A., Poulsen H.E., Nataf R., et al. Human and Methodological Sources of Variability in the Measurement of Urinary 8-Oxo-7,8-dihydro-2′-deoxyguanosine. Antioxid. Redox Signal. 2013;18:2377–2391. doi: 10.1089/ars.2012.4714. PubMed DOI PMC

Gong J.C., Zhu T., Kipen H., Wang G.F., Hu M., Ohman-Strickland P., Lu S.E., Zhang L., Wang Y.D., Zhu P., et al. Malondialdehyde in exhaled breath condensate and urine as a biomarker of air pollution induced oxidative stress. J. Expo. Sci. Environ. Epidemiol. 2013;23:322–327. doi: 10.1038/jes.2012.127. PubMed DOI PMC

Calderon-Garciduenas L., Herrera-Soto A., Jury N., Maher B.A., Gonzalez-Maciel A., Reynoso-Robles R., Ruiz-Rudolph P., van Zundert B., Varela-Nallar L. Reduced repressive epigenetic marks, increased DNA damage and Alzheimer’s disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environ. Res. 2020;183 doi: 10.1016/j.envres.2020.109226. PubMed DOI

Iavicoli I., Leso V., Schulte P.A. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials. Toxicol. Appl. Pharmacol. 2016;299:112–124. doi: 10.1016/j.taap.2015.12.018. PubMed DOI PMC

Canu I.G., Schulte P.A., Riediker M., Fatkhutdinova L., Bergamaschi E. Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J. Epidemiol. Community Health. 2018;72:148–153. doi: 10.1136/jech-2016-208668. PubMed DOI PMC

Mendoza R.P., Brown J.M. Engineered nanomaterials and oxidative stress: Current understanding and future challenges. Curr. Opin. Toxicol. 2019;13:74–80. doi: 10.1016/j.cotox.2018.09.001. PubMed DOI PMC

Liou S.H., Tsai C.S.J., Pelclova D., Schubauer-Berigan M.K., Schulte P.A. Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanoparticle Res. 2015;17 doi: 10.1007/s11051-015-3219-7. PubMed DOI PMC

Schulte P.A., Iavicoli I., Rantanen J.H., Dahmann D., Iavicoli S., Pipke R., Canu I.G., Boccuni F., Ricci M., Polci M.L., et al. Assessing the protection of the nanomaterial workforce. Nanotoxicology. 2016;10:1013–1019. doi: 10.3109/17435390.2015.1132347. PubMed DOI PMC

Murgia N., Barregard L., Sallsten G., Almstrand A.C., Montuschi P., Ciabattoni G., Olin A.C. 8-isoprostane in exhaled breath condensate after experimental exposure to wood smoke in humans. J. Biol. Regul. Homeost. Agents. 2016;30:263–270. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...