Three-Year Study of Markers of Oxidative Stress in Exhaled Breath Condensate in Workers Producing Nanocomposites, Extended by Plasma and Urine Analysis in Last Two Years
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-02079S
Grantová Agentura České Republiky
Progres Q25 and Q29
Charles University in Prague
PubMed
33291323
PubMed Central
PMC7762143
DOI
10.3390/nano10122440
PII: nano10122440
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, controls, exhaled breath condensate, nanoparticles, oxidative stress, plasma, urine, workers,
- Publikační typ
- časopisecké články MeSH
Human data concerning exposure to nanoparticles are very limited, and biomarkers for monitoring exposure are urgently needed. In a follow-up of a 2016 study in a nanocomposites plant, in which only exhaled breath condensate (EBC) was examined, eight markers of oxidative stress were analyzed in three bodily fluids, i.e., EBC, plasma and urine, in both pre-shift and post-shift samples in 2017 and 2018. Aerosol exposures were monitored. Mass concentration in 2017 was 0.351 mg/m3 during machining, and 0.179 and 0.217 mg/m3 during machining and welding, respectively, in 2018. In number concentrations, nanoparticles formed 96%, 90% and 59%, respectively. In both years, pre-shift elevations of 50.0% in EBC, 37.5% in plasma and 6.25% in urine biomarkers were observed. Post-shift elevation reached 62.5% in EBC, 68.8% in plasma and 18.8% in urine samples. The same trend was observed in all biological fluids. Individual factors were responsible for the elevation of control subjects' afternoon vs. morning markers in 2018; all were significantly lower compared to those of workers. Malondialdehyde levels were always acutely shifted, and 8-hydroxy-2-deoxyguanosine levels best showed chronic exposure effect. EBC and plasma analysis appear to be the ideal fluids for bio-monitoring of oxidative stress arising from engineered nanomaterials. Potential late effects need to be targeted and prevented, as there is a similarity of EBC findings in patients with silicosis and asbestosis.
Institute of Chemical Process Fundamentals CAS Rozvojova 1 135 165 02 Prague 6 Czech Republic
J Heyrovský Institute of Physical Chemistry CAS Dolejškova 3 182 23 Prague 8 Czech Republic
Zobrazit více v PubMed
Shoman Y., Wild P., Hemmendinger M., Graille M., Sauvain J.J., Hopf N.B., Canu I.G. Reference Ranges of 8-Isoprostane Concentrations in Exhaled Breath Condensate (EBC): A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020;21:3822. doi: 10.3390/ijms21113822. PubMed DOI PMC
Graille M., Wild P., Sauvain J.J., Hemmendinger M., Canu I.G., Hopf N.B. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta-analysis. Toxicol. Lett. 2020;328:19–27. doi: 10.1016/j.toxlet.2020.04.006. PubMed DOI
Graille M., Wild P., Sauvain J.J., Hemmendinger M., Canu I.G., Hopf N.B. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int. J. Mol. Sci. 2020;21:3743. doi: 10.3390/ijms21113743. PubMed DOI PMC
Hemmendinger M., Wild P., Shoman Y., Graille M., Bergamaschi E., Hopf N., Canu I.G. Reference ranges of oxidative stress biomarkers selected for non-invasive biological surveillance of nanotechnology workers: Study protocol and meta-analysis results for 8-OHdG in exhaled breath condensate. Toxicol. Lett. 2020;327:41–47. doi: 10.1016/j.toxlet.2020.03.021. PubMed DOI
Pinchuk I., Weber D., Kochlik B., Stuetz W., Toussaint O., Debacq-Chainiaux F., Dolle M.E.T., Jansen E.H.J.M., Gonos E.S., Sikora E., et al. Gender- and age-dependencies of oxidative stress, as detected based on the steady state concentrations of different biomarkers in the MARK-AGE study. Redox Biol. 2019;24 doi: 10.1016/j.redox.2019.101204. PubMed DOI PMC
Lichtenberg D., Pinchuk I., Weber D. Oxidative stress, as assayed by a single test, cannot be used as a diagnostic tool. BioFactors. 2018;44:222–223. doi: 10.1002/biof.1420. PubMed DOI
Ghafari J., Moghadasi N., Shekaftik S.O. Oxidative stress induced by occupational exposure to nanomaterials: A systematic review. Ind. Health. 2020 doi: 10.2486/indhealth.2020-0073. PubMed DOI PMC
Miller M.R., Poland C.A. Nanotoxicology: The Need for a Human Touch? Small. 2020;16 doi: 10.1002/smll.202001516. PubMed DOI
Bradna P., Ondrackova L., Zdimal V., Navratil T., Pelclova D. Detection of nanoparticles released at finishing of dental composite materials. Mon. Chem. 2017;148:531–537. doi: 10.1007/s00706-016-1912-6. DOI
Larner F., Gulson B., McCall M., Oytam Y., Rehkamper M. An inter-laboratory comparison of high precision stable isotope ratio measurements for nanoparticle tracing in biological samples. J. Anal. At. Spectrom. 2014;29:471–477. doi: 10.1039/C3JA50322D. DOI
Pelclova D., Navratil T., Fenclova Z., Vlckova S. Markers of oxidative stress after three days of nanoTiO2 sunscreen use in humans: A pilot study. Cent. Eur. J. Public Health. 2020;28:S17–S21. doi: 10.21101/cejph.a6158. PubMed DOI
Wang Y.L., Ding L., Yao C.J., Li C.C., Xing X.J., Huang Y.A., Gu T.J., Wu M.H. Toxic effects of metal oxide nanoparticles and their underlying mechanisms. Sci. China-Mater. 2017;60:93–108. doi: 10.1007/s40843-016-5157-0. DOI
Pelclova D., Zdimal V., Schwarz J., Dvorackova S., Komarc M., Ondracek J., Kostejn M., Kacer P., Vlckova S., Fenclova Z., et al. Markers of Oxidative Stress in the Exhaled Breath Condensate of Workers Handling Nanocomposites. Nanomaterials. 2018;8:611. doi: 10.3390/nano8080611. PubMed DOI PMC
Pelclova D., Zdimal V., Komarc M., Vlckova S., Fenclova Z., Ondracek J., Schwarz J., Kostejn M., Kacer P., Dvorackova S., et al. Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers. Nanomaterials. 2018;8:731. doi: 10.3390/nano8090731. PubMed DOI PMC
Horvath I., Barnes P.J., Loukides S., Sterk P.J., Hogman M., Olin A.C., Amann A., Antus B., Baraldi E., Bikov A., et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017;49 doi: 10.1183/13993003.00965-2016. PubMed DOI
Hung T.D. New Generation of Geopolymer Composite for Fire-Resistance. IntechOpen; Rijeka, Croatia: 2011.
Novotna B., Pelclova D., Rossnerova A., Zdimal V., Ondracek J., Lischkova L., Vlckova S., Fenclova Z., Klusackova P., Zavodna T., et al. The genotoxic effects in the leukocytes of workers handling nanocomposite materials. Mutagenesis. 2020;35:331–340. doi: 10.1093/mutage/geaa016. PubMed DOI
Rossnerova A., Honkova K., Pelclova D., Zdimal V., Hubacek J.A., Chvojkova I., Vrbova K., Rossner P., Topinka J., Vlckova S., et al. DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles. Int. J. Mol. Sci. 2020;21:2420. doi: 10.3390/ijms21072420. PubMed DOI PMC
Stefancova L., Schwarz J., Makela T., Hillamo R., Smolik J. Comprehensive Characterization of Original 10-Stage and 7-Stage Modified Berner Type Impactors. Aerosol Sci. Technol. 2011;45:88–100. doi: 10.1080/02786826.2010.524266. DOI
Syslova K., Kacer P., Kuzma M., Klusackova P., Fenclova Z., Lebedova J., Pelclova D. Determination of 8-iso-prostaglandin F(2alpha) in exhaled breath condensate using combination of immunoseparation and LC-ESI-MS/MS. J. Chromatogr. B. 2008;867:8–14. doi: 10.1016/j.jchromb.2008.02.019. PubMed DOI
Syslova K., Kacer P., Kuzma M., Pankracova A., Fenclova Z., Vlckova S., Lebedova J., Pelclova D. LC-ESI-MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J. Breath Res. 2010;4:17104. doi: 10.1088/1752-7155/4/1/017104. PubMed DOI
Syslova K., Bohmova A., Mikoska M., Kuzma M., Pelclova D., Kacer P. Multimarker screening of oxidative stress in aging. Oxidative Med. Cell. Longev. 2014;2014:562860. doi: 10.1155/2014/562860. PubMed DOI PMC
Neprasova M., Maixnerova D., Novak J., Reily C., Julian B.A., Boron J., Novotny P., Suchanek M., Tesar V., Kacer P. Toward Noninvasive Diagnosis of IgA Nephropathy: A Pilot Urinary Metabolomic and Proteomic Study. Dis. Markers. 2016 doi: 10.1155/2016/3650909. PubMed DOI PMC
Delanghe J.R., Speeckaert M.M. Creatinine determination according to Jaffe-what does it stand for? NDT Plus. 2011;4:83–86. doi: 10.1093/ndtplus/sfq211. PubMed DOI PMC
Khanna P., Ong C., Bay B.H., Baeg G.H. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials. 2015;5:1163–1180. doi: 10.3390/nano5031163. PubMed DOI PMC
Huang Y.W., Cambre M., Lee H.J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int. J. Mol. Sci. 2017;18:2702. doi: 10.3390/ijms18122702. PubMed DOI PMC
Runa S., Hussey M., Payne C.K. Nanoparticle-Cell Interactions: Relevance for Public Health. J. Phys. Chem. B. 2018;122:1009–1016. doi: 10.1021/acs.jpcb.7b08650. PubMed DOI PMC
Riccelli M.G., Goldoni M., Andreoli R., Mozzoni P., Pinelli S., Alinovi R., Selis L., Mutti A., Corradi M. Biomarkers of exposure to stainless steel tungsten inert gas welding fumes and the effect of exposure on exhaled breath condensate. Toxicol. Lett. 2018;292:108–114. doi: 10.1016/j.toxlet.2018.04.032. PubMed DOI
Wu C.M., Adetona A., Song C., Naeher L., Adetona O. Measuring acute pulmonary responses to occupational wildland fire smoke exposure using exhaled breath condensate. Arch. Environ. Occup. Health. 2020;75:65–69. doi: 10.1080/19338244.2018.1562413. PubMed DOI PMC
Graczyk H., Lewinski N., Zhao J.Y., Sauvain J.J., Suarez G., Wild P., Danuser B., Riediker M. Increase in oxidative stress levels following welding fume inhalation: A controlled human exposure study. Part. Fibre Toxicol. 2016;13 doi: 10.1186/s12989-016-0143-7. PubMed DOI PMC
Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Syslova K., Navratil T., Schwarz J., Zikova N., Barosova H., et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J. Breath Res. 2016;10:16004. doi: 10.1088/1752-7155/10/1/016004. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Zikova N., Komarc M., Fenclova Z., Vlckova S., Schwarz J., Makes O., Syslova K., et al. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO2 production workers. Nanotoxicology. 2017;11:52–63. doi: 10.1080/17435390.2016.1262921. PubMed DOI
Pelclova D., Zdimal V., Fenclova Z., Vlckova S., Turci F., Corazzari I., Kacer P., Schwarz J., Zikova N., Makes O., et al. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med. 2016;73:110–118. doi: 10.1136/oemed-2015-103161. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Vlckova S., Fenclova Z., Navratil T., Komarc M., Schwarz J., Zikova N., Makes O., et al. Markers of nucleic acids and proteins oxidation among office workers exposed to air pollutants including (nano) TiO2 particles. Neuro Endocrinol. Lett. 2016;37:13–16. PubMed
Pelclova D., Zdimal V., Kacer P., Komarc M., Fenclova Z., Vlckova S., Zikova N., Schwarz J., Makes O., Navratil T., et al. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Rev. Environ. Health. 2017;32:193–200. doi: 10.1515/reveh-2016-0030. PubMed DOI
Pelclova D., Fenclova Z., Syslova K., Vlckova S., Lebedova J., Pecha O., Belacek J., Navratil T., Kuzma M., Kacer P. Oxidative Stress Markers in Exhaled Breath Condensate in Lung Fibroses Are Not Significantly Affected by Systemic Diseases. Ind. Health. 2011;49:746–754. doi: 10.2486/indhealth.MS1237. PubMed DOI
Pelclova D., Navratil T., Kacerova T., Zamostna B., Fenclova Z., Vlckova S., Kacer P. NanoTiO2 Sunscreen Does Not Prevent Systemic Oxidative Stress Caused by UV Radiation and a Minor Amount of NanoTiO2 is Absorbed in Humans. Nanomaterials. 2019;9:888. doi: 10.3390/nano9060888. PubMed DOI PMC
Rossnerova A., Pelclova D., Zdimal V., Rossner P., Elzeinova F., Vrbova K., Topinka J., Schwarz J., Ondracek J., Kostejn M., et al. The repeated cytogenetic analysis of subjects occupationally exposed to nanoparticles: A pilot study. Mutagenesis. 2019;34:253–263. doi: 10.1093/mutage/gez016. PubMed DOI
Rossnerova A., Pokorna M., Svecova V., Sram R.J., Topinka J., Zolzer F., Rossner P. Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and “omics” biomonitoring studies and possible mechanisms. Mutat. Res. Rev. Mutat. Res. 2017;773:188–203. doi: 10.1016/j.mrrev.2017.07.002. PubMed DOI
Weber D., Stuetz W., Toussaint O., Debacq-Chainiaux F., Dolle M.E.T., Jansen E., Gonos E.S., Franceschi C., Sikora E., Hervonen A., et al. Associations between Specific Redox Biomarkers and Age in a Large European Cohort: The MARK-AGE Project. Oxidative Med. Cell. Longev. 2017;2017 doi: 10.1155/2017/1401452. PubMed DOI PMC
Hofer T., Fontana L., Anton S.D., Weiss E.P., Villareal D., Malayappan B., Leeuwenburgh C. Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans. Rejuvenation Res. 2008;11:793–799. doi: 10.1089/rej.2008.0712. PubMed DOI PMC
Brieger K., Schiavone S., Miller F.J., Krause K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012;142 doi: 10.4414/smw.2012.13659. PubMed DOI
Kurti S.P., Emerson S.R., Rosenkranz S.K., Teeman C.S., Emerson E.M., Cull B.J., Smith J.R., Harms C.A. Post-prandial systemic 8-isoprostane increases after consumption of moderate and high-fat meals in insufficiently active males. Nutr. Res. 2017;39:61–68. doi: 10.1016/j.nutres.2017.02.003. PubMed DOI
Kullmann T., Barta I., Antus B., Horvath I. Drinking influences exhaled breath condensate acidity. Lung. 2008;186:263–268. doi: 10.1007/s00408-008-9086-6. PubMed DOI
Kanabrocki E.L., Murray D., Hermida R.C., Scott G.S., Bremner W.F., Ryan M.D., Ayala D.E., Third J.L.H.C., Shirazi P., Nemchausky B.A., et al. Circadian variation in oxidative stress markers in healthy and type II diabetic men. Chronobiol. Int. 2002;19:423–439. doi: 10.1081/CBI-120002914. PubMed DOI
Morissette M.C., Murray N., Turmel J., Milot J., Boulet L.P., Bougault V. Increased exhaled breath condensate 8-isoprostane after a swimming session in competitive swimmers. Eur. J. Sport Sci. 2016;16:569–576. doi: 10.1080/17461391.2015.1063702. PubMed DOI
Kurti S.P., Emerson S.R., Smith J.R., Rosenkranz S.K., Alexander S.A., Lovoy G.M., Harms C.A. Older women exhibit greater airway 8-isoprostane responses to strenuous exercise compared with older men and younger controls. Appl. Physiol. Nutr. Metab. 2018;43:497–503. doi: 10.1139/apnm-2017-0565. PubMed DOI
Finkler M., Lichtenberg D., Hochman A., Pinchuk I. The relationship between oxidative stress and exercise. Free Radic. Biol. Med. 2012;53:S202–S203. doi: 10.1016/j.freeradbiomed.2012.08.425. DOI
Kuban P., Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal. Chim. Acta. 2013;805:1–18. doi: 10.1016/j.aca.2013.07.049. PubMed DOI
Pelclova D., Fenclova Z., Vlckova S., Klusackova P., Lebedova J., Syslova K., Belacek J., Kuzma M., Navratil T., Zakharov S., et al. Occupational asthma follow-up—Which markers are elevated in exhaled breath condensate and plasma? Int. J. Occup. Med. Environ. Health. 2014;27:206–215. doi: 10.2478/s13382-014-0243-2. PubMed DOI
Mallard A.R., Hollekim-Strand S.M., Ingul C.B., Coombes J.S. High day-to-day and diurnal variability of oxidative stress and inflammation biomarkers in people with type 2 diabetes mellitus and healthy individuals. Redox Rep. 2020;25:64–69. doi: 10.1080/13510002.2020.1795587. PubMed DOI PMC
Wilking M., Ndiaye M., Mukhtar H., Ahmad N. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health. Antioxid. Redox Signal. 2013;19:192–208. doi: 10.1089/ars.2012.4889. PubMed DOI PMC
Martinez-Moral M.P., Kannan K. How stable is oxidative stress level? An observational study of intra- and inter-individual variability in urinary oxidative stress biomarkers of DNA, proteins, and lipids in healthy individuals. Environ. Int. 2019;123:382–389. doi: 10.1016/j.envint.2018.12.009. PubMed DOI PMC
Barregard L., Moller P., Henriksen T., Mistry V., Koppen G., Rossner P., Sram R.J., Weimann A., Poulsen H.E., Nataf R., et al. Human and Methodological Sources of Variability in the Measurement of Urinary 8-Oxo-7,8-dihydro-2′-deoxyguanosine. Antioxid. Redox Signal. 2013;18:2377–2391. doi: 10.1089/ars.2012.4714. PubMed DOI PMC
Gong J.C., Zhu T., Kipen H., Wang G.F., Hu M., Ohman-Strickland P., Lu S.E., Zhang L., Wang Y.D., Zhu P., et al. Malondialdehyde in exhaled breath condensate and urine as a biomarker of air pollution induced oxidative stress. J. Expo. Sci. Environ. Epidemiol. 2013;23:322–327. doi: 10.1038/jes.2012.127. PubMed DOI PMC
Calderon-Garciduenas L., Herrera-Soto A., Jury N., Maher B.A., Gonzalez-Maciel A., Reynoso-Robles R., Ruiz-Rudolph P., van Zundert B., Varela-Nallar L. Reduced repressive epigenetic marks, increased DNA damage and Alzheimer’s disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environ. Res. 2020;183 doi: 10.1016/j.envres.2020.109226. PubMed DOI
Iavicoli I., Leso V., Schulte P.A. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials. Toxicol. Appl. Pharmacol. 2016;299:112–124. doi: 10.1016/j.taap.2015.12.018. PubMed DOI PMC
Canu I.G., Schulte P.A., Riediker M., Fatkhutdinova L., Bergamaschi E. Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J. Epidemiol. Community Health. 2018;72:148–153. doi: 10.1136/jech-2016-208668. PubMed DOI PMC
Mendoza R.P., Brown J.M. Engineered nanomaterials and oxidative stress: Current understanding and future challenges. Curr. Opin. Toxicol. 2019;13:74–80. doi: 10.1016/j.cotox.2018.09.001. PubMed DOI PMC
Liou S.H., Tsai C.S.J., Pelclova D., Schubauer-Berigan M.K., Schulte P.A. Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanoparticle Res. 2015;17 doi: 10.1007/s11051-015-3219-7. PubMed DOI PMC
Schulte P.A., Iavicoli I., Rantanen J.H., Dahmann D., Iavicoli S., Pipke R., Canu I.G., Boccuni F., Ricci M., Polci M.L., et al. Assessing the protection of the nanomaterial workforce. Nanotoxicology. 2016;10:1013–1019. doi: 10.3109/17435390.2015.1132347. PubMed DOI PMC
Murgia N., Barregard L., Sallsten G., Almstrand A.C., Montuschi P., Ciabattoni G., Olin A.C. 8-isoprostane in exhaled breath condensate after experimental exposure to wood smoke in humans. J. Biol. Regul. Homeost. Agents. 2016;30:263–270. PubMed
Are there Risks from Nanocomposite Restoration Grinding for Dentists?