Individual DNA Methylation Pattern Shifts in Nanoparticles-Exposed Workers Analyzed in Four Consecutive Years
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-02079S
Grantová Agentura České Republiky
JPND2019-466-037
EU Joint Programme - Neurodegenerative Disease Research
PubMed
34360600
PubMed Central
PMC8346047
DOI
10.3390/ijms22157834
PII: ijms22157834
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, epigenetics, human, microarrays, nanoparticles, occupational exposure, time changes,
- MeSH
- CpG ostrůvky MeSH
- dospělí MeSH
- epigeneze genetická * MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA * MeSH
- nanočástice škodlivé účinky MeSH
- nemoci z povolání chemicky indukované epidemiologie genetika MeSH
- pracovní expozice škodlivé účinky MeSH
- regulace genové exprese účinky léků MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016-2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.
Zobrazit více v PubMed
Waddington C.H. The epigenotype. Endeavour. 1942;1:18–20. doi: 10.1093/ije/dyr184. PubMed DOI
Waddington C.H. The Basic Ideas of Biology. Edinburgh University Press; Edinburgh, UK: 1968. Towards a Theoretical Biology; pp. 1–32.
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21. doi: 10.1101/gad.947102. PubMed DOI
Lövkvist C., Dodd I.B., Sneppen K., Haerter J.O. DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res. 2016;44:5123–5132. doi: 10.1093/nar/gkw124. PubMed DOI PMC
Kanherkar R.R., Bhatia-Dey N., Csoka A.B. Epigenetics across the human lifespan. Front. Cell Dev. Biol. 2014;2:49. doi: 10.3389/fcell.2014.00049. PubMed DOI PMC
Ferrari L., Carugno M., Bollati V. Particulate matter exposure shapes DNA methylation through the lifespan. Clin. Epigenetics. 2019;11:129. doi: 10.1186/s13148-019-0726-x. PubMed DOI PMC
Field A.E., Robertson N.A., Wang T., Havas A., Ideker T., Adams P.D. DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol. Cell. 2018;71:882–895. doi: 10.1016/j.molcel.2018.08.008. PubMed DOI PMC
Xiao F.-H., Wang H.-T., Kong Q.-P. Dynamic DNA Methylation during Aging: A “Prophet” of Age-Related Outcomes. Front. Genet. 2019;10:107. doi: 10.3389/fgene.2019.00107. PubMed DOI PMC
Jung S.-E., Shin K.-J., Lee H.Y. DNA methylation/based age prediction from various tissues and body fluids. BMB Rep. 2017;50:546–553. doi: 10.5483/BMBRep.2017.50.11.175. PubMed DOI PMC
Sanz L.A., Kota S.A., Feil R. Genome-wide DNA demethylation in mammals. Genome Biol. 2010;11:1–4. doi: 10.1186/gb-2010-11-3-110. PubMed DOI PMC
Seisenberger S.J., Peat R., Hore T.A., Santos F., Dean W., Reik W. Reprogramming DNA methylation in the mammalian life cycle: Building and breaking epigenetic barriers. Philos. Trans. R. Soc. B. 2013;368:20110330. doi: 10.1098/rstb.2011.0330. PubMed DOI PMC
Luo C., Hajkova P., Ecker J.R. Dynamic DNA methylation: In the right place at the right time. Science. 2018;361:1336–1340. doi: 10.1126/science.aat6806. PubMed DOI PMC
Szyf M. The Implication of DNA Methylation for Toxicology: Toward Toxicomethylomics, the Toxicology of DNA Methylation. Toxicol. Sci. 2011;120:235–255. doi: 10.1093/toxsci/kfr024. PubMed DOI PMC
Tobi E.W., Slieker R.C., Stein A.D., Suchiman H.E., Slagboom P.E., van Zwet E.W., Heijmans B.T., Lumey L.H. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int. J. Epidemiol. 2015;44:1211–1223. doi: 10.1093/ije/dyv043. PubMed DOI PMC
Bateson P., Gluckman P., Hanson M. The biology of developmental plasticity and the predictive adaptive response hypothesis. J. Physiol. 2014;592:2357–2368. doi: 10.1113/jphysiol.2014.271460. PubMed DOI PMC
Tsang S.-Y., Ahmad T., Mat F.W.K., Zhao C., Xiao S., Xia K., Xue H. Variation of global DNA methylation levels with age and in autistic children. Human Genom. 2016;10:1–6. doi: 10.1186/s40246-016-0086-y. PubMed DOI PMC
Edwards T.M., Myers J.P. Environmental Exposures and Gene Regulation in Disease Etiology. Environ. Health Perspect. 2007;115:1264–1270. doi: 10.1289/ehp.9951. PubMed DOI PMC
Weidman J.R., Dolinoy D.C., Murphy S.K., Jirtle R.L. Cancer Susceptibility: Epigenetic Manifestation of Environmental Exposures. Cancer J. 2007;13:9–16. doi: 10.1097/PPO.0b013e31803c71f2. PubMed DOI
Rossnerova A., Honkova K., Pelclova D., Zdimal V., Hubacek J.A., Chvojkova I., Vrbova K., Rossner P., Jr., Topinka J., Vlckova S., et al. DNA methylation profiles in a group of workers occupationally exposed to nanoparticles. Int. J. Mol. Sci. 2020;21:2420. doi: 10.3390/ijms21072420. PubMed DOI PMC
Markunas C.A., Xu Z., Harlid S., Wade P.A., Lie R.T., Taylor J.A., Wilcox A.J. Identification of DNA Methylation Changes in Newborns Related to Maternal Smoking during Pregnancy. Environ. Health Perspect. 2014;122:1147–1153. doi: 10.1289/ehp.1307892. PubMed DOI PMC
Heijmans B.T., Tobi E.W., Stein A.D., Putter H., Blauw G.J., Susser E.S., Slagboom E.P., Lumey L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA. 2008;105:17046–17049. doi: 10.1073/pnas.0806560105. PubMed DOI PMC
Van Roekel E.H., Dugué P.-A., Jung C.-H., Joo J.-E., Makalic E., Wong E.M., English D.R., Southey M.C., Giles G.G., Lynch B.M., et al. Physical Activity, Television Viewing Time and DNA Methylation in Peripheral Blood. Med. Sci. Sports Exerc. 2019;51:490–498. doi: 10.1249/MSS.0000000000001827. PubMed DOI
Rossnerova A., Tulupova E., Tabashidze N., Schmuczerova J., Dostal M., Rossner P., Jr., Gmuender H., Sram R.J. Factor affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat. Res. 2013;741-742:18–26. doi: 10.1016/j.mrfmmm.2013.02.003. PubMed DOI
Ladd-Acosta C.H., Feinberg J.I., Brown S.C., Lurmann F.W., Croen L.A., Hertz-Picciotto I., Newschaffer C.J., Freinberg A.P., Fallin M.D., Volk H.E. Epigenetic marks of prenatal air pollution exposure found in multiple tissues relevant for child health. Environ. Int. 2019;126:363–376. doi: 10.1016/j.envint.2019.02.028. PubMed DOI PMC
Rider C.F., Carlsten C. Air pollution and DNA methylation: Effects of exposure in humans. Clin. Epigenet. 2019;11:131. doi: 10.1186/s13148-019-0713-2. PubMed DOI PMC
Yu X., Zhao B., Su Y., Zhang Y., Chen J., Wu W., Cheng Q., Guo X., Zhao Z., Ke X., et al. Association of prenatal organochlorine pesticide-dichlorodiphenyltrichloroethane exposure with fetal genome-wide DNA methylation. Life Sci. 2018;200:81–86. doi: 10.1016/j.lfs.2018.03.030. PubMed DOI
Van Der Plaat D.A., De Jong K., De Vries M., Van Diemen C.C., Nedeljkovic I., Amin N., Kromhout H., Vermeulen R.C.H., Postma D.S., Van Duijn C.M., et al. Occupational exposure to pesticides is associated with differential DNA methylation. Occup. Environ. Med. 2018;75:427–435. doi: 10.1136/oemed-2017-104787. PubMed DOI PMC
Zeng Z., Huo X., Zhang Y., Hylkema M.N., Wu Y., Xu X. Differential DNA methylation in newborns with maternal exposure to heavy metals from an e-waste recycling area. Environ. Res. 2019;171:536–545. doi: 10.1016/j.envres.2019.01.007. PubMed DOI
Liou S.H., Wu W.T., Liao H.Y., Chen C.Y., Tsai C.Y., Jung W.T., Lee H.L. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J. Hazard. Mater. 2017;331:329–335. doi: 10.1016/j.jhazmat.2017.02.042. PubMed DOI
Martins J., Czamara D., Sauer S., Rex-Haffner M., Dittrich K., Dörr P., de Punder K., Overfeld J., Knop A., Dammering F., et al. Childhood adversity correlates with stable changes in DNA methylation trajectories in children and converges with epigenetic signatures of prenatal stress. Neurobiol. Stress. 2021;15:1–13. doi: 10.1016/j.ynstr.2021.100336. PubMed DOI PMC
Aronica L., Levine A.J., Brennan K., Mi J., Gardner C., Haile R.W., Hitchins M.P. A systematic review of studies of DNA methylation in the context of a weight loss intervention. Epigenomics. 2017;9:769–787. doi: 10.2217/epi-2016-0182. PubMed DOI
Öner D., Ghosh M., Bové H., Moisse M., Boeckx B., Duca R.C., Poels K., Luyts K., Putzeys E., Landuydt K.V., et al. Differences in MWCNT- and SWCNT- induced DNA methylation alterations in association with the nuclear deposition. Part. Fibre Toxicol. 2018;15:1–19. doi: 10.1186/s12989-018-0244-6. PubMed DOI PMC
Moran S., Arribas C., Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8:389–399. doi: 10.2217/epi.15.114. PubMed DOI PMC
Belli M., Tabocchini M.A. Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int. J. Mol. Sci. 2020;21:e5993. doi: 10.3390/ijms21175993. PubMed DOI PMC
Rossnerova A., Pokorna M., Svecova V., Sram R.J., Topinka J., Zölzer F., Rossner P., Jr. Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and “omics” biomonitoring studies and possible mechanisms. Mutat. Res. 2017;773:188–203. doi: 10.1016/j.mrrev.2017.07.002. PubMed DOI
Rossnerova A., Izzotti A., Pulliero A., Bast A., Rattan S.I.S., Rossner P., Jr. The molecular mechanisms of adaptive response related to the environmental stress. Int. J. Mol. Sci. 2020;21:7053. doi: 10.3390/ijms21197053. PubMed DOI PMC
Giuliani C., Bacalini M.G., Sazzini M., Pirazzini C., Franceschi C., Garagnani P., Luiselli D. The epigenetic side of human adaptation: Hypotheses, evidences and theories. Ann. Hum. Biol. 2015;42:1–9. doi: 10.3109/03014460.2014.961960. PubMed DOI
Vineis P., Chatziioannou A., Cunliffe V.T., Flanagan J.M., Hanson M., Kirsch-Volders M., Kyrtopoulos S. Epigenetic memory in response to environmental stressors. FASEB J. 2017;31:2241–2251. doi: 10.1096/fj.201601059RR. PubMed DOI
Hoang T.T., Sikdar S., Xu C.-J., Lee M.K., Cardwell J., Forno E., Imboden M., Jeong A., Madore A.-M., Qi C., et al. Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. Eur. Respir. J. 2020;56:1–187. doi: 10.1183/13993003.00217-2020. PubMed DOI PMC
Cortesi E., Ventura J.J. Lgr6: From Stemness to Cancer Progression. J. Lung Health Dis. 2019;3:12–15. doi: 10.29245/2689-999X/2018/1.1144. PubMed DOI PMC
Raslan A.A., Yoon J.K. R-spondins: Multi-mode WNT signaling regulators in adult stem cells. Int. J. Biochem. Cell Biol. 2019;106:26–34. doi: 10.1016/j.biocel.2018.11.005. PubMed DOI
Moszcyński P., Rutowski J., Słowiński S., Bern S., Jakus-Stoga D. Effects of occupational exposure to mercury vapors on T-cell and NK-cell populations. Arch. Med. Res. Winter. 1996;27:503–507. PubMed
Guo J.U., Su Y., Zhong C., Ming G., Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145:423–434. doi: 10.1016/j.cell.2011.03.022. PubMed DOI PMC
Talbot N., Kubelova L., Makes O., Ondracek J., Cusack M., Schwarz J., Vodicka P., Zikova N., Zdimal V. Transformations of aerosol particles from an outdoor to indoor environment. Aerosol Air Qual. Res. 2017;17:653–665. doi: 10.4209/aaqr.2016.08.0355. DOI
Pelclova D., Zdimal V., Schwarz J., Dvorackova S., Komarc M., Ondracek J., Kostejn M., Kacer P., Vlckova S., Fenclova Z., et al. Markers of oxidative stress in the exhaled breath condensate of workers handling nanocomposites. Nanomaterials. 2018;8:611. doi: 10.3390/nano8080611. PubMed DOI PMC
Pelclova D., Zdimal V., Komarc M., Schwarz J., Ondracek J., Ondrackova L., Kostejn M., Vlckova S., Fenclova Z., Dvorackova S., et al. Three-Year Study of Markers of Oxidative Stress in Exhaled Breath Condensate in Workers Producing Nanocomposites, Extended by Plasma and Urine Analysis in Last Two Years. Nanomaterials. 2020;10:2440. doi: 10.3390/nano10122440. PubMed DOI PMC
Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC
Aryee M.J., Jaffe A.E., Corrada-Bravo H., Ladd-Acosta C., Feinberg A.P., Hansen K.D., Irizarry R.A. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–1369. doi: 10.1093/bioinformatics/btu049. PubMed DOI PMC
McCartney D.L., Walker R.M., Morris S.W., McIntosh A.M., Porteous D.J., Evans K.L. Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genom. Data. 2016;9:22–24. doi: 10.1016/j.gdata.2016.05.012. PubMed DOI PMC
Houseman W.P., Accomando W.P., Koestler D.C., Christensen B.C., Marsit C.J., Nelson H.H., Wiencke J.K., Kelsey K.T. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012;13:86. doi: 10.1186/1471-2105-13-86. PubMed DOI PMC
Armstrong N., Mather K.A., Thalamuthu A., Wright M.J., Trollor J.N., Ames D., Brodaty H., Schofield P.R., Sachdev P.S., Kwok J.B. Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks. Epigenomics. 2017;9:689–700. doi: 10.2217/epi-2016-0179. PubMed DOI