Markers of Oxidative Stress in the Exhaled Breath Condensate of Workers Handling Nanocomposites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30103442
PubMed Central
PMC6116291
DOI
10.3390/nano8080611
PII: nano8080611
Knihovny.cz E-zdroje
- Klíčová slova
- exhaled breath condensate, inhalation, nanocomposites, nanoparticles, occupational exposure, oxidative stress, workers,
- Publikační typ
- časopisecké články MeSH
Researchers in nanocomposite processing may inhale a variety of chemical agents, including nanoparticles. This study investigated airway oxidative stress status in the exhaled breath condensate (EBC). Nineteen employees (42.4 ± 11.4 y/o), working in nanocomposites research for 18.0 ± 10.3 years were examined pre-shift and post-shift on a random workday, together with nineteen controls (45.5 ± 11.7 y/o). Panels of oxidative stress biomarkers derived from lipids, nucleic acids, and proteins were analyzed in the EBC. Aerosol exposures were monitored during three major nanoparticle generation operations: smelting and welding (workshop 1) and nanocomposite machining (workshop 2) using a suite of real-time and integrated instruments. Mass concentrations during these operations were 0.120, 1.840, and 0.804 mg/m³, respectively. Median particle number concentrations were 4.8 × 10⁴, 1.3 × 10⁵, and 5.4 × 10⁵ particles/cm³, respectively. Nanoparticles accounted for 95, 40, and 61%, respectively, with prevailing Fe and Mn. All markers of nucleic acid and protein oxidation, malondialdehyde, and aldehydes C₆⁻C13 were elevated, already in the pre-shift samples relative to controls in both workshops. Significant post-shift elevations were documented in lipid oxidation markers. Significant associations were found between working in nanocomposite synthesis and EBC biomarkers. More research is needed to understand the contribution of nanoparticles from nanocomposite processing in inducing oxidative stress, relative to other co-exposures generated during welding, smelting, and secondary oxidation processes, in these workshops.
Biocev 1st Faculty of Medicine Charles University Prumyslova 595 252 50 Vestec Czech Republic
Institute of Chemical Process Fundamentals of the CAS Rozvojová 1 135 165 02 Prague 6 Czech Republic
Zobrazit více v PubMed
Bello D., Wardle B.L., Ahn K., Yamamoto N., Garcia E., deVilloria R.G., Hart A.J., Ellenbecker M.J., Hallock M. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J. Nanopart. Res. 2009;11:231–249. doi: 10.1007/s11051-008-9499-4. DOI
Bello D., Wardle B.L., Zhang J., Yamamoto N., Santeufemio C., Hallock M., Virji M.A. Characterization of exposures to nanoscale particles and fibers during drilling of hybrid advanced composites containing carbon nanotubes. Int. J. Occup. Environ. Health. 2010;16:434–450. doi: 10.1179/oeh.2010.16.4.434. PubMed DOI
Boonruksa P., Bello D., Zhang J., Isaacs J.A., Mead J., Woskie S. Characterization of potential exposures to nanoparticles and fibers during manufacturing and recycling of carbon nanotube reinforced polypropylene composites. Ann. Occup. Hyg. 2016;60:40–55. doi: 10.1093/annhyg/mev073. PubMed DOI
Boonruksa P., Bello D., Zhang J., Isaacs J.A., Mead J.L., Woskie S.R. Exposures to nanoparticles and fibers during injection molding and recycling of carbon nanotube reinforced polycarbonate composites. J. Expo. Sci. Environ. Epidemiol. 2017;27:379–390. doi: 10.1038/jes.2016.26. PubMed DOI
Liou S.H., Tsai C.S., Pelclova D., Schubauer-Berigan M.K., Schulte P.A. Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanopart. Res. 2015;17:413. doi: 10.1007/s11051-015-3219-7. PubMed DOI PMC
Schulte P.A., Iavicoli I., Rantanen J.H., Dahmann D., Iavicoli S., Pipke R., Guseva Canu I., Boccuni F., Ricci M., Polci M.L., et al. Assessing the protection of the nanomaterial workforce. Nanotoxicology. 2016;10:1013–1019. doi: 10.3109/17435390.2015.1132347. PubMed DOI PMC
Iavicoli I., Leso V., Schulte P.A. Biomarkers of susceptibility. State of the art and implications for occupational exposure to engineered nanomaterials. Toxicol. Appl. Pharmacol. 2016;299:112–124. doi: 10.1016/j.taap.2015.12.018. PubMed DOI PMC
Guseva Canu I., Schulte P.A., Riediker M., Fatkhutdinova L., Bergamaschi E. Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J. Epidemiol. Community Health. 2018;72:148–153. doi: 10.1136/jech-2016-208668. PubMed DOI PMC
Chalbot M.-C., Pirela S.V., Schifman L., Kasaraneni V., Oyanedel-Craver V., Bello D., Castranova V., Qian Y., Thomas T., Kavouras I.G., et al. Synergistic effects of engineered nanoparticles and organics released from laser printers using nano-enabled toners: Potential health implications from exposures to the emitted organic aerosol. Environ. Sci. Nano. 2017;4:2144–2156. doi: 10.1039/C7EN00573C. PubMed DOI PMC
Keane M., Stone S., Chen B. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species. J. Environ. Monit. 2010;12:1133–1140. doi: 10.1039/b922840c. PubMed DOI
Valuntaitė V., Girgždienė R. Outdoor and indoor ozone level—A potential impact on human health. Vojnosanit. Pregl. 2015;72:696–701. doi: 10.2298/VSP140407082V. PubMed DOI
Cena L.G., Chisholm W.P., Keane M.J., Chen B.T. A field study on the respiratory deposition of the nano-sized fraction of mild and stainless steel welding fume metals. J. Occup. Environ. Hyg. 2015;12:721–728. doi: 10.1080/15459624.2015.1043055. PubMed DOI PMC
Horváth I., Barnes P.J., Loukides S., Sterk P.J., Högman M., Olin A.C., Amann A., Antus B., Baraldi E., Bikov A., et al. A European respiratory society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017;49:1600965. doi: 10.1183/13993003.00965-2016. PubMed DOI
Almstrand A.C., Bake B., Ljungström E., Larsson P., Bredberg A., Mirgorodskaya E., Olin A.C. Effect of airway opening on production of exhaled particles. J. Appl. Physiol. 2010;108:584–588. doi: 10.1152/japplphysiol.00873.2009. PubMed DOI
Hsieh S.F., Bello D., Schmidt D.F., Pal A.K., Stella A., Isaacs J.A., Rogers E.J. Mapping the biological oxidative damage of engineered nanomaterials. Small. 2013;9:1853–1865. doi: 10.1002/smll.201201995. PubMed DOI
Manke A., Wang L., Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int. 2013;2013:942916. doi: 10.1155/2013/942916. PubMed DOI PMC
Khanna P., Ong C., Bay B.H., Bae G.H. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015;5:1163–1180. doi: 10.3390/nano5031163. PubMed DOI PMC
Bello D., Warheit D.B. Biokinetics of engineered nano-TiO2 in rats administered by different exposure routes: Implications for human health. Nanotoxicology. 2017;11:431–433. doi: 10.1080/17435390.2017.1330436. PubMed DOI
Toyokuni S. Molecular mechanisms of oxidative stress-induced carcinogenesis: From epidemiology to oxygenomics. IUBMB Life. 2008;60:441–447. doi: 10.1002/iub.61. PubMed DOI
Lee J.F., Tung S.P., Wang D., Yeh D.Y., Fong Y., Young Y.C., Leu F.J. Lipoxygenase pathway mediates increases of airway resistance and lung inflation induced by exposure to nanotitanium dioxide in rats. Oxid. Med. Cell. Longev. 2014;2014:485604. doi: 10.1155/2014/485604. PubMed DOI PMC
Kuka S., Hurbankova M., Drlickova M., Baska T., Hudeckova H., Tatarkova Z. Nanomaterials—A new and former public health issue. The case of Slovakia Cent. Eur. J. Public Health. 2016;24:308–313. doi: 10.21101/cejph.a4872. PubMed DOI
Donaldson K., Poland C.A. Nanotoxicity: Challenging the myth of nano-specific toxicity. Curr. Opin. Biotechnol. 2013;24:724–734. doi: 10.1016/j.copbio.2013.05.003. PubMed DOI
Antus B. Oxidative stress markers in sputum. Oxid. Med. Cell. Longev. 2016;2016:2930434. doi: 10.1155/2016/2930434. PubMed DOI PMC
Pelclova D., Zdimal V., Komarc M., Schwarz J., Kostejn M., Dvorackova S., Ondracek J., Kacer P., Vlckova S., Fenclova Z., et al. Respiratory symptoms and markers of inflammation in nanocomposite production workers. Occup. Environ. Med. submitted.
Berner A., Lürzer C. Mass size distributions of traffic aerosols at Vienna. J. Phys. Chem. 1980;84:2079–2083. doi: 10.1021/j100453a016. DOI
Stefancova L., Schwarz J., Mäkelä T., Hillamo R., Smolik J. Comprehensive characterization of original 10-stage and 7-stage modified Berner Type Impactors. Aerosol Sci. Technol. 2011;45:88–100. doi: 10.1080/02786826.2010.524266. DOI
Talbot N., Kubelova L., Makes O., Ondracek J., Cusack M., Schwarz J., Vodicka P., Zikova N., Zdimal V. Transformations of aerosol particles from an outdoor to indoor environment. Aerosol Air Qual. Res. 2017;17:653–665. doi: 10.4209/aaqr.2016.08.0355. DOI
Syslova K., Kacer P., Kuzma M., Klusackova P., Fenclova Z., Lebedova J., Pelclova D. Determination of 8-iso-prostaglandin F(2α) in exhaled breath condensate using combination of immunoseparation and LC-ESI-MS/MS. J. Chromatogr. B. 2008;867:8–14. doi: 10.1016/j.jchromb.2008.02.019. PubMed DOI
Syslova K., Kacer P., Kuzma M., Pankracova A., Fenclova Z., Vlckova S., Lebedova J., Pelclova D. LC-ESI-MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J. Breath Res. 2010;4:017104. doi: 10.1088/1752-7155/4/1/017104. PubMed DOI
Syslova K., Böhmova A., Mikoska M., Kuzma M., Pelclova D., Kacer P. Multimarker screening of oxidative stress in aging. Oxid. Med. Cell. Longev. 2014;2014:562860. doi: 10.1155/2014/562860. PubMed DOI PMC
Klusackova P., Lebedova J., Kacer P., Kuzma M., Brabec M., Pelclova D., Fenclova Z., Navratil T. Leukotrienes and 8-isoprostane in exhaled breath condensate in bronchoprovocation tests with occupational allergens. Prostaglandins Leukot. Essent. Fatty Acids. 2008;78:281–292. doi: 10.1016/j.plefa.2008.03.006. PubMed DOI
Effros R.M., Biller J., Foss B., Hoagland K., Dunning M.B., Castillo D., Bosbous M., Sun F., Shaker R. A simple method for estimating respiratory solute dilution in exhaled breath condensates. Am. J. Respir. Crit. Care Med. 2003;168:1500–1505. doi: 10.1164/rccm.200307-920OC. PubMed DOI
Wood A.M., Tan S.L., Stockley R.A. Chronic obstructive pulmonary disease: Towards pharmacogenetics. Genome Med. 2009;1:112. doi: 10.1186/gm112. PubMed DOI PMC
Huang Y.W., Cambre M., Lee H.J. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci. 2017;18:2702. doi: 10.3390/ijms18122702. PubMed DOI PMC
Runa S., Hussey M., Payne C.K. Nanoparticle-Cell interactions: Relevance for public health. J. Phys. Chem. B. 2018;122:1009–1016. doi: 10.1021/acs.jpcb.7b08650. PubMed DOI PMC
Theriaulta M., Yoeutha S., Matara J., Martin J., Bello D., Barry C. Investigation of nanoparticles emitted when injection molding neat and additive-filled polypropylene and polycarbonate; Proceedings of the 32nd International Conference of the Polymer Processing Society; Lyon, France. 25–29 July 2016.
Malvindi M.A., De Matteis V., Galeone A., Brunetti V., Anyfantis G.C., Athanassiou A., Cingolani R., Pompa P.P. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE. 2014;9:e85835. doi: 10.1371/journal.pone.0085835. PubMed DOI PMC
Pelclova D., Zdimal V., Fenclova Z., Vlckova S., Turci F., Corazzari I., Kacer P., Schwarz J., Zikova N., Makes O., et al. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med. 2016;73:110–118. doi: 10.1136/oemed-2015-103161. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Zikova N., Komarc M., Fenclova Z., Vlckova S., Schwarz J., Makes O., Syslova K., et al. Markers of lipid oxidative damage in the exhaled breath condensate of nanoTiO2 production workers. Nanotoxicology. 2017;11:52–63. doi: 10.1080/17435390.2016.1262921. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Syslova K., Navratil T., Schwarz J., Zikova N., Barosova H., et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J. Breath Res. 2016;10:016004. doi: 10.1088/1752-7155/10/1/016004. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Komarc M., Fenclova Z., Vlckova S., Zikova N., Schwarz J., Makes O., Navratil T., et al. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Rev. Environ. Health. 2017;32:193–200. doi: 10.1515/reveh-2016-0030. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Vlckova S., Fenclova Z., Navratil T., Komarc M., Schwarz J., Zikova N., Makes O., et al. Markers of nucleic acids and proteins oxidation among office workers exposed to air pollutants including (nano)TiO2 particles. Neuro Endocrinol. Lett. 2016;37:3–16. PubMed
Pelclova D., Barosova H., Kukutschova J., Zdimal V., Navratil T., Fenclova Z., Vlckova S., Schwarz J., Zikova N., Kacer P., et al. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nanoTiO2 particles: A cross-sectional study. J. Breath Res. 2015;9:036008. doi: 10.1088/1752-7155/9/3/036008. PubMed DOI
Kwon S., Yang Y.S., Yang H.S., Lee J., Kang M.S., Lee B.S., Lee K., Song C.W. Nasal and pulmonary toxicity of titanium dioxide nanoparticles in rats. Toxicol. Res. 2012;28:217–224. doi: 10.5487/TR.2012.28.4.217. PubMed DOI PMC
Martin J., Bello D., Bunker K., Shafer M., Christiani D., Woskie S., Demokritou P. Occupational exposure to nanoparticles at commercial photocopy centers. J. Hazard. Mater. 2015;298:351–360. doi: 10.1016/j.jhazmat.2015.06.021. PubMed DOI
Khatri M., Bello D., Gaines P., Martin J., Pal A.K., Gore R., Woskie S. Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers. Nanotoxicology. 2013;7:1014–1027. doi: 10.3109/17435390.2012.691998. PubMed DOI
Lai C.H., Huang H.B., Chang Y.C., Su T.Y., Wang Y.C., Wang G.C., Chen J.E., Tang C.S., Wu T.N., Liou S.H. Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: A longitudinal study. Sci. Total Environ. 2017;598:289–296. doi: 10.1016/j.scitotenv.2017.04.079. PubMed DOI
Khatri M., Bello D., Martin J., Bello A., Gore R., Demokritou P., Gaines P. Chronic upper airway inflammation and oxidative stress in photocopier operators: Mechanistic insights. NanoImpact. 2017;5:133–145. doi: 10.1016/j.impact.2017.01.007. DOI
Pirela S.V., Martin J., Bello D., Demokritou P. Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: State of science and future research needs. Crit. Rev. Toxicol. 2017;47:683–709. doi: 10.1080/10408444.2017.1318354. PubMed DOI PMC
Liou S.H., Chen Y.C., Liao H.Y., Wang C.J., Chen J.S., Lee H.L. Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers. Biomarkers. 2016;21:600–606. doi: 10.3109/1354750X.2016.1160432. PubMed DOI
Liou S.H., Wu W.T., Liao H.Y., Chen C.Y., Tsai C.Y., Jung W.T., Lee H.L. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J. Hazard. Mater. 2017;331:329–335. doi: 10.1016/j.jhazmat.2017.02.042. PubMed DOI
Zhao L., Zhu Y., Chen Z., Xu H., Zhou J., Tang S., Xu Z., Kong F., Li X., Zhang Y., et al. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology. 2018;12:169–184. doi: 10.1080/17435390.2018.1425502. PubMed DOI
Martin J., Demokritou P., Woskie S., Bello D. Indoor air quality in photocopy centers, nanoparticle exposures at photocopy workstations, and the need for exposure controls. Ann. Work Expo. Health. 2017;61:110–122. doi: 10.1093/annweh/wxw016. PubMed DOI
Pelclova D., Fenclova Z., Kacer P., Kuzma M., Navratil T., Lebedova J. 8-isoprostane and leukotrienes in exhaled breath condensate in Czech subjects with silicosis. Ind. Health. 2007;45:766–774. doi: 10.2486/indhealth.45.766. PubMed DOI
Pelclova D., Fenclova Z., Kacer P., Kuzma M., Navratil T., Lebedova J. Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Ind. Health. 2008;46:484–489. doi: 10.2486/indhealth.46.484. PubMed DOI
Pelclova D., Fenclova Z., Syslova K., Vlckova S., Lebedova J., Pecha O., Belacek J., Navratil T., Kuzma M., Kacer P. Oxidative stress markers in exhaled breath condensate in lung fibroses are not significantly affected by systemic diseases. Ind. Health. 2011;49:746–754. doi: 10.2486/indhealth.MS1237. PubMed DOI
DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles
Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers