Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31165034
PubMed Central
PMC6541338
DOI
10.3762/bjnano.10.108
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, chitosan, maghemite nanoparticles, oxidative stress, phenolic compound,
- Publikační typ
- časopisecké články MeSH
Maghemite (γ-Fe2O3) nanoparticles obtained through co-precipitation and oxidation were coated with heparin (Hep) to yield γ-Fe2O3@Hep, and subsequently with chitosan that was modified with different phenolic compounds, including gallic acid (CS-G), hydroquinone (CS-H), and phloroglucinol (CS-P), to yield γ-Fe2O3@Hep-CS-G, γ-Fe2O3@Hep-CS-H, and γ-Fe2O3@Hep-CS-P particles, respectively. Surface modification of the particles was analyzed by transmission electron microscopy, dynamic light scattering, attenuated total reflection Fourier transform infrared spectroscopy, and thermogravimetric analysis. Magnetic measurements indicated that the polymer coating does not affect the superparamagnetic character of the iron oxide core. However, magnetic saturation decreased with increasing thickness of the polymer coating. The antioxidant properties of the nanoparticles were analyzed using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Cellular uptake and intracellular antioxidant activity of the particles were evaluated by an iron assay and flow cytometry, respectively, using L-929 and LN-229 cells. Compared to the control, the phenolic modification significantly reduced intracellular reactive oxygen species (ROS) levels to 35-56%, which was associated with a 6-8-times higher cellular uptake in L-929 cells and a 21-31-times higher cellular uptake in LN-229 cells. In contrast, γ-Fe2O3@Hep particles induced a 3.8-times and 14.9-times higher cellular uptake without inducing antioxidant activity. In conclusion, the high cellular uptake and the antioxidant properties associated with the phenolic moieties in the modified particles allow for a potential application in biomedical areas.
Zobrazit více v PubMed
Valko M, Leibfritz D, Moncol J, Cronin M T D, Mazur M, Telser J. Int J Biochem Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI
Dröge W. Physiol Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Nimse S B, Pal D. RSC Adv. 2015;5:27986–28006. doi: 10.1039/c4ra13315c. DOI
Dimitrios D. Trends Food Sci Technol. 2006;17:505–512. doi: 10.1016/j.tifs.2006.04.004. DOI
Pereira D, Valentão P, Pereira J, Andrade P. Molecules. 2009;14(6):2202–2211. doi: 10.3390/molecules14062202. DOI
Das D, Nath B C, Phukon P, Kalita A, Dolui S K. Colloids Surf, B. 2013;111:556–560. doi: 10.1016/j.colsurfb.2013.06.041. PubMed DOI
Nagajyothi P C, Cha S J, Yang I J, Sreekanth T V M, Kim K J, Shin H M. J Photochem Photobiol, B. 2015;146:10–17. doi: 10.1016/j.jphotobiol.2015.02.008. PubMed DOI
Caputo F, De Nicola M, Sienkiewicz A, Giovanetti A, Bejarano I, Licoccia S, Traversa E, Ghibelli L. Nanoscale. 2015;7:15643–15656. doi: 10.1039/c5nr03767k. PubMed DOI
Lee S S, Song W, Cho M, Puppala H L, Nguyen P, Zhu H, Segatori L, Colvin V L. ACS Nano. 2013;7:9693–9703. doi: 10.1021/nn4026806. PubMed DOI
Reddy N J, Nagoor Vali D, Rani M, Rani S S. Mater Sci Eng, C. 2014;34:115–122. doi: 10.1016/j.msec.2013.08.039. PubMed DOI
Paul S, Saikia J P, Samdarshi S K, Konwar B K. J Magn Magn Mater. 2009;321:3621–3623. doi: 10.1016/j.jmmm.2009.07.004. DOI
Kumar M N V R. React Funct Polym. 2000;46:1–27. doi: 10.1016/s1381-5148(00)00038-9. DOI
Xie M, Hu B, Wang Y, Zeng X. J Agric Food Chem. 2014;62:9128–9136. doi: 10.1021/jf503207s. PubMed DOI
Yen M-T, Yang J-H, Mau J-L. Carbohydr Polym. 2008;74:840–844. doi: 10.1016/j.carbpol.2008.05.003. DOI
Tomida H, Fujii T, Furutani N, Michihara A, Yasufuku T, Akasaki K, Maruyama T, Otagiri M, Gebicki J M, Anraku M. Carbohydr Res. 2009;344:1690–1696. doi: 10.1016/j.carres.2009.05.006. PubMed DOI
Oliver S, Vittorio O, Cirillo G, Boyer C. Polym Chem. 2016;7:1529–1544. doi: 10.1039/c5py01912e. DOI
Richardson J J, Cui J, Björnmalm M, Braunger J A, Ejima H, Caruso F. Chem Rev. 2016;116:14828–14867. doi: 10.1021/acs.chemrev.6b00627. PubMed DOI
López-Martínez L M, Santacruz-Ortega H, Navarro R-E, Sotelo-Mundo R R, González-Aguilar G A. PLoS One. 2015;10:No. e0140242. doi: 10.1371/journal.pone.0140242. PubMed DOI PMC
Arizmendi-Cotero D, Gómez-Espinosa R M, Dublán García O, Gómez-Vidales V, Dominguez-Lopez A. Carbohydr Polym. 2016;136:350–357. doi: 10.1016/j.carbpol.2015.09.037. PubMed DOI
Fedoseeva E N, Smirnova L A, Sorokina M A, Pastukhov M O. Russ J Appl Chem. 2006;79:845–849. doi: 10.1134/s1070427206050296. DOI
Pillai C K S, Paul W, Sharma C P. Prog Polym Sci. 2009;34:641–678. doi: 10.1016/j.progpolymsci.2009.04.001. DOI
Prior R L, Wu X, Schaich K. J Agric Food Chem. 2005;53:4290–4302. doi: 10.1021/jf0502698. PubMed DOI
Everette J D, Bryant Q M, Green A M, Abbey Y A, Wangila G W, Walker R B. J Agric Food Chem. 2010;58:8139–8144. doi: 10.1021/jf1005935. PubMed DOI PMC
Serna C J, Morales M P. Maghemite (γ-Fe2O3): A versatile magnetic colloidal material. In: Matijević E, Borkovec M, editors. Surface and Colloid Science. Boston, MA, U.S.A.: Springer; 2004. pp. 27–81. DOI
Nazari M, Ghasemi N, Maddah H, Motlagh M M. J Nanostruct Chem. 2014;4:No. 99. doi: 10.1007/s40097-014-0099-9. DOI
Kolhatkar A, Jamison A, Litvinov D, Willson R, Lee T. Int J Mol Sci. 2013;14(8):15977–16009. doi: 10.3390/ijms140815977. PubMed DOI PMC
Patsula V, Moskvin M, Dutz S, Horák D. J Phys Chem Solids. 2016;88:24–30. doi: 10.1016/j.jpcs.2015.09.008. DOI
Silva M E, Dietrich C P. J Biol Chem. 1975;250:6841–6846. PubMed
Alquwaizani M, Buckley L, Adams C, Fanikos J. Curr Emerg Hosp Med Rep. 2013;1:83–97. doi: 10.1007/s40138-013-0014-6. PubMed DOI PMC
Pankhurst Q A, Connolly J, Jones S K, Dobson J. J Phys D: Appl Phys. 2003;36:R167–R181. doi: 10.1088/0022-3727/36/13/201. DOI
Bendary E, Francis R R, Ali H M G, Sarwat M I, El Hady S. Ann Agric Sci. 2013;58:173–181. doi: 10.1016/j.aoas.2013.07.002. DOI
Yang X, Du H, Liu J, Zhai G. Biomacromolecules. 2015;16:423–436. doi: 10.1021/bm501532e. PubMed DOI
Liang Y, Kiick K L. Acta Biomater. 2014;10:1588–1600. doi: 10.1016/j.actbio.2013.07.031. PubMed DOI PMC
Chen K, Xu X, Guo J, Zhang X, Han S, Wang R, Li X, Zhang J. Biomacromolecules. 2015;16:3574–3583. doi: 10.1021/acs.biomac.5b01056. PubMed DOI
Siow W X, Chang Y-T, Babič M, Lu Y-C, Horák D, Ma Y-H. Int J Nanomed. 2018;13:1693–1706. doi: 10.2147/ijn.s156029. PubMed DOI PMC
Shanehsazzadeh S, Lahooti A, Hajipour M J, Ghavami M, Azhdarzadeh M. Colloids Surf, B. 2015;136:1107–1112. doi: 10.1016/j.colsurfb.2015.11.028. PubMed DOI
Cheng Z, Ren J, Li Y, Chang W, Chen Z. Redox Rep. 2002;7:395–402. doi: 10.1179/135100002125001171. PubMed DOI
Curcio M, Puoci F, Iemma F, Parisi O I, Cirillo G, Spizzirri U G, Picci N. J Agric Food Chem. 2009;57:5933–5938. doi: 10.1021/jf900778u. PubMed DOI
Moskvin M, Babič M, Reis S, Cruz M M, Ferreira L P, Carvalho M D, Lima S A C, Horák D. Colloids Surf, B. 2018;161:35–41. doi: 10.1016/j.colsurfb.2017.10.034. PubMed DOI
Babic M, Horák D, Trchová M, Jendelová P, Glogarová K, Lesný P, Herynek V, Hájek M, Syková E. Bioconjugate Chem. 2008;19(3):740–750. doi: 10.1021/bc700410z. PubMed DOI
Lu Y-C, Chang F-Y, Tu S-J, Chen J-P, Ma Y-H. J Magn Magn Mater. 2017;427:71–80. doi: 10.1016/j.jmmm.2016.11.010. DOI
Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells