• This record comes from PubMed

Shoots and Turions of Aquatic Plants as a Source of Fatty Acids

. 2024 Apr 29 ; 29 (9) : . [epub] 20240429

Language English Country Switzerland Media electronic

Document type Journal Article

BACKGROUND: Fatty acids are essential for human health. Currently, there is a search for alternative sources of fatty acids that could supplement such sources as staple crops or fishes. Turions of aquatic plants accumulate a variety of substances such as starch, free sugars, amino acids, reserve proteins and lipids. Our aim is to see if turions can be a valuable source of fatty acids. METHODS: Overwintering shoots and turions of aquatic carnivorous plants were collected. The plant material was extracted with hexane. The oils were analyzed using a gas chromatograph with mass spectrometer. RESULTS: The dominant compound in all samples was linolenic acid. The oil content was different in turions and shoots. The oil content of the shoots was higher than that of the turions, but the proportion of fatty acids in the oils from the shoots was low in contrast to the oils from the turions. The turions of Utricularia species were shown to be composed of about 50% fatty acids. CONCLUSIONS: The turions of Utricularia species can be used to obtain oil with unsaturated fatty acids. In addition, the high fatty acid content of turions may explain their ability to survive at low temperatures.

See more in PubMed

He M., Qin C.X., Wang X., Ding N.Z. Plant unsaturated fatty acids: Biosynthesis and regulation. Front. Plant Sci. 2020;11:390. doi: 10.3389/fpls.2020.00390. PubMed DOI PMC

World Health Organization . Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation. Volume 91. Food and Agriculture Organization of the United Nations; Rome, Italy: 2010.

Carvalho I.S., Miranda I., Pereira H. Evaluation of oil composition of some crops suitable for human nutrition. Ind. Crops Prod. 2006;24:75–78. doi: 10.1016/j.indcrop.2006.03.005. DOI

Porokhovinova E.A., Matveeva T.V., Khafizova G.V., Bemova V.D., Doubovskaya A.G., Kishlyan N.V., Podolnaya L.P., Gavrilova V.A. Fatty acid composition of oil crops: Genetics and genetic engineering. Genet. Resour. Crop Evol. 2022;69:2029–2045. doi: 10.1007/s10722-022-01391-w. DOI

Branquinho R.G., Alves J.M., da Silva M.A., Barbosa K.F., Travagin E.L. New oil and forage producing plant species evaluated on phosphorus doses and row spacing. Biofuels. 2023;14:157–163. doi: 10.1080/17597269.2022.2123440. DOI

Kodahl N., Frandsen H.B., Lütken H., Petersen I.L., Paredes Andrade N.J., García-Davila C., Sørensen M. Lipid composition of the Amazonian ‘Mountain Sacha Inchis’ including Plukenetia carolis-vegae Bussmann, Paniagua & C. Téllez. Sci. Rep. 2022;12:6450. doi: 10.1038/s41598-022-10404-8. PubMed DOI PMC

Mandim F., Petropoulos S.A., Santos-Buelga C., Ferreira I.C.F.R., Barros L. Effect of harvesting time on the chemical composition of Cynara cardunculus L. var. altilis blades. Agronomy. 2022;12:1705. doi: 10.3390/agronomy12071705. PubMed DOI

Strzemski M., Płachno B.J., Mazurek B., Kozłowska W., Sowa I., Lustofin K., Załuski D., Rydzik Ł., Szczepanek D., Sawicki J., et al. Morphological, anatomical, and phytochemical studies of Carlina acaulis L. cypsela. Int. J. Mol. Sci. 2020;21:9230. doi: 10.3390/ijms21239230. PubMed DOI PMC

Yu S., Du S., Yuan J., Hu Y. Fatty acid profile in the seeds and seed tissues of Paeonia L. species as new oil plant resources. Sci. Rep. 2016;6:26944. doi: 10.1038/srep26944. PubMed DOI PMC

Adamec L. Ecophysiological characteristics of turions of aquatic plants: A review. Aquat. Bot. 2018;148:64–77. doi: 10.1016/j.aquabot.2018.04.011. DOI

Sculthorpe C.D. The Biology of Aquatic Vascular Plants. Edward Arnold Ltd.; London, UK: 1967. 610p

Adamec L. Dark respiration and photosynthesis of dormant and sprouting turions of aquatic plants. Fundam. Appl. Limnol. 2011;179:151–158. doi: 10.1127/1863-9135/2011/0179-0151. DOI

Adamec L. Respiration of turions and winter apices in aquatic carnivorous plants. Biologia. 2008;63:515–520. doi: 10.2478/s11756-008-0073-4. DOI

Adamec L., Kučerová A., Janeček Š. Mineral nutrients, photosynthetic pigments and storage carbohydrates in turions of 21 aquatic plant species. Aquat. Bot. 2020;165:103238. doi: 10.1016/j.aquabot.2020.103238. DOI

Janauer G.A. Elodea canadensis and its dormant apices: An investigation of organic and mineral constituents. Aquat. Bot. 1981;11:231–243. doi: 10.1016/0304-3770(81)90063-2. DOI

Ley S., Dölger K., Appenroth K.J. Carbohydrate metabolism as a possible physiological modulator of dormancy in turions of Spirodela polyrhiza (L.) Schleiden. Plant Sci. 1997;129:1–7. doi: 10.1016/S0168-9452(97)00151-9. DOI

Płachno B.J., Adamec L., Kozieradzka-Kiszkurno M., Świątek P., Kamińska I. Cytochemical and ultrastructural aspects of aquatic carnivorous plant turions. Protoplasma. 2014;251:1449–1454. doi: 10.1007/s00709-014-0646-8. PubMed DOI PMC

Villanueva V.R., Simolat L.K., Mardon M. Polyamines in turions and young plants of hydrocharis morsus-ranae and Utricularia intermedia. Phytochemistry. 1985;24:171–172. doi: 10.1016/S0031-9422(00)80829-8. DOI

Adamec L. Seasonal growth dynamics and overwintering of the aquatic carnivorous plant Aldrovanda vesiculosa at experimental field sites. Folia Geobot. 1999;34:287–297. doi: 10.1007/BF02912815. DOI

de Dios Barajas-Lopez J., Tiwari A., Zarza X., Shaw M.W., Pascual J., Punkkinen M., Bakowska J.C., Munnik T., Fujii H. Early response to dehydration 7 remodels cell membrane lipid composition during cold stress in Arabidopsis. Plant Cell Physiol. 2021;62:80–91. doi: 10.1093/pcp/pcaa139. PubMed DOI

Gigon A., Matos A.R., Laffray D., Zuily-Fodil Y., Pham-Thi A.T. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia) Ann. Bot. 2004;94:345–351. doi: 10.1093/aob/mch150. PubMed DOI PMC

He M., Ding N.Z. Plant unsaturated fatty acids: Multiple roles in stress response. Front. Plant Sci. 2020;11:562785. doi: 10.3389/fpls.2020.562785. PubMed DOI PMC

Ivanova T.V., Maiorova O.V., Orlova Y.V., Kuznetsova E.I., Khalilova L.A., Myasoedov N.A., Balnokin Y.V., Tsydendambaev V.D. Cell ultrastructure and fatty acid composition of lipids in vegetative organs of Chenopodium album L. under salt stress conditions. Russ. J. Plant Physiol. 2016;63:763–775. doi: 10.1134/S1021443716060054. DOI

Upchurch R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008;30:967–977. doi: 10.1007/s10529-008-9639-z. PubMed DOI

Barrero-Sicilia C., Silvestre S., Haslam R.P., Michaelson L.V. Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci. 2017;263:194–200. doi: 10.1016/j.plantsci.2017.07.017. PubMed DOI PMC

Nokhsorov V.V., Dudareva L.V., Petrov K.A., Senik S.V., Chirikova N.K. Influence of extremely low temperatures of the pole of cold on the lipid and fatty-acid composition of aerial parts of the horsetail family (Equisetaceae) Plants. 2021;10:996. doi: 10.3390/plants10050996. PubMed DOI PMC

Skoczowski A., Filek M., Dubert F. The long-term effect of cold on the metabolism of winter wheat seedlings. II. composition of fatty acids of phospholipids. J. Therm. Biol. 1994;19:171–176. doi: 10.1016/0306-4565(94)90028-0. DOI

Tian J., Tian L., Chen M., Chen Y., Wei A. Low temperature affects fatty acids profiling and key synthesis genes expression patterns in Zanthoxylum bungeanum Maxim. Int. J. Mol. Sci. 2022;23:2319. doi: 10.3390/ijms23042319. PubMed DOI PMC

Voronkov A., Ivanova T. Significance of lipid fatty acid composition for resistance to winter conditions in Asplenium scolopendrium. Biology. 2022;11:507. doi: 10.3390/biology11040507. PubMed DOI PMC

Wang J., Liu Z., Liu H., Peng D., Zhang J., Chen M. Linum usitatissimum FAD2A and FAD3A enhance seed polyunsaturated fatty acid accumulation and seedling cold tolerance in Arabidopsis thaliana. Plant Sci. 2021;311:111014. doi: 10.1016/j.plantsci.2021.111014. PubMed DOI

Wang X., Yu C., Liu Y., Yang L., Li Y., Yao W., Cai Y., Yan X., Li S., Cai Y., et al. GmFAD3A, A ω-3 fatty acid desaturase gene, enhances cold tolerance and seed germination rate under low temperature in rice. Int. J. Mol. Sci. 2019;20:3796. doi: 10.3390/ijms20153796. PubMed DOI PMC

Adamec L., Kučerová A. Overwintering temperatures affect freezing temperatures of turions of aquatic plants. Flora Morphol. Distrib. Funct. Ecol. Plants. 2013;208:497–501. doi: 10.1016/j.flora.2013.07.009. DOI

Cannavacciuolo C., Pagliari S., Frigerio J., Giustra C.M., Labra M., Campone L. Natural Deep Eutectic Solvents (NADESs) combined with sustainable extraction techniques: A review of the green chemistry approach in food analysis. Foods. 2023;12:56. doi: 10.3390/foods12010056. PubMed DOI PMC

Whelan J., Fritsche K. Linoleic acid. Adv. Nutr. 2013;4:311–312. doi: 10.3945/an.113.003772. PubMed DOI PMC

Wójciak M., Feldo M., Stolarczyk P., Płachno B.J. Carnivorous plants from Nepenthaceae and Droseraceae as a source of secondary metabolites. Molecules. 2023;28:2155. doi: 10.3390/molecules28052155. PubMed DOI PMC

Wójciak M., Feldo M., Stolarczyk P., Płachno B.J. Biological potential of carnivorous plants from Nepenthales. Molecules. 2023;28:3639. doi: 10.3390/molecules28083639. PubMed DOI PMC

Płachno B.J., Kapusta M., Stolarczyk P., Świątek P. Arabinogalactan proteins in the digestive glands of Dionaea muscipula J. Ellis Traps. Cells. 2022;11:586. doi: 10.3390/cells11030586. PubMed DOI PMC

Miclea I. Secondary metabolites with biomedical applications from plants of the Sarraceniaceae family. Int. J. Mol. Sci. 2022;23:9877. doi: 10.3390/ijms23179877. PubMed DOI PMC

Fassio A., Cozzolino D. Non-destructive prediction of chemical composition in sunflower seeds by near infrared spectroscopy. Ind. Crop. Prod. 2004;20:321–329. doi: 10.1016/j.indcrop.2003.11.004. DOI

Gonzalez-Martin I., Villaescusa-Garcia V., Lopez-González F., Oiz-Jiménez C., Lobos-Ortega I.A., Gordillo A.B., Hernández-Hierro J.M. Control of quality and silo storage of sunflower seeds using near infrared technology. Grasas Aceites. 2013;64:1–124. doi: 10.3989/gya.096312. DOI

Ergun Z. The effects of plant growth substances on the oil content and fatty acid composition of Ricinus communis L.: An in vitro study. Mol. Biol. Rep. 2022;49:5241–5249. doi: 10.1007/s11033-021-06686-2. PubMed DOI

Román-Figueroa C., Cea M., Paneque M., González M.E. Oil content and fatty acid composition in castor bean naturalized accessions under mediterranean conditions in Chile. Agronomy. 2020;10:1145. doi: 10.3390/agronomy10081145. DOI

Sharafi Y., Majidi M.M., Goli S.A.H., Rashidi F. Oil content and fatty acids composition in Brassica species. Int. J. Food Prop. 2015;18:2145–2154. doi: 10.1080/10942912.2014.968284. DOI

Cartea E., De Haro-Bailón A., Padilla G., Obregón-Cano S., Del Rio-Celestino M., Ordás A. Seed oil quality of Brassica napus and Brassica rapa germplasm from northwestern Spain. Foods. 2019;27:292. doi: 10.3390/foods8080292. PubMed DOI PMC

Adamec L. How to grow Aldrovanda vesiculosa outdoors. Carniv. Plant Newsl. 1997;26:85–88. doi: 10.55360/cpn263.la167. DOI

Elansary H.O.M., Adamec L., Štorchová H. Uniformity of organellar DNA in Aldrovanda vesiculosa, an endangered aquatic carnivorous species, distributed across four continents. Aquat. Bot. 2010;92:214–220. doi: 10.1016/j.aquabot.2009.12.002. DOI

Płachno B.J., Strzemski M., Dresler S., Adamec L., Wojas-Krawczyk K., Sowa I., Danielewicz A., Miranda V.F.O. A chemometry of Aldrovanda vesiculosa L. (waterwheel, Droseraceae) populations. Molecules. 2021;26:72. doi: 10.3390/molecules26010072. PubMed DOI PMC

Hammer Ø., Harper D.A.T., Ryan P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:4.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...