Shoots and Turions of Aquatic Plants as a Source of Fatty Acids
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
38731554
PubMed Central
PMC11085451
DOI
10.3390/molecules29092062
PII: molecules29092062
Knihovny.cz E-resources
- Keywords
- Aldrovanda, GC-MS analysis, Myriophyllum, Stratiotes, Utricularia, aquatic plants, essential fatty acid, turions,
- MeSH
- alpha-Linolenic Acid analysis MeSH
- Fatty Acids * analysis MeSH
- Plant Oils chemistry analysis MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Plant Shoots * chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- alpha-Linolenic Acid MeSH
- Fatty Acids * MeSH
- Plant Oils MeSH
BACKGROUND: Fatty acids are essential for human health. Currently, there is a search for alternative sources of fatty acids that could supplement such sources as staple crops or fishes. Turions of aquatic plants accumulate a variety of substances such as starch, free sugars, amino acids, reserve proteins and lipids. Our aim is to see if turions can be a valuable source of fatty acids. METHODS: Overwintering shoots and turions of aquatic carnivorous plants were collected. The plant material was extracted with hexane. The oils were analyzed using a gas chromatograph with mass spectrometer. RESULTS: The dominant compound in all samples was linolenic acid. The oil content was different in turions and shoots. The oil content of the shoots was higher than that of the turions, but the proportion of fatty acids in the oils from the shoots was low in contrast to the oils from the turions. The turions of Utricularia species were shown to be composed of about 50% fatty acids. CONCLUSIONS: The turions of Utricularia species can be used to obtain oil with unsaturated fatty acids. In addition, the high fatty acid content of turions may explain their ability to survive at low temperatures.
Department of Analytical Chemistry Medical University of Lublin 4a Chodzki St 20 093 Lublin Poland
Department of Vascular Surgery Medical University of Lublin Staszica 11 St 20 081 Lublin Poland
See more in PubMed
He M., Qin C.X., Wang X., Ding N.Z. Plant unsaturated fatty acids: Biosynthesis and regulation. Front. Plant Sci. 2020;11:390. doi: 10.3389/fpls.2020.00390. PubMed DOI PMC
World Health Organization . Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation. Volume 91. Food and Agriculture Organization of the United Nations; Rome, Italy: 2010.
Carvalho I.S., Miranda I., Pereira H. Evaluation of oil composition of some crops suitable for human nutrition. Ind. Crops Prod. 2006;24:75–78. doi: 10.1016/j.indcrop.2006.03.005. DOI
Porokhovinova E.A., Matveeva T.V., Khafizova G.V., Bemova V.D., Doubovskaya A.G., Kishlyan N.V., Podolnaya L.P., Gavrilova V.A. Fatty acid composition of oil crops: Genetics and genetic engineering. Genet. Resour. Crop Evol. 2022;69:2029–2045. doi: 10.1007/s10722-022-01391-w. DOI
Branquinho R.G., Alves J.M., da Silva M.A., Barbosa K.F., Travagin E.L. New oil and forage producing plant species evaluated on phosphorus doses and row spacing. Biofuels. 2023;14:157–163. doi: 10.1080/17597269.2022.2123440. DOI
Kodahl N., Frandsen H.B., Lütken H., Petersen I.L., Paredes Andrade N.J., García-Davila C., Sørensen M. Lipid composition of the Amazonian ‘Mountain Sacha Inchis’ including Plukenetia carolis-vegae Bussmann, Paniagua & C. Téllez. Sci. Rep. 2022;12:6450. doi: 10.1038/s41598-022-10404-8. PubMed DOI PMC
Mandim F., Petropoulos S.A., Santos-Buelga C., Ferreira I.C.F.R., Barros L. Effect of harvesting time on the chemical composition of Cynara cardunculus L. var. altilis blades. Agronomy. 2022;12:1705. doi: 10.3390/agronomy12071705. PubMed DOI
Strzemski M., Płachno B.J., Mazurek B., Kozłowska W., Sowa I., Lustofin K., Załuski D., Rydzik Ł., Szczepanek D., Sawicki J., et al. Morphological, anatomical, and phytochemical studies of Carlina acaulis L. cypsela. Int. J. Mol. Sci. 2020;21:9230. doi: 10.3390/ijms21239230. PubMed DOI PMC
Yu S., Du S., Yuan J., Hu Y. Fatty acid profile in the seeds and seed tissues of Paeonia L. species as new oil plant resources. Sci. Rep. 2016;6:26944. doi: 10.1038/srep26944. PubMed DOI PMC
Adamec L. Ecophysiological characteristics of turions of aquatic plants: A review. Aquat. Bot. 2018;148:64–77. doi: 10.1016/j.aquabot.2018.04.011. DOI
Sculthorpe C.D. The Biology of Aquatic Vascular Plants. Edward Arnold Ltd.; London, UK: 1967. 610p
Adamec L. Dark respiration and photosynthesis of dormant and sprouting turions of aquatic plants. Fundam. Appl. Limnol. 2011;179:151–158. doi: 10.1127/1863-9135/2011/0179-0151. DOI
Adamec L. Respiration of turions and winter apices in aquatic carnivorous plants. Biologia. 2008;63:515–520. doi: 10.2478/s11756-008-0073-4. DOI
Adamec L., Kučerová A., Janeček Š. Mineral nutrients, photosynthetic pigments and storage carbohydrates in turions of 21 aquatic plant species. Aquat. Bot. 2020;165:103238. doi: 10.1016/j.aquabot.2020.103238. DOI
Janauer G.A. Elodea canadensis and its dormant apices: An investigation of organic and mineral constituents. Aquat. Bot. 1981;11:231–243. doi: 10.1016/0304-3770(81)90063-2. DOI
Ley S., Dölger K., Appenroth K.J. Carbohydrate metabolism as a possible physiological modulator of dormancy in turions of Spirodela polyrhiza (L.) Schleiden. Plant Sci. 1997;129:1–7. doi: 10.1016/S0168-9452(97)00151-9. DOI
Płachno B.J., Adamec L., Kozieradzka-Kiszkurno M., Świątek P., Kamińska I. Cytochemical and ultrastructural aspects of aquatic carnivorous plant turions. Protoplasma. 2014;251:1449–1454. doi: 10.1007/s00709-014-0646-8. PubMed DOI PMC
Villanueva V.R., Simolat L.K., Mardon M. Polyamines in turions and young plants of hydrocharis morsus-ranae and Utricularia intermedia. Phytochemistry. 1985;24:171–172. doi: 10.1016/S0031-9422(00)80829-8. DOI
Adamec L. Seasonal growth dynamics and overwintering of the aquatic carnivorous plant Aldrovanda vesiculosa at experimental field sites. Folia Geobot. 1999;34:287–297. doi: 10.1007/BF02912815. DOI
de Dios Barajas-Lopez J., Tiwari A., Zarza X., Shaw M.W., Pascual J., Punkkinen M., Bakowska J.C., Munnik T., Fujii H. Early response to dehydration 7 remodels cell membrane lipid composition during cold stress in Arabidopsis. Plant Cell Physiol. 2021;62:80–91. doi: 10.1093/pcp/pcaa139. PubMed DOI
Gigon A., Matos A.R., Laffray D., Zuily-Fodil Y., Pham-Thi A.T. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia) Ann. Bot. 2004;94:345–351. doi: 10.1093/aob/mch150. PubMed DOI PMC
He M., Ding N.Z. Plant unsaturated fatty acids: Multiple roles in stress response. Front. Plant Sci. 2020;11:562785. doi: 10.3389/fpls.2020.562785. PubMed DOI PMC
Ivanova T.V., Maiorova O.V., Orlova Y.V., Kuznetsova E.I., Khalilova L.A., Myasoedov N.A., Balnokin Y.V., Tsydendambaev V.D. Cell ultrastructure and fatty acid composition of lipids in vegetative organs of Chenopodium album L. under salt stress conditions. Russ. J. Plant Physiol. 2016;63:763–775. doi: 10.1134/S1021443716060054. DOI
Upchurch R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008;30:967–977. doi: 10.1007/s10529-008-9639-z. PubMed DOI
Barrero-Sicilia C., Silvestre S., Haslam R.P., Michaelson L.V. Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci. 2017;263:194–200. doi: 10.1016/j.plantsci.2017.07.017. PubMed DOI PMC
Nokhsorov V.V., Dudareva L.V., Petrov K.A., Senik S.V., Chirikova N.K. Influence of extremely low temperatures of the pole of cold on the lipid and fatty-acid composition of aerial parts of the horsetail family (Equisetaceae) Plants. 2021;10:996. doi: 10.3390/plants10050996. PubMed DOI PMC
Skoczowski A., Filek M., Dubert F. The long-term effect of cold on the metabolism of winter wheat seedlings. II. composition of fatty acids of phospholipids. J. Therm. Biol. 1994;19:171–176. doi: 10.1016/0306-4565(94)90028-0. DOI
Tian J., Tian L., Chen M., Chen Y., Wei A. Low temperature affects fatty acids profiling and key synthesis genes expression patterns in Zanthoxylum bungeanum Maxim. Int. J. Mol. Sci. 2022;23:2319. doi: 10.3390/ijms23042319. PubMed DOI PMC
Voronkov A., Ivanova T. Significance of lipid fatty acid composition for resistance to winter conditions in Asplenium scolopendrium. Biology. 2022;11:507. doi: 10.3390/biology11040507. PubMed DOI PMC
Wang J., Liu Z., Liu H., Peng D., Zhang J., Chen M. Linum usitatissimum FAD2A and FAD3A enhance seed polyunsaturated fatty acid accumulation and seedling cold tolerance in Arabidopsis thaliana. Plant Sci. 2021;311:111014. doi: 10.1016/j.plantsci.2021.111014. PubMed DOI
Wang X., Yu C., Liu Y., Yang L., Li Y., Yao W., Cai Y., Yan X., Li S., Cai Y., et al. GmFAD3A, A ω-3 fatty acid desaturase gene, enhances cold tolerance and seed germination rate under low temperature in rice. Int. J. Mol. Sci. 2019;20:3796. doi: 10.3390/ijms20153796. PubMed DOI PMC
Adamec L., Kučerová A. Overwintering temperatures affect freezing temperatures of turions of aquatic plants. Flora Morphol. Distrib. Funct. Ecol. Plants. 2013;208:497–501. doi: 10.1016/j.flora.2013.07.009. DOI
Cannavacciuolo C., Pagliari S., Frigerio J., Giustra C.M., Labra M., Campone L. Natural Deep Eutectic Solvents (NADESs) combined with sustainable extraction techniques: A review of the green chemistry approach in food analysis. Foods. 2023;12:56. doi: 10.3390/foods12010056. PubMed DOI PMC
Whelan J., Fritsche K. Linoleic acid. Adv. Nutr. 2013;4:311–312. doi: 10.3945/an.113.003772. PubMed DOI PMC
Wójciak M., Feldo M., Stolarczyk P., Płachno B.J. Carnivorous plants from Nepenthaceae and Droseraceae as a source of secondary metabolites. Molecules. 2023;28:2155. doi: 10.3390/molecules28052155. PubMed DOI PMC
Wójciak M., Feldo M., Stolarczyk P., Płachno B.J. Biological potential of carnivorous plants from Nepenthales. Molecules. 2023;28:3639. doi: 10.3390/molecules28083639. PubMed DOI PMC
Płachno B.J., Kapusta M., Stolarczyk P., Świątek P. Arabinogalactan proteins in the digestive glands of Dionaea muscipula J. Ellis Traps. Cells. 2022;11:586. doi: 10.3390/cells11030586. PubMed DOI PMC
Miclea I. Secondary metabolites with biomedical applications from plants of the Sarraceniaceae family. Int. J. Mol. Sci. 2022;23:9877. doi: 10.3390/ijms23179877. PubMed DOI PMC
Fassio A., Cozzolino D. Non-destructive prediction of chemical composition in sunflower seeds by near infrared spectroscopy. Ind. Crop. Prod. 2004;20:321–329. doi: 10.1016/j.indcrop.2003.11.004. DOI
Gonzalez-Martin I., Villaescusa-Garcia V., Lopez-González F., Oiz-Jiménez C., Lobos-Ortega I.A., Gordillo A.B., Hernández-Hierro J.M. Control of quality and silo storage of sunflower seeds using near infrared technology. Grasas Aceites. 2013;64:1–124. doi: 10.3989/gya.096312. DOI
Ergun Z. The effects of plant growth substances on the oil content and fatty acid composition of Ricinus communis L.: An in vitro study. Mol. Biol. Rep. 2022;49:5241–5249. doi: 10.1007/s11033-021-06686-2. PubMed DOI
Román-Figueroa C., Cea M., Paneque M., González M.E. Oil content and fatty acid composition in castor bean naturalized accessions under mediterranean conditions in Chile. Agronomy. 2020;10:1145. doi: 10.3390/agronomy10081145. DOI
Sharafi Y., Majidi M.M., Goli S.A.H., Rashidi F. Oil content and fatty acids composition in Brassica species. Int. J. Food Prop. 2015;18:2145–2154. doi: 10.1080/10942912.2014.968284. DOI
Cartea E., De Haro-Bailón A., Padilla G., Obregón-Cano S., Del Rio-Celestino M., Ordás A. Seed oil quality of Brassica napus and Brassica rapa germplasm from northwestern Spain. Foods. 2019;27:292. doi: 10.3390/foods8080292. PubMed DOI PMC
Adamec L. How to grow Aldrovanda vesiculosa outdoors. Carniv. Plant Newsl. 1997;26:85–88. doi: 10.55360/cpn263.la167. DOI
Elansary H.O.M., Adamec L., Štorchová H. Uniformity of organellar DNA in Aldrovanda vesiculosa, an endangered aquatic carnivorous species, distributed across four continents. Aquat. Bot. 2010;92:214–220. doi: 10.1016/j.aquabot.2009.12.002. DOI
Płachno B.J., Strzemski M., Dresler S., Adamec L., Wojas-Krawczyk K., Sowa I., Danielewicz A., Miranda V.F.O. A chemometry of Aldrovanda vesiculosa L. (waterwheel, Droseraceae) populations. Molecules. 2021;26:72. doi: 10.3390/molecules26010072. PubMed DOI PMC
Hammer Ø., Harper D.A.T., Ryan P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:4.