A Chemometry of Aldrovanda vesiculosa L. (Waterwheel, Droseraceae) Populations
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33375725
PubMed Central
PMC7795913
DOI
10.3390/molecules26010072
PII: molecules26010072
Knihovny.cz E-zdroje
- Klíčová slova
- aquatic carnivorous plant, carnivorous plant, critically endangered aquatic species, phenetics, phylogeny, plant taxonomy,
- MeSH
- biologické modely MeSH
- Droseraceae chemie genetika MeSH
- fylogeneze MeSH
- genetická variace genetika MeSH
- populace genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Afrika MeSH
- Austrálie MeSH
The genus Aldrovanda is a Palaeogene element containing a single extant species, Aldrovanda vesiculosa L. This aquatic carnivorous herb has a very wide range of distribution, natively covering four continents; however, it is a critically endangered aquatic plant species worldwide. Previous studies revealed that A. vesiculosa had an extremely low genetic variation. The main aim of the present paper is to explore, using chemometric tools, the diversity of 16 A. vesiculosa populations from various sites from four continents (Eurasia, Africa, Australia). Using chemometric data as markers for genetic diversity, we show the relationships of 16 A. vesiculosa populations from various sites, including four continents. Phytochemical markers allowed the identification of five well-supported (bootstrap > 90%) groups among the 16 populations sampled. The principal component analysis data support the idea that the strongly related African (Botswana) and Australian (Kimberley, NT, NW Australia) populations are the most distant ones, separated from the European and Asian ones. However, considering the five Australian populations sampled, three are nested within the Eurasian group. The chemometric data are correlated positively with the geographical distances between the samples, which suggests a tendency toward isolation for the most distant populations.
Department of Analytical Chemistry Medical University of Lublin Chodźki 4a 20 093 Lublin Poland
Department of Paediatric Orthopaedics Medical University of Lublin 20 093 Lublin Poland
Department of Pneumology Oncology and Allergology Medical University of Lublin 20 090 Lublin Poland
Zobrazit více v PubMed
Lloyd F.E. In: The Carnivorous Plants. Verdoorn F., editor. Waltham; New York, NY, USA: 1942.
Król E., Płachno B.J., Adamec L., Stolarz M., Dziubińska H., Trebacz K. Quite a few reasons for calling carnivores “the most wonderful plants in the world”. Ann. Bot. 2012;109:47–64. doi: 10.1093/aob/mcr249. PubMed DOI PMC
Cross A. Aldrovanda: The Waterwheel Plant. Redfern Natural History Productions Ltd.; Poole, UK: 2012.
Cameron K.M., Wurdack K.J., Jobson R.W. Molecular evidence for the common origin of snap-traps among carnivorous plants. Am. J. Bot. 2002;89:1503–1509. doi: 10.3732/ajb.89.9.1503. PubMed DOI
Palfalvi G., Hackl T., Terhoeven N., Shibata T.F., Nishiyama T., Ankenbrand M., Becker D., Förster F., Freund M., Iosip A., et al. Genomes of the venus flytrap and close relatives unveil the roots of plant carnivory. Curr. Biol. 2020;30:2312–2320. doi: 10.1016/j.cub.2020.04.051. PubMed DOI PMC
Fleischmann A., Schlauer J., Smith S.A., Givnish T.J. Evolution of carnivory in angiosperms. In: Elison A., Adamec L., editors. Carnivorous Plants: Physiology, Ecology, and Evolution. Oxford University Press; Oxford, UK: 2018. pp. 22–42. Chapter 3.
Yakubovskaya T.V. The genus Aldrovanda (Droseraceae) in the Pleistocene of the Belorussian SSR. Bot. Zhurnal. 1991;76:109–118.
Adamec L. Biological flora of Central Europe: Aldrovanda vesiculosa L. Perspect. Plant. Ecol. Evol. Syst. 2018;35:8–21. doi: 10.1016/j.ppees.2018.10.001. DOI
Cross A., Adamec L. Aldrovanda vesiculosa. The IUCN Red List of Threatened Species 2020: E.T162346A83998419. [(accessed on 25 December 2020)]; Available online: https://www.iucnredlist.org/
Cross A.T., Krueger T.A., Gonella P.M., Robinson A.S., Fleischmann A.S. Conservation of carnivorous plants in the age of extinction. Glob. Ecol. Conserv. 2020;24:e01272. doi: 10.1016/j.gecco.2020.e01272. DOI
Svobodová I., Adamec L. Preliminary identification of the agent causing the fungal disease of Aldrovanda vesiculosa. Carniv. Plant. Newsl. 2020;49:56–64.
Darwin C. Insectivorous Plants. John Murray; London, UK: 1875.
Akeret B. Ein neuer Fundort von Aldrovanda vesiculosa L. in der Nordschweiz und einige Bemerkungen zu Stratiotes aloides L. Bot. Helv. 1993;103:193–199.
Horstmann M., Heier L., Kruppert S., Weiss L.C., Tollrian R., Adamec L., Westermeier A., Speck T., Poppinga S. Comparative prey spectra analyses on the endangered aquatic carnivorous waterwheel plant (Aldrovanda vesiculosa, Droseraceae) at several naturalized microsites in the Czech Republic and Germany. Integr. Org. Biol. 2019;1:1–19. doi: 10.1093/iob/oby012. PubMed DOI PMC
Poppinga S., Joyeux M. Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa. Phys. Rev. E. 2011;84 doi: 10.1103/PhysRevE.84.041928. PubMed DOI
Poppinga S., Smaij J., Westermeier A.S., Horstmann M., Kruppert S., Tollrian R., Speck T. Prey capture analyses in the carnivorous aquatic waterwheel plant (Aldrovanda vesiculosa L., Droseraceae) Sci. Rep. 2019;9 doi: 10.1038/s41598-019-54857-w. PubMed DOI PMC
Poppinga S., Bauer U., Speck T., Volkov A.G. Motile traps. In: Elison A., Adamec L., editors. Carnivorous Plants: Physiology, Ecology, and Evolution. Oxford University Press; Oxford, UK: 2018. pp. 180–193.
Westermeier A.S., Sachse R., Poppinga S., Vögele P., Adamec L., Speck T., Bischoff M. How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps. Proc. R. Soc. B Biol. Sci. 2018;285 doi: 10.1098/rspb.2018.0012. PubMed DOI PMC
Atsuzawa K., Kanaizumi D., Ajisaka M., Kamada T., Sakamoto K., Matsushima H., Kaneko Y. Fine structure of Aldrovanda vesiculosa L: The peculiar lifestyle of an aquatic carnivorous plant elucidated by electron microscopy using cryo-techniques. Microscopy. 2020;69:214–226. doi: 10.1093/jmicro/dfaa019. PubMed DOI
Westermeier A.S., Hiss N., Speck T., Poppinga S. Functional–morphological analyses of the delicate snap-traps of the aquatic carnivorous waterwheel plant (Aldrovanda vesiculosa) with 2D and 3D imaging techniques. Ann. Bot. 2020:1099–1107. doi: 10.1093/aob/mcaa135. PubMed DOI PMC
Adamec L., Tichý M. Flowering of Aldrovanda vesiculosa in outdoor culture in the Czech Republic and isozyme variability of its European populations. Carniv. Plant. Newsl. 1997;26:99–103.
Maldonado San Martín A.P., Adamec L., Suda J., Mes T.H.M., Štorchová H. Genetic variation within the endangered species Aldrovanda vesiculosa (Droseraceae) as revealed by RAPD analysis. Aquat. Bot. 2003;75:159–172. doi: 10.1016/S0304-3770(02)00173-0. DOI
Hoshi Y., Shirakawa J., Hasebe M. Nucleotide sequence variation was unexpectedly low in an endangered species, Aldrovanda vesiculosa L. (Droseraceae) Chromosom. Bot. 2006;1:27–32. doi: 10.3199/iscb.1.27. DOI
Elansary H.O.M., Adamec L., Štorchová H. Uniformity of organellar DNA in Aldrovanda vesiculosa, an endangered aquatic carnivorous species, distributed across four continents. Aquat. Bot. 2010;92:214–220. doi: 10.1016/j.aquabot.2009.12.002. DOI
Govindaraghavan S., Hennell J.R., Sucher N.J. From classical taxonomy to genome and metabolome: Towards comprehensive quality standards for medicinal herb raw materials and extracts. Fitoterapia. 2012;83:979–988. doi: 10.1016/j.fitote.2012.05.001. PubMed DOI
Liu Z., Liu Y., Liu C., Song Z., Li Q., Zha Q., Lu C., Wang C., Ning Z., Zhang Y., et al. The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy. Chem. Cent. J. 2013;7 doi: 10.1186/1752-153X-7-118. PubMed DOI PMC
Ding X., Ni Y., Kokot S. Differentiation of cultivars of flos Chrysanthemum with the use of high-performance liquid chromatography fingerprints and chemometrics. Anal. Lett. 2014;47:2023–2034. doi: 10.1080/00032719.2014.893439. DOI
Dresler S., Kubrak T., Rutkowska E., Gagoś M., Bogucka-Kocka A., Świeboda R., Wójcik M. Comparison of analytical methods in chemometric fingerprinting of metallicolous and non-metallicolous populations of Echium vulgare L. Phytochem. Anal. 2016:239–248. doi: 10.1002/pca.2620. PubMed DOI
Dresler S., Szymczak G., Wójcik M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm. Biol. 2017;55:691–695. doi: 10.1080/13880209.2016.1265986. PubMed DOI PMC
Strzemski M., Dresler S., Sowa I., Kurach Ł., Kováčik J., Wojas-Krawczyk K., Wójciak M. Direct spectroscopic and GC profiling combined with chemometric analysis as an alternative approach to investigate Hypericum species: Is it possible to replace HPLC? Ind. Crops Prod. 2020;157 doi: 10.1016/j.indcrop.2020.112930. DOI
Culham A., Gornall R.J. The taxonomic significance of naphthoquinones in the Droseraceae. Biochem. Syst. Ecol. 1994;22:507–515. doi: 10.1016/0305-1978(94)90045-0. DOI
Egan P.A., Van Der Kooy F. Phytochemistry of the carnivorous sundew genus Drosera (Droseraceae)-Future perspectives and ethnopharmacological relevance. Chem. Biodivers. 2013;10:1774–1790. doi: 10.1002/cbdv.201200359. PubMed DOI
Braunberger C., Zehl M., Conrad J., Wawrosch C., Strohbach J., Beifuss U., Krenn L. Flavonoids as chemotaxonomic markers in the genus Drosera. Phytochemistry. 2015;118:74–82. doi: 10.1016/j.phytochem.2015.08.017. PubMed DOI
Huber H. Aldrovanda, L. In: Hegi G., editor. Illustrierte Flora von Mitteleuropa. Carl Hanser Verlag; Műnchen, Germany: 1961. pp. 18–20.
Sculthorpe C.D. The Biology of Aquatic Vascular Plants. Edward Arnold Ltd.; London, UK: 1967.
Huang Y.J., Ji X.P., Su T., Deng C.L., Ferguson D.K., Yu T.S., Yang X., Sun H., Zhou Z.K. Habitat, climate and potential plant food resources for the late Miocene Shuitangba hominoid in Southwest China: Insights from carpological remains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017;470:63–71. doi: 10.1016/j.palaeo.2017.01.014. DOI
Wang W., Messing J. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed) BMC Plant. Biol. 2012;12 doi: 10.1186/1471-2229-12-5. PubMed DOI PMC
Adamec L., Lev J. The introduction of the aquatic carnivorous plant Aldrovanda vesiculosa to new potential sites in the Czech Republic: A five-year investigation. Folia Geobot. 1999;34:299–305. doi: 10.1007/BF02912816. DOI
Cross A.T., Adamec L., Turner S.R., Dixon K.W., Merritt D.J. Seed reproductive biology of the rare aquatic carnivorous plant Aldrovanda vesiculosa (Droseraceae) Bot. J. Linn. Soc. 2016;180:515–529. doi: 10.1111/boj.12387. DOI
Onelli E., Beretta M., Moscatelli A., Caccianiga M., Pozzi M., Stroppa N., Adamec L. The aquatic carnivorous plant Aldrovanda vesiculosa (Droseraceae) exhibits altered developmental stages in male gametophyte. Protoplasma. 2020 doi: 10.1007/s00709-020-01553-6. PubMed DOI
Baldwin B.G., Sanderson M.J., Porter J.M., Wojciechowski M.F., Campbell C.S., Donoghue M.J. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 1995;82:247–277. doi: 10.2307/2399880. DOI
Buckler E.S., Ippolito A., Holtsford T.P. The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications. Genetics. 1997;145:821–832. PubMed PMC
Xiao L.Q., Möller M., Zhu H. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: Incomplete concerted evolution and the origin of pseudogenes. Mol. Phylogenet. Evol. 2010;55:168–177. doi: 10.1016/j.ympev.2009.11.020. PubMed DOI
De Miranda V.F.O., Martins V.G., Furlan A., Bacci M. Plant or fungal sequences? An alternative optimized PCR protocol to avoid ITS (nrDNA) misamplification. Brazilian Arch. Biol. Technol. 2010;53:141–152. doi: 10.1590/S1516-89132010000100018. DOI
Strzemski M., Wójciak-Kosior M., Sowa I., Kocjan R., Tyszczuk-Rotko K. Methodological approach to determine carlina oxide–a main volatile constituent of Carlina acaulis L. essential oil. Talanta. 2019;191:504–508. doi: 10.1016/j.talanta.2018.09.005. PubMed DOI
Jiang W., Zhang Z.M., Yun Y., Zhan D.J., Zheng Y.B., Liang Y.Z., Yang Z.Y., Yu L. Comparisons of five algorithms for chromatogram alignment. Chromatographia. 2013;76:1067–1078. doi: 10.1007/s10337-013-2513-8. DOI
Hammer Ø., Harper D.A.T., Ryan P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:1–9.
Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–220. PubMed
Ersts P.J. Geographic Distance Matrix Generator (version 1.2.3) [(accessed on 25 December 2020)]; Available online: http://biodiversityinformatics.amnh.org/open_source/gdmg.
Shoots and Turions of Aquatic Plants as a Source of Fatty Acids