Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory

. 2020 Jun 22 ; 30 (12) : 2312-2320.e5. [epub] 20200514

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32413308
Odkazy

PubMed 32413308
PubMed Central PMC7308799
DOI 10.1016/j.cub.2020.04.051
PII: S0960-9822(20)30567-4
Knihovny.cz E-zdroje

Most plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata. We identified an early whole-genome duplication in the family as source for carnivory-associated genes. Recruitment of genes to the trap from the root especially was a major mechanism in the evolution of carnivory, supported by family-specific duplications. Still, these genomes belong to the gene poorest land plants sequenced thus far, suggesting reduction of selective pressure on different processes, including non-carnivorous nutrient acquisition. Our results show how non-carnivorous plants evolved into the most skillful green hunters on the planet.

Advanced Science Research Center Kanazawa University Kanazawa 920 0934 Japan

Department for Bioinformatics Biocenter University Würzburg Am Hubland 97074 Würzburg Germany; Center for Computational and Theoretical Biology Faculty for Biology University Würzburg Klara Oppenheimer Weg 32 Campus Hubland Nord 97074 Würzburg Germany

Department for Bioinformatics Biocenter University Würzburg Am Hubland 97074 Würzburg Germany; Institute for Molecular Plant Physiology and Biophysics University Würzburg Julius von Sachs Platz 2 97082 Würzburg Germany

Department of Functional Ecology Institute of Botany CAS 379 01 Třeboň Czech Republic

Department of Plant Science School of Agriculture Tokai University Kumamoto 862 8652 Japan

Faculty of Education Gifu University Gifu 501 1193 Japan

Institute for Molecular Plant Physiology and Biophysics University Würzburg Julius von Sachs Platz 2 97082 Würzburg Germany

Institute for Molecular Plant Physiology and Biophysics University Würzburg Julius von Sachs Platz 2 97082 Würzburg Germany; Center for Computational and Theoretical Biology Faculty for Biology University Würzburg Klara Oppenheimer Weg 32 Campus Hubland Nord 97074 Würzburg Germany

Institute for Molecular Plant Physiology and Biophysics University Würzburg Julius von Sachs Platz 2 97082 Würzburg Germany; Zoology Department College of Science King Saud University Riyadh Saudi Arabia

Institute of Bio and Geosciences Forschungszentrum Jülich Corrensstraße 3 06466 Gatersleben Germany

Institute of Horticultural Production Systems Woody Plant and Propagation Physiology Leibniz University Hannover Herrenhäuser Str 2 30419 Hannover Germany

Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany

National Institute for Basic Biology Okazaki 444 8585 Japan

National Institute for Basic Biology Okazaki 444 8585 Japan; Department of Basic Biology The Graduate School for Advanced Studies SOKENDAI Okazaki 444 8585 Japan

National Institute for Basic Biology Okazaki 444 8585 Japan; Department of Basic Biology The Graduate School for Advanced Studies SOKENDAI Okazaki 444 8585 Japan; Institute for Molecular Plant Physiology and Biophysics University Würzburg Julius von Sachs Platz 2 97082 Würzburg Germany

National Institute for Basic Biology Okazaki 444 8585 Japan; Department of Basic Biology The Graduate School for Advanced Studies SOKENDAI Okazaki 444 8585 Japan; School of Engineering Utsunomiya University Utsunomiya 321 8585 Japan

Komentář v

PubMed

Zobrazit více v PubMed

Charles Darwin . Second Edition. John Murray; 1875. Insectivorous Plants.

Givnish T.J., Burkhardt E.L., Happel R.E., Weintraub J.D. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am. Nat. 1984;124:479–497.

Albert V.A., Williams S.E., Chase M.W. Carnivorous plants: phylogeny and structural evolution. Science. 1992;257:1491–1495. PubMed

Fleischmann A., Schlauer J., Smith S.A., Givnish T.J. Evolution of carnivory in angiosperms. In: Ellis A.M., Adamec L., editors. Carnivorous Plants: Physiology, Ecology, and Evolution. Oxford University; 2018. pp. 22–42.

Böhm J., Scherzer S., Krol E., Kreuzer I., von Meyer K., Lorey C., Mueller T.D., Shabala L., Monte I., Solano R. The venus flytrap dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Curr. Biol. 2016;26:286–295. PubMed PMC

Mithöfer A., Reichelt M., Nakamura Y. Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin. Plant Biol (Stuttg) 2014;16:982–987. PubMed

Hedrich R., Neher E. Venus flytrap: how an excitable, carnivorous plant works. Trends Plant Sci. 2018;23:220–234. PubMed

Ibarra-Laclette E., Lyons E., Hernández-Guzmán G., Pérez-Torres C.A., Carretero-Paulet L., Chang T.H., Lan T., Welch A.J., Juárez M.J.A., Simpson J. Architecture and evolution of a minute plant genome. Nature. 2013;498:94–98. PubMed PMC

Leushkin E.V., Sutormin R.A., Nabieva E.R., Penin A.A., Kondrashov A.S., Logacheva M.D. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genomics. 2013;14:476. PubMed PMC

Butts C.T., Bierma J.C., Martin R.W. Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis. Proteins. 2016;84:1517–1533. PubMed PMC

Fukushima K., Fang X., Alvarez-Ponce D., Cai H., Carretero-Paulet L., Chen C., Chang T.H., Farr K.M., Fujita T., Hiwatashi Y. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol. 2017;1:59. PubMed

Hoshi Y., Azumatani M., Suyama C., Adamec L. Determination of ploidy level and nuclear DNA content in the Droseraceae by flow cytometry. Cytologia (Tokyo) 2017;82:321–327.

Yang Y., Moore M.J., Brockington S.F., Mikenas J., Olivieri J., Walker J.F., Smith S.A. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytol. 2018;217:855–870. PubMed

Feschotte C., Jiang N., Wessler S.R. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 2002;3:329–341. PubMed

Tørresen O.K., Star B., Mier P., Andrade-Navarro M.A., Bateman A., Jarnot P., Gruca A., Grynberg M., Kajava A.V., Promponas V.J. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019;47:10994–11006. PubMed PMC

Terhoeven N., Schultz J., Hackl T. reper: Genome-wide identification, classification and quantification of repetitive elements without an assembled genome. J. Open Source Softw. 2018;3:527.

Sato H., Shibata F., Murata M. Characterization of a Mis12 homologue in Arabidopsis thaliana. Chromosome Res. 2005;13:827–834. PubMed

Komaki S., Schnittger A. The spindle assembly checkpoint in Arabidopsis is rapidly shut off during severe stress. Dev. Cell. 2017;43:172–185.e5. PubMed

Kondo K., Nontachaiyapoom S. An evidence on diffused centromeres in Drosera chromosomes provided by scanning electron microscopy. Chromosom. Bot. 2008;3:79–81.

Kolodin P., Cempírková H., Bureš P., Horová L., Veleba A., Francová J., Adamec L., Zedek F. Holocentric chromosomes may be an apomorphy of Droseraceae. Plant Syst. Evol. 2018;304:1289–1296.

Drinnenberg I.A., deYoung D., Henikoff S., Malik H.S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife. 2014;3:e03676. PubMed PMC

Cross A. Redfern Natural History Productions; 2012. Aldrovanda: The Waterwheel Plant.

Adlassnig W., Koller-Peroutka M., Bauer S., Koshkin E., Lendl T., Lichtscheidl I.K. Endocytotic uptake of nutrients in carnivorous plants. Plant J. 2012;71:303–313. PubMed

Scherzer S., Shabala L., Hedrich B., Fromm J., Bauer H., Munz E., Jakob P., Al-Rascheid K.A.S., Kreuzer I., Becker D. Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proc. Natl. Acad. Sci. USA. 2017;114:4822–4827. PubMed PMC

Bopp M., Weiler E. Leaf blade movement of Drosera and auxin distribution. Naturwissenschaften. 1985;72:434.

Nakamura Y., Reichelt M., Mayer V.E., Mithöfer A. Jasmonates trigger prey-induced formation of ‘outer stomach’ in carnivorous sundew plants. Proc. Biol. Sci. 2013;280:20130228. PubMed PMC

Bemm F., Becker D., Larisch C., Kreuzer I., Escalante-Perez M., Schulze W.X., Ankenbrand M., Van de Weyer A.L., Krol E., Al-Rasheid K.A. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res. 2016;26:812–825. PubMed PMC

Schug J., Schuller W.P., Kappen C., Salbaum J.M., Bucan M., Stoeckert C.J., Jr. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 2005;6:R33. PubMed PMC

Kreuzwieser J., Scheerer U., Kruse J., Burzlaff T., Honsel A., Alfarraj S., Georgiev P., Schnitzler J.P., Ghirardo A., Kreuzer I. The Venus flytrap attracts insects by the release of volatile organic compounds. J. Exp. Bot. 2014;65:755–766. PubMed PMC

Jürgens A., El-Sayed A.M., Suckling D.M. Do carnivorous plants use volatiles for attracting prey insects? Funct. Ecol. 2009;23:875–887.

Escalante-Pérez M., Jaborsky M., Reinders J., Kurzai O., Hedrich R., Ache P. Poplar extrafloral nectar is protected against plant and human pathogenic fungus. Mol. Plant. 2012;5:1157–1159. PubMed

Lin I.W., Sosso D., Chen L.Q., Gase K., Kim S.G., Kessler D., Klinkenberg P.M., Gorder M.K., Hou B.H., Qu X.Q. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature. 2014;508:546–549. PubMed

Scherzer S., Krol E., Kreuzer I., Kruse J., Karl F., von Rüden M., Escalante-Perez M., Müller T., Rennenberg H., Al-Rasheid K.A.S. The Dionaea muscipula ammonium channel DmAMT1 provides NH4+ uptake associated with Venus flytrap’s prey digestion. Curr. Biol. 2013;23:1649–1657. PubMed

Hsu F.-C., Chou M.-Y., Chou S.-J., Li Y.-R., Peng H.-P., Shih M.-C. Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. Plant Cell. 2013;25:2699–2713. PubMed PMC

Chen Y.-F., Li L.-Q., Xu Q., Kong Y.-H., Wang H., Wu W.-H. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell. 2009;21:3554–3566. PubMed PMC

Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W.-L., Gomez-Gomez L., Boller T., Ausubel F.M., Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature. 2002;415:977–983. PubMed

Robatzek S., Somssich I.E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 2002;16:1139–1149. PubMed PMC

Skibbe M., Qu N., Galis I., Baldwin I.T. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell. 2008;20:1984–2000. PubMed PMC

Fukushima K., Fang X., Alvarez-Ponce D., Cai H., Carretero-Paulet L., Chen C., Chang T.H., Farr K.M., Fujita T., Hiwatashi Y. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol. 2017;1:59. PubMed

Renner T., Specht C.D. A sticky situation: assessing adaptations for plant carnivory in the Caryophyllales by means of stochastic character mapping. Int. J. Plant Sci. 2011;172:889–901.

Leebens-Mack J.H., Barker M.S., Carpenter E.J., Deyholos M.K., Gitzendanner M.A., Graham S.W., Grosse I., Li Z., Melkonian M., Mirarab S., One Thousand Plant Transcriptomes Initiative One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–685. PubMed PMC

Heubl G., Bringmann G., Meimberg H. Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales--revisited. Plant Biol (Stuttg) 2006;8:821–830. PubMed

Smith S.A., Brown J.W., Yang Y., Bruenn R., Drummond C.P., Brockington S.F., Walker J.F., Last N., Douglas N.A., Moore M.J. Disparity, diversity, and duplications in the Caryophyllales. New Phytol. 2018;217:836–854. PubMed

Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. PubMed PMC

Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. PubMed PMC

Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K., Earl A.M. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. PubMed PMC

Gnerre S., Maccallum I., Przybylski D., Ribeiro F.J., Burton J.N., Walker B.J., Sharpe T., Hall G., Shea T.P., Sykes S. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA. 2011;108:1513–1518. PubMed PMC

Pryszcz L.P., Gabaldón T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 2016;44:e113. PubMed PMC

English A.C., Richards S., Han Y., Wang M., Vee V., Qu J., Qin X., Muzny D.M., Reid J.G., Worley K.C., Gibbs R.A. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE. 2012;7:e47768. PubMed PMC

Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. PubMed

Smit, A., Hubley, R., and Green, P. (2015). RepeatMasker Open-3.0. http://www.repeatmasker.org.

Smit, A., and Hubley, R. (2013-2015). RepeatMasker Open-4.0. http://www.repeatmasker.org.

Cantarel B.L., Korf I., Robb S.M.C., Parra G., Ross E., Moore B., Holt C., Sánchez Alvarado A., Yandell M. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–196. PubMed PMC

Stanke M., Schöffmann O., Morgenstern B., Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics. 2006;7:62. PubMed PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC

Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D.R., Pimentel H., Salzberg S.L., Rinn J.L., Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012;7:562–578. PubMed PMC

The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46:2699. PubMed PMC

Emms D.M., Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. PubMed PMC

Wang Y., Tang H., Debarry J.D., Tan X., Li J., Wang X., Lee T.H., Jin H., Marler B., Guo H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. PubMed PMC

McLeay R.C., Bailey T.L. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics. 2010;11:165. PubMed PMC

Librado P., Vieira F.G., Rozas J. BadiRate: estimating family turnover rates by likelihood-based methods. Bioinformatics. 2012;28:279–281. PubMed

Adamec L. How to grow Aldrovanda vesiculosa outdoors. Carniv. Plant Newsl. 1997;26:85–88.

Clouse J.W., Adhikary D., Page J.T., Ramaraj T., Deyholos M.K., Udall J.A., Fairbanks D.J., Jellen E.N., Maughan P.J. The amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome. 2016;9:1–14. PubMed

Zou C., Chen A., Xiao L., Muller H.M., Ache P., Haberer G., Zhang M., Jia W., Deng P., Huang R. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res. 2017;27:1327–1340. PubMed PMC

Jones P., Binns D., Chang H.-Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. PubMed PMC

Shameer K., Naika M.B., Mathew O.K., Sowdhamini R. POEAS: automated plant phenomic analysis using plant ontology. Bioinform. Biol. Insights. 2014;8:209–214. PubMed PMC

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. PubMed PMC

Emms D.M., Kelly S. STRIDE: species tree root inference from gene duplication events. Mol. Biol. Evol. 2017;34:3267–3278. PubMed PMC

Kumar S., Stecher G., Suleski M., Hedges S.B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. PubMed

Khan A., Fornes O., Stigliani A., Gheorghe M., Castro-Mondragon J.A., van der Lee R., Bessy A., Chèneby J., Kulkarni S.R., Tan G. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46(D1):D260–D266. PubMed PMC

Grant C.E., Bailey T.L., Noble W.S. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–1018. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace