Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32413308
PubMed Central
PMC7308799
DOI
10.1016/j.cub.2020.04.051
PII: S0960-9822(20)30567-4
Knihovny.cz E-zdroje
- Klíčová slova
- Droseraceae, WRKY transcription factors, gene loss, jasmonate signaling, neofunctionalization, tissue-specific genes, transposon classification, whole-genome duplications,
- MeSH
- biologická evoluce * MeSH
- Droseraceae genetika MeSH
- genom rostlinný * MeSH
- masožravé rostliny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Most plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata. We identified an early whole-genome duplication in the family as source for carnivory-associated genes. Recruitment of genes to the trap from the root especially was a major mechanism in the evolution of carnivory, supported by family-specific duplications. Still, these genomes belong to the gene poorest land plants sequenced thus far, suggesting reduction of selective pressure on different processes, including non-carnivorous nutrient acquisition. Our results show how non-carnivorous plants evolved into the most skillful green hunters on the planet.
Advanced Science Research Center Kanazawa University Kanazawa 920 0934 Japan
Department of Functional Ecology Institute of Botany CAS 379 01 Třeboň Czech Republic
Department of Plant Science School of Agriculture Tokai University Kumamoto 862 8652 Japan
Faculty of Education Gifu University Gifu 501 1193 Japan
Institute of Bio and Geosciences Forschungszentrum Jülich Corrensstraße 3 06466 Gatersleben Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany
Zobrazit více v PubMed
Charles Darwin . Second Edition. John Murray; 1875. Insectivorous Plants.
Givnish T.J., Burkhardt E.L., Happel R.E., Weintraub J.D. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am. Nat. 1984;124:479–497.
Albert V.A., Williams S.E., Chase M.W. Carnivorous plants: phylogeny and structural evolution. Science. 1992;257:1491–1495. PubMed
Fleischmann A., Schlauer J., Smith S.A., Givnish T.J. Evolution of carnivory in angiosperms. In: Ellis A.M., Adamec L., editors. Carnivorous Plants: Physiology, Ecology, and Evolution. Oxford University; 2018. pp. 22–42.
Böhm J., Scherzer S., Krol E., Kreuzer I., von Meyer K., Lorey C., Mueller T.D., Shabala L., Monte I., Solano R. The venus flytrap dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Curr. Biol. 2016;26:286–295. PubMed PMC
Mithöfer A., Reichelt M., Nakamura Y. Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin. Plant Biol (Stuttg) 2014;16:982–987. PubMed
Hedrich R., Neher E. Venus flytrap: how an excitable, carnivorous plant works. Trends Plant Sci. 2018;23:220–234. PubMed
Ibarra-Laclette E., Lyons E., Hernández-Guzmán G., Pérez-Torres C.A., Carretero-Paulet L., Chang T.H., Lan T., Welch A.J., Juárez M.J.A., Simpson J. Architecture and evolution of a minute plant genome. Nature. 2013;498:94–98. PubMed PMC
Leushkin E.V., Sutormin R.A., Nabieva E.R., Penin A.A., Kondrashov A.S., Logacheva M.D. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genomics. 2013;14:476. PubMed PMC
Butts C.T., Bierma J.C., Martin R.W. Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis. Proteins. 2016;84:1517–1533. PubMed PMC
Fukushima K., Fang X., Alvarez-Ponce D., Cai H., Carretero-Paulet L., Chen C., Chang T.H., Farr K.M., Fujita T., Hiwatashi Y. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol. 2017;1:59. PubMed
Hoshi Y., Azumatani M., Suyama C., Adamec L. Determination of ploidy level and nuclear DNA content in the Droseraceae by flow cytometry. Cytologia (Tokyo) 2017;82:321–327.
Yang Y., Moore M.J., Brockington S.F., Mikenas J., Olivieri J., Walker J.F., Smith S.A. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytol. 2018;217:855–870. PubMed
Feschotte C., Jiang N., Wessler S.R. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 2002;3:329–341. PubMed
Tørresen O.K., Star B., Mier P., Andrade-Navarro M.A., Bateman A., Jarnot P., Gruca A., Grynberg M., Kajava A.V., Promponas V.J. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019;47:10994–11006. PubMed PMC
Terhoeven N., Schultz J., Hackl T. reper: Genome-wide identification, classification and quantification of repetitive elements without an assembled genome. J. Open Source Softw. 2018;3:527.
Sato H., Shibata F., Murata M. Characterization of a Mis12 homologue in Arabidopsis thaliana. Chromosome Res. 2005;13:827–834. PubMed
Komaki S., Schnittger A. The spindle assembly checkpoint in Arabidopsis is rapidly shut off during severe stress. Dev. Cell. 2017;43:172–185.e5. PubMed
Kondo K., Nontachaiyapoom S. An evidence on diffused centromeres in Drosera chromosomes provided by scanning electron microscopy. Chromosom. Bot. 2008;3:79–81.
Kolodin P., Cempírková H., Bureš P., Horová L., Veleba A., Francová J., Adamec L., Zedek F. Holocentric chromosomes may be an apomorphy of Droseraceae. Plant Syst. Evol. 2018;304:1289–1296.
Drinnenberg I.A., deYoung D., Henikoff S., Malik H.S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife. 2014;3:e03676. PubMed PMC
Cross A. Redfern Natural History Productions; 2012. Aldrovanda: The Waterwheel Plant.
Adlassnig W., Koller-Peroutka M., Bauer S., Koshkin E., Lendl T., Lichtscheidl I.K. Endocytotic uptake of nutrients in carnivorous plants. Plant J. 2012;71:303–313. PubMed
Scherzer S., Shabala L., Hedrich B., Fromm J., Bauer H., Munz E., Jakob P., Al-Rascheid K.A.S., Kreuzer I., Becker D. Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proc. Natl. Acad. Sci. USA. 2017;114:4822–4827. PubMed PMC
Bopp M., Weiler E. Leaf blade movement of Drosera and auxin distribution. Naturwissenschaften. 1985;72:434.
Nakamura Y., Reichelt M., Mayer V.E., Mithöfer A. Jasmonates trigger prey-induced formation of ‘outer stomach’ in carnivorous sundew plants. Proc. Biol. Sci. 2013;280:20130228. PubMed PMC
Bemm F., Becker D., Larisch C., Kreuzer I., Escalante-Perez M., Schulze W.X., Ankenbrand M., Van de Weyer A.L., Krol E., Al-Rasheid K.A. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res. 2016;26:812–825. PubMed PMC
Schug J., Schuller W.P., Kappen C., Salbaum J.M., Bucan M., Stoeckert C.J., Jr. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 2005;6:R33. PubMed PMC
Kreuzwieser J., Scheerer U., Kruse J., Burzlaff T., Honsel A., Alfarraj S., Georgiev P., Schnitzler J.P., Ghirardo A., Kreuzer I. The Venus flytrap attracts insects by the release of volatile organic compounds. J. Exp. Bot. 2014;65:755–766. PubMed PMC
Jürgens A., El-Sayed A.M., Suckling D.M. Do carnivorous plants use volatiles for attracting prey insects? Funct. Ecol. 2009;23:875–887.
Escalante-Pérez M., Jaborsky M., Reinders J., Kurzai O., Hedrich R., Ache P. Poplar extrafloral nectar is protected against plant and human pathogenic fungus. Mol. Plant. 2012;5:1157–1159. PubMed
Lin I.W., Sosso D., Chen L.Q., Gase K., Kim S.G., Kessler D., Klinkenberg P.M., Gorder M.K., Hou B.H., Qu X.Q. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature. 2014;508:546–549. PubMed
Scherzer S., Krol E., Kreuzer I., Kruse J., Karl F., von Rüden M., Escalante-Perez M., Müller T., Rennenberg H., Al-Rasheid K.A.S. The Dionaea muscipula ammonium channel DmAMT1 provides NH4+ uptake associated with Venus flytrap’s prey digestion. Curr. Biol. 2013;23:1649–1657. PubMed
Hsu F.-C., Chou M.-Y., Chou S.-J., Li Y.-R., Peng H.-P., Shih M.-C. Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. Plant Cell. 2013;25:2699–2713. PubMed PMC
Chen Y.-F., Li L.-Q., Xu Q., Kong Y.-H., Wang H., Wu W.-H. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell. 2009;21:3554–3566. PubMed PMC
Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W.-L., Gomez-Gomez L., Boller T., Ausubel F.M., Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature. 2002;415:977–983. PubMed
Robatzek S., Somssich I.E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 2002;16:1139–1149. PubMed PMC
Skibbe M., Qu N., Galis I., Baldwin I.T. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell. 2008;20:1984–2000. PubMed PMC
Fukushima K., Fang X., Alvarez-Ponce D., Cai H., Carretero-Paulet L., Chen C., Chang T.H., Farr K.M., Fujita T., Hiwatashi Y. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol. 2017;1:59. PubMed
Renner T., Specht C.D. A sticky situation: assessing adaptations for plant carnivory in the Caryophyllales by means of stochastic character mapping. Int. J. Plant Sci. 2011;172:889–901.
Leebens-Mack J.H., Barker M.S., Carpenter E.J., Deyholos M.K., Gitzendanner M.A., Graham S.W., Grosse I., Li Z., Melkonian M., Mirarab S., One Thousand Plant Transcriptomes Initiative One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–685. PubMed PMC
Heubl G., Bringmann G., Meimberg H. Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales--revisited. Plant Biol (Stuttg) 2006;8:821–830. PubMed
Smith S.A., Brown J.W., Yang Y., Bruenn R., Drummond C.P., Brockington S.F., Walker J.F., Last N., Douglas N.A., Moore M.J. Disparity, diversity, and duplications in the Caryophyllales. New Phytol. 2018;217:836–854. PubMed
Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. PubMed PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. PubMed PMC
Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K., Earl A.M. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. PubMed PMC
Gnerre S., Maccallum I., Przybylski D., Ribeiro F.J., Burton J.N., Walker B.J., Sharpe T., Hall G., Shea T.P., Sykes S. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA. 2011;108:1513–1518. PubMed PMC
Pryszcz L.P., Gabaldón T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 2016;44:e113. PubMed PMC
English A.C., Richards S., Han Y., Wang M., Vee V., Qu J., Qin X., Muzny D.M., Reid J.G., Worley K.C., Gibbs R.A. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE. 2012;7:e47768. PubMed PMC
Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. PubMed
Smit, A., Hubley, R., and Green, P. (2015). RepeatMasker Open-3.0. http://www.repeatmasker.org.
Smit, A., and Hubley, R. (2013-2015). RepeatMasker Open-4.0. http://www.repeatmasker.org.
Cantarel B.L., Korf I., Robb S.M.C., Parra G., Ross E., Moore B., Holt C., Sánchez Alvarado A., Yandell M. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–196. PubMed PMC
Stanke M., Schöffmann O., Morgenstern B., Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics. 2006;7:62. PubMed PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC
Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D.R., Pimentel H., Salzberg S.L., Rinn J.L., Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012;7:562–578. PubMed PMC
The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46:2699. PubMed PMC
Emms D.M., Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. PubMed PMC
Wang Y., Tang H., Debarry J.D., Tan X., Li J., Wang X., Lee T.H., Jin H., Marler B., Guo H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. PubMed PMC
McLeay R.C., Bailey T.L. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics. 2010;11:165. PubMed PMC
Librado P., Vieira F.G., Rozas J. BadiRate: estimating family turnover rates by likelihood-based methods. Bioinformatics. 2012;28:279–281. PubMed
Adamec L. How to grow Aldrovanda vesiculosa outdoors. Carniv. Plant Newsl. 1997;26:85–88.
Clouse J.W., Adhikary D., Page J.T., Ramaraj T., Deyholos M.K., Udall J.A., Fairbanks D.J., Jellen E.N., Maughan P.J. The amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome. 2016;9:1–14. PubMed
Zou C., Chen A., Xiao L., Muller H.M., Ache P., Haberer G., Zhang M., Jia W., Deng P., Huang R. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res. 2017;27:1327–1340. PubMed PMC
Jones P., Binns D., Chang H.-Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. PubMed PMC
Shameer K., Naika M.B., Mathew O.K., Sowdhamini R. POEAS: automated plant phenomic analysis using plant ontology. Bioinform. Biol. Insights. 2014;8:209–214. PubMed PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. PubMed PMC
Emms D.M., Kelly S. STRIDE: species tree root inference from gene duplication events. Mol. Biol. Evol. 2017;34:3267–3278. PubMed PMC
Kumar S., Stecher G., Suleski M., Hedges S.B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. PubMed
Khan A., Fornes O., Stigliani A., Gheorghe M., Castro-Mondragon J.A., van der Lee R., Bessy A., Chèneby J., Kulkarni S.R., Tan G. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46(D1):D260–D266. PubMed PMC
Grant C.E., Bailey T.L., Noble W.S. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–1018. PubMed PMC
Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae
Recent ecophysiological, biochemical and evolutional insights into plant carnivory
Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae
A Chemometry of Aldrovanda vesiculosa L. (Waterwheel, Droseraceae) Populations