Recent ecophysiological, biochemical and evolutional insights into plant carnivory

. 2021 Aug 26 ; 128 (3) : 241-259.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34111238

BACKGROUND: Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE: We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS: Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.

Zobrazit více v PubMed

Abbott MJ, Brewer JS. 2016. Competition does not explain the absence of a carnivorous pitcher plant from a nutrient-rich marsh. Plant and Soil 409: 495–504.

Adamec L. 1997. Mineral nutrition of carnivorous plants: a review. Botanical Review 63: 273–299.

Adamec L. 2002. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytologist 155: 89–100. PubMed

Adamec L. 2005. Ecophysiological characterization of carnivorous plant roots: oxygen fluxes, respiration, and water exudation. Biologia Plantarum 49: 247–255.

Adamec L. 2006. Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species. Plant Biology 8: 765–769. PubMed

Adamec L. 2011. Ecophysiological look at plant carnivory: why are plants carnivorous? In: Seckbach J, Dubinski Z, eds. All flesh is grass. Plant–animal interrelationships. Cellular origin, life in extreme habitats and astrobiology vol. 16. Dordrecht: Springer Science + Business Media B. V., 455–489.

Adamec L. 2012. Why do aquatic carnivorous plants prefer growing in dystrophic waters? Acta Biologica Slovenica 55: 3–8.

Adamec L. 2014. Different reutilization of mineral nutrients in senescent leaves of aquatic and terrestrial carnivorous Utricularia species. Aquatic Botany 119: 1–6.

Adamec L. 2018. Ecophysiology of aquatic carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 256–269.

Adamec L, Pavlovič A. 2018. Mineral nutrition of terrestrial carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 221–231.

Adamec L, Kohout P, Beneš K. 2006. Root anatomy of three carnivorous plant species. Carnivorous Plant Newsletter 35: 19–22.

Adamec L, Sirová D, Vrba J. 2010. Contrasting growth effects of prey capture in two carnivorous plant species. Fundamental and Applied Limnology 176: 153–160.

Adlassnig W, Peroutka M, Eder G, Pois W, Lichtscheidl IK. 2006. Ecophysiological observations on Drosophyllum lusitanicum. Ecological Research 21: 255–262.

Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T, Lichtscheidl IK. 2012. Endocytotic uptake of nutrients in carnivorous plants. The Plant Journal 71: 303–313. PubMed

Albert VA, Jobson RW, Michael TP, Taylor DJ. 2010. The carnivorous bladderwort (Utricularia, Lentibulariaceae): a system inflates. Journal of Experimental Botany 61: 5–9. PubMed

Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T. 2021. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae). Journal of Experimental Botany 72: 1946–1961. PubMed PMC

Athauda SBP, Matsumoto K, Rajapakshe S, et al. . 2004. Enzymic and structural characterization of nepenthesin, a unique member of a novel subfamily of aspartic proteinases. The Biochemical Journal 381: 295–306. PubMed PMC

Atsuzawa, K, Kanaizumi D, Ajisaka M, et al. . 2020. Fine structure of Aldrovanda vesiculosa L: the peculiar lifestyle of an aquatic carnivorous plant elucidated by electron microscopy using cryo-techniques. Microscopy 69: 214–226. PubMed

Bárta J, Stone JD, Pech J, et al. . 2015. The transcriptome of Utricularia vulgaris, a rootless plant with minimalist genome, reveals extreme alternative splicing and only moderate sequence similarity with Utricularia gibba. BMC Plant Biology 15: e78. PubMed PMC

Bazile V, Le Moguédec G, Marshall DJ, Gaume L. 2015. Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants. Annals of Botany 115: 705–716. PubMed PMC

Bemm F, Becker D, Larisch C, et al. . 2016. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Research 26: 812–825. PubMed PMC

Bishop JG, Dean AM, Mitchell-Olds T. 2000. Rapid evolution in plant chitinase: molecular targets of selection in plant pathogen coevolution. Proceedings of the National Academy of Sciences, USA 97: 5322–5327. PubMed PMC

Bittleston LS. 2018. Commensals of Nepenthes pitchers. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 314–332.

Böhm J, Scherzer S, Król E, et al. . 2016a. The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Current Biology 26: 286–295. PubMed PMC

Böhm J, Scherzer S, Shabala S, et al. . 2016b. Venus flytrap HKT1-type channel provides for prey sodium uptake into carnivorous plant without conflicting with electrical excitability. Molecular Plant 9: 428–436. PubMed PMC

Brewer JS, Schlauer J. 2018. Biogeography and habitats of of carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 7–21.

Brewer JS, Baker DJ, Nero AS, Patterson AL, Roberts RS, Turner LM. 2011. Carnivory in plants as a beneficial trait in wetlands. Aquatic Botany 94: 62–70.

Buch F, Kaman WE, Bikker FJ, Yilamujiang A, Mithöfer A. 2015. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous Nepenthes plants. PLoS One 10: e0118853. PubMed PMC

Butts CT, Bierma JC, Martin RW. 2016a. Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis. Proteins 84: 1517–1533. PubMed PMC

Butts CT, Zhang X, Kelly JE, et al. . 2016b. Sequence comparison, molecular modeling, and network analysis predict structural diversity in cysteine proteases from the Cape sundew. Drosera capensis. Computational and Structural Biotechnology Journal 14: 271–282. PubMed PMC

Cannon SB, Mitra A, Baumgarten A, Young ND, May G. 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology 4: e10. PubMed PMC

Cao M, Li Z, Dai X, Wu X, Li Y, Wu S. 2019. The complete plastid genome of carnivorous pitcher plant Cephalotus follicularis. Mitochondrial DNA Part B 4: 2025–2027.

Cao T, Xie P, Ni L, Zhang M, Xu J. 2009. Carbon and nitrogen metabolism of an eutrophication tolerative macrophyte, Potamogeton crispus, under NH4+ stress and low light availability. Environmental Experimental Botany 66: 74–78.

Capó-Bauçà S, Font-Carrascosa M, Ribas-Carbó M, Pavlovič A, Galmés J. 2020. Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes × ventrata. Annals of Botany 126: 25–37. PubMed PMC

Carretero-Paulet L, Librado P, Chang T-H, et al. . 2015. High gene family turnover rates and gene space adaptation in the compact genome of the carnivorous plant Utricularia gibba. Molecular Biology and Evolution 32: 1284–1295. PubMed

Chia TF, Aung HH, Osipov AN, Goh NK, Chia LS. 2004. Carnivorous pitcher plant uses free radicals in the digestion of prey. Redox Report 9: 255–261. PubMed

Crawford RMM. 1989. Studies in plant survival. Studies in ecology. Vol. 11. Oxford: Blackwell Scientific Publications.

Cross AT, Paniw M, Scatigna AV, et al. . 2018. Systematics and evolution of small genera of carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 120–134.

Darnowski DW, Carroll DM, Płachno BJ, Kabanoff E, Cinnamon E. 2006. Evidence of protocarnivory in triggerplants (Stylidium spp.; Stylidiaceae). Plant Biology 8: 805–812. PubMed

Darwin C. 1875. Insectivorous plants. London: John Murray.

Dávila-Lara A, Rodríguez-López CE, O’Connor SE, Mithöfer A. 2020. Metabolomics analysis reveals tissue-specific metabolite compositions in leaf blade and traps of carnivorous Nepenthes plants. International Journal of Molecular Sciences 21: e4376. PubMed PMC

Dkhar J, Pareek A. 2019. ASYMMETRIC LEAVES1 and REVOLUTA are the key regulatory genes associated with pitcher development in Nepenthes khasiana. Scientific Reports 9: e6318. PubMed PMC

Dkhar J, Bhaskar YK, Lynn A, Pareek A. 2020. Pitchers of Nepenthes khasiana express several digestive-enzyme encoding genes, harbor mostly fungi and probably evolved through changes in the expression of leaf polarity genes. BMC Plant Biology 20: e524. PubMed PMC

Doxey AC, Yaish MWF, Moffatt BA, Griffith M, McConkey BJ. 2007. Functional divergence in the Arabidopsis β-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Molecular Biology and Evolution 24: 1045–1055. PubMed

Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A. 2006. Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana. Journal of Experimental Botany 57: 2775–2784. PubMed

Eilenberg H, Pnini-Cohen S, Rahamim Y, et al. . 2010. Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana. Journal of Experimental Botany 61: 911–922. PubMed PMC

Ellison AM. 2006. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biology 8: 740–747. PubMed

Ellison AM, Adamec L. 2011. Ecophysiological traits of terrestrial and aquatic carnivorous plants: are the costs and benefits the same? Oikos 120: 1721–1731.

Ellison AM, Adamec L, eds. 2018a. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press.

Ellison AM, Adamec L. 2018b. Introduction: what is a carnivorous plant? In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 3–6.

Ellison AM, Gotelli NJ. 2002. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea. Proceedings of the National Academy of Sciences, USA 99: 4409–4412. PubMed PMC

Ellison AM, Gotelli NJ. 2009. Energetics and the evolution of carnivorous plants – Darwin’s ‘most wonderful plants in the world‘. Journal of Experimental Botany 60: 19–42. PubMed

Escalante-Pérez M, Król E, Stange A, et al. . 2011. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proceedings of the National Academy of Sciences, USA 108: 15492–15497. PubMed PMC

Fasbender L, Maurer D, Kreuzwieser J.et al. . 2017. The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration. New Phytologist 214: 597–606. PubMed

Filyushin MA, Kochieva EZ, Shchennikova AV, et al. . 2019. Identification and expression analysis of chitinase genes in pitchers of Nepenthes sp. during development. Doklady Biochemistry and Biophysics 484: 29–32. PubMed

Fitzpatrick MC, Ellison AM. 2018. Estimating the exposure of carnivorous plants to rapid climatic change. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 389–407.

Fleischmann A, Michael TP, Rivadavia F, et al. . 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Annals of Botany 114: 1651–1663. PubMed PMC

Fleischmann A, Schlauer J, Smith SA, Givnish TJ. 2018. Evolution of carnivory in angiosperms. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 23–41.

Fonseca S, Chini A, Hamberg M, et al. . 2009. (+)-7-iso-Jasmonoyl-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology 5: 344–350. PubMed

Force A, Cresko WA, Pickett FB, Proulx SR, Amemiya C, Lynch M. 1999. The origin of subfunctions and modular gene regulation. Genetics 170: 433–446. PubMed PMC

Fukushima K, Fujita H, Yamaguchi T, Kawaguchi M, Tsukaya H, Hasebe M. 2015. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nature Communication 6: e6450. PubMed PMC

Fukushima K, Fang X, Alvarez-Ponce D, et al. . 2017. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nature Ecology & Evolution 1: e0059. PubMed

Fukushima K, Narukawa H, Palfalvi G, Hasebe M. 2021. A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant Cephalotus follicularis. Proceedings of the Royal Society B: Biological Sciences 288: 20202568. PubMed PMC

Gao P, Loeffler TS, Honsel A, et al. . 2015. Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula. New Phytologist 205: 1320–1329. PubMed

Gaume L, Bazile V, Boussès P, Le Moguédec G, Marshall DJ. 2019. The biotic and abiotic drivers of ‘living’ diversity in the deadly traps of Nepenthes pitcher plants. Biodiversity and Conservation 28: 345–362.

Gergely ZR, Martinez DE, Donohoe BS, Mogelsvang S, Herder R, Staehelin LA. 2018. 3D electron tomographic and biochemical analysis of ER, Golgi and trans Golgi network membrane systems in stimulated Venus flytrap (Dionaea muscipula) glandular cells. Journal of Biological Research-Thessaloniki 25: e15. PubMed PMC

Gilbert KJ, Bittleston LS, Tong W, Pierce NE. 2020. Tropical pitcher plants (Nepenthes) act as ecological filters by altering properties of their fluid microenvironments. Scientific Reports 10: e4431. PubMed PMC

Givnish TJ. 1989. Ecology and evolution of carnivorous plants. In: Abrahamson WG, ed. Plant–animal interactions. New York: McGraw-Hill Book Co., 243–290.

Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD. 1984. Carnivory in the bromeliad Brocchinia reducta with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient poor habitats. American Naturalist 124: 479–497.

Givnish TJ, Sparks KW, Hunter SJ, Pavlovič A. 2018. Why are plants carnivorous? Cost/benefit analysis, whole-plant growth, and the context-specific advantages of botanical carnivory. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 232–255.

Goh HH, Baharin A, Salleh FM, Ravee R, Wan Zakaria WNA, Noor NM. 2020. Transcriptome-wide shift from photosynthesis and energy metabolism upon endogenous fluid protein depletion in young Nepenthes ampullaria pitchers. Scientific Reports 10: e6575. PubMed PMC

Graham SW, Lam VKY, Merckx VSFT. 2017. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytologist 214: 48–55. PubMed

Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770–777. PubMed

Grover A. 2012. Plant chitinases: genetic diversity and physiological roles. Critical Reviews in Plant Sciences 31: 57–73.

Gruzdev EV, Kadnikov VV, Beletsky AV, et al. . 2019. Plastid genomes of carnivorous plants Drosera rotundifolia and Nepenthes × ventrata reveal evolutionary patterns resembling those observed in parasitic plants. International Journal of Molecular Sciences 20: e4107. PubMed PMC

Hanslin HM, Karlsson PS. 1996. Nitrogen uptake from prey and substrate as affected by prey capture level and plant reproductive status in four carnivorous plant species. Oecologia 106: 370–375. PubMed

Hatcher CR, Ryves DB, Millett J. 2020. The function of secondary metabolites in plant carnivory. Annals of Botany 125: 399–411. PubMed PMC

Hedrich R, Fukushima K. 2021. On the origin of carnivory: molecular physiology and evolution of plants on an animal diet. Annual Review of Plant Biology 72: 133–153. PubMed

Hessen DO, Jeyasingh PD, Neiman M, Weider LJ. 2009. Genome streamlining and the elemental costs of growth. Trends in Ecology and Evolution 25: 75–80. PubMed

Horner JD, Płachno BJ, Bauer U, Di Giusto B. 2018. Attraction of prey. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 157–166.

Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, et al. . 2013. Architecture and evolution of a minute plant genome. Nature 498: 94–98. PubMed PMC

Jakšová J, Libiaková M, Bokor B, Petřík I, Novák O, Pavlovič A. 2020. Taste for protein: chemical signal from prey stimulates enzyme secretion through jasmonate signalling in the carnivorous plant Venus fytrap. Plant Physiology and Biochemistry 146: 90–97. PubMed

Jakšová J, Novák O, Adamec L, Pavlovič A. 2021. Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). Plant Physiology and Biochemistry 166: 459–465. PubMed

Jobson RW, Nielsen R, Laakkonen L, Wikström M, Albert VA. 2004. Adaptive evolution of cytochrome c oxidase: infrastructure for a carnivorous plant radiation. Proceedings of the National Academy of Sciences, USA 101: 18064–18068. PubMed PMC

Jung J-H, Domian M, Klose C.et al. . 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354: 886–889. PubMed

Juniper BE, Robins RJ, Joel DM. 1989. The carnivorous plants. London: Academic Press Ltd.

Justin SHFW, Armstrong W. 1987. The anatomical characteristics of roots and plant response to soil flooding. New Phytologist 106: 465–495.

Karagatzides JD, Butler JL, Ellison AM. 2009. The pitcher plant Sarracenia purpurea can directly acquire organic nitrogen and short-circuit the inorganic nitrogen cycle. PLoS One 4: e6164. PubMed PMC

Kocáb O, Jakšová J, Novák O, et al. . 2020. Jasmonate-independent regulation of digestive enzyme activity in the carnivorous butterwort Pinguicula × Tina. Journal of Experimental Botany 71: 3749–3758. PubMed PMC

Kocáb O, Bačovčinová M, Bokor B, et al. . 2021. Enzyme activities in two sister-species of carnivorous pitcher plants (Nepenthes) with contrasting nutrient sequestration strategies. Plant Physiology and Biochemistry 161: 113–121. PubMed

Koller-Peroutka M, Krammer SPavlik A, Edlinger M, Lang I, Adlassnig W. 2019. Endocytosis and digestion in carnivorous pitcher plants of the family Sarraceniaceae. Plants (Basel) 8: e367. PubMed PMC

Krausko M, Perutka Z, Šebela M, et al. . 2017. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. New Phytologist 213: 1818–1835. PubMed

Kruse J, Gao P, Eibelmeier M, Alfarraj S, Rennenberg H. 2017. Dynamics of amino acid redistribution in the carnivorous Venus flytrap (Dionaea muscipula) after digestion of 13C/15N-labelled prey. Plant Biology 19: 886–895. PubMed

Laakkonen L, Jobson RW, Albert VA. 2006. A new model for the evolution of carnivory in the bladderwort plant (Utricularia): adaptive changes in cytochrome c oxidase (COX) provide respiratory power. Plant Biology 8: 758–764. PubMed

Lan T, Renner T, Ibarra-Laclette E.et al. . 2017. Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proceedings of the National Academy of Sciences, USA 114: 4435–4441. PubMed PMC

La Porta CAM, Lionetti MC, Bonfanti S, et al. . 2019. Metamaterial architecture from a self-shaping carnivorous plant. Proceedings of the National Academy of Sciences, USA 116: 18777–18782. PubMed PMC

Lee L, Zhang Y, Ozar B, Sensen CW, Schriemer DC. 2016. Carnivorous nutrition in pitcher plants (Nepenthes spp.) via an unusual complement of endogenous enzymes. Journal of Proteome Research 15: 3108–3117. PubMed

Legendre L, Darnowski DW. 2018. Biotechnology with carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 270–282.

Legris M, Klose C, Burgie S, et al. . 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354: 897–900. PubMed

Li M, Wang F, Li S, et al. . 2020. Importers drive leaf-to-leaf jasmonic acid transmission in wound-induced systemic immunity. Molecular Plant 13: 1485–1498. PubMed

Li N, Han X, Feng D, Yuan D, Huang L-J. 2019. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? International Journal of Molecular Sciences 20: e671. PubMed PMC

Libantová J, Kämäräinen T, Moravčíková J, Matušíková I, Salaj J. 2009. Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.): chitinases in sundew tissues. Molecular Biology Reports 36: 851–856. PubMed

Libiaková M, Floková K, Novák O, Slováková L, Pavlovič A. 2014. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates. PLoS One 9: e104424. PubMed PMC

Lloyd FE. 1942. The carnivorous plants. Waltham, MA: Chronica Botanica.

Matušíková I, Salaj J, Moravčíková J, Mlynárová L, Nap JP, Libantová J. 2005. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222: 1020–1027. PubMed

Matušíková I, Pavlovič A, Renner T. 2018. Biochemistry of prey digestion and nutrient absorption. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 207–220.

Michalko J, Mészáros P, Renner T, et al. . 2017. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase. Planta 245: 77–91. PubMed

Miller TE, Bradshaw WE, Holzapfel CM, 2018. Pitcher-plant communities as model systems for addressing fundamental questions in ecology and evolution. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 333–348.

Mithöfer A2011. Carnivorous pitcher plants: insights in an old topic. Phytochemistry 72: 1678–1682. PubMed

Mithöfer A, Reichelt M, Nakamura Y. 2014. Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin. Plant Biology 5: 982–987. PubMed

Miya A, Albert P, Shinya T, et al. . 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences, USA 104: 19613–19618. PubMed PMC

Monte I, Franco-Zorrilla JM, García-Casado G, et al. . 2020. A single JAZ repressor controls the jasmonate pathway in Marchantia polymorpha. Molecular Plant 12: 195–198. PubMed

Moran JA, Merbach MA, Livingston NJ, Clarke CM, Booth WE. 2001. Termite prey specialization in the pitcher plant Nepenthes albomarginata – evidence from stable isotope analysis. Annals of Botany 88: 307–311.

Moran JA, Hawkins BJ, Gowen BE, Robbins SL. 2010. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies. Journal of Experimental Botany 61: 1365–1374. PubMed PMC

Moran JA, Anderson B, Chin L, Greenwood M, Clarke C, 2018. Nutritional mutualisms of Nepenthes and Roridula. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 359–371.

Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. 2013. Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500: 422–426. PubMed

Nakamura Y, Reichelt M, Mayer VE, Mithöfer A. 2013. Jasmonates trigger prey-induced formation of ‘outer stomach’ in carnivorous sundew plants. Proceedings of the Royal Society B: Biological Sciences 280: e20130228-28. PubMed PMC

Nevill PG, Howell KA, Cross AT, et al. . 2019. Plastome-wide rearrangements and gene losses in carnivorous Droseraceae. Genome Biology and Evolution 11: 472–485. PubMed PMC

Nge FJ, Lambers H. 2018. Reassessing protocarnivory – how hungry are triggerplants? Australian Journal of Botany 66: 325–330.

Nishimura E, Kawahara M, Kodaira R, et al. . 2013. S-like ribonuclease gene expression in carnivorous plants. Planta 238: 955–967. PubMed

Nishimura E, Jumyo S, Arai N, et al. . 2014. Structural and functional characteristics of S-like ribonucleases from carnivorous plants. Planta 240: 147–159. PubMed

Owen TP, Lennon KA. 1999. Structure and development of the pitchers from the carnivorous plant Nepenthes alata (Nepenthaceae). American Journal of Botany 86: 1382–1390. PubMed

Owen TP, Lennon KA, Santo MJ, Anderson AN. 1999. Pathways for nutrient transport in the pitchers of the carnivorous plant Nepenthes alata. Annals of Botany 84: 459–466.

Palfalvi G, Hackl T, Terhoeven N, et al. . 2020. Genomes of the Venus flytrap and close relatives unveil the roots of plant carnivory. Current Biology 30: 2312–2320. PubMed PMC

Passarinho PA, de Vries SC. 2002. Arabidopsis chitinases: a genomic survey. The Arabidopsis Book 1: e0023. PubMed PMC

Paszota P, Escalante-Perez M, Thomsen LR, et al. . 2014. Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. Biochimica et Biophysica Acta 1844: 374–383. PubMed

Pavlovič A, Mithöfer A. 2019. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. Journal of Experimental Botany 70: 3379–3389. PubMed

Pavlovič A, Saganová M. 2015. A novel insight into the cost–benefit model for the evolution of botanical carnivory. Annals of Botany 115: 1075–1092. PubMed PMC

Pavlovič A, Singerová L, Demko V, Hudák J. 2009. Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis. Annals of Botany 104: 307–314. PubMed PMC

Pavlovič A, Singerová L, Demko V, Šantrůček J, Hudák J. 2010. Root nutrient uptake enhances photosynthetic assimilation in prey-deprived carnivorous pitcher plant Nepenthes talangensis. Photosynthetica 48: 227–233.

Pavlovič A, Slováková Ľ, Pandolfi C, Mancuso S. 2011. On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). Journal of Experimental Botany 62: 1991–2000. PubMed PMC

Pavlovič A, Jakšová J, Novák O. 2017. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytologist 216: 927–938. PubMed

Pavlovič A, Libiaková M, Bokor B, Petřík I, Novák O, Baluška F. 2020. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula). Annals of Botany 125: 173–183. PubMed PMC

Płachno BJ, Adamec L, Huet H. 2009. Mineral nutrient uptake from prey and glandular phosphatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory. Annals of Botany 104: 649–654. PubMed PMC

Poppinga S, Hartmeyer SRH, Seidel R, Masselter T, Hartmeyer I, Speck T. 2012. Catapulting tentacles in a sticky carnivorous plant. PLoS One 7: e45735. PubMed PMC

Procko C, Murthy SE, Keenan WT, et al. . 2021. Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous Droseraceae plants. eLife 10: e64250. PubMed PMC

Ravee R, Salleh FM, Goh HH. 2018. Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 6: e4914. PubMed PMC

Renner T, Specht CD. 2012. Molecular and functional evolution of class I chitinases for plant carnivory in the Caryophyllales. Molecular Biology and Evolution 29: 2971–2985. PubMed

Renner T, Specht CD. 2013. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. Current Opinion in Plant Biology 16: 436–442. PubMed PMC

Renner T, Lan T, Farr KM, et al. . 2018. Carnivorous plant genomes. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 135–153.

Rice BA. 2011. What exactly is a carnivorous plant? Carnivorous Plant Newsletter 40: 19–23.

Risør MW, Thomsen LR, Sanggaard KW, et al. . 2016. Enzymatic and structural characterization of the major endopeptidase in the Venus flytrap digestion fluid. Journal of Biological Chemistry 291: 2271–2287. PubMed PMC

Rottloff S, Stieber R, Maischak H, Turini FG, Heubl G, Mithöfer A. 2011. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. Journal of Experimental Botany 62: 4639–4647. PubMed PMC

Rottloff S, Miguel S, Biteau F, et al. . 2016. Proteome analysis of digestive fluids in Nepenthes pitchers. Annals of Botany 117: 479–495. PubMed PMC

Sadowski E-M, Seyfullah LJ, Sadowski F, Fleischmann A, Behling H, Schmidt AR. 2015. Carnivorous leaves from Baltic amber. Proceedings of the National Academy of Sciences, USA 112: 190–195. PubMed PMC

Scherzer S, Król E, Kreuzer I, et al. . 2013. The Dionaea muscipula ammonium channel DmAMT1 provides NH4+ uptake associated with Venus flytrap’s prey digestion. Current Biology 23: 1649–1657. PubMed

Scherzer S, Böhm J, Krol E.et al. , 2015. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proceedings of the National Academy of Sciences, USA 112: 7309–7314. PubMed PMC

Schulze W, Frommer WB, Ward JM. 1999. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. The Plant Journal 17: 637–646. PubMed

Schulze WX, Sanggaard KW, Kreuzer I, et al. . 2012. The protein composition of the digestive fluid from the Venus flytrap sheds light on prey digestion mechanisms. Molecular & Cell Proteomics 11: 1306–1319. PubMed PMC

Sheard LB, Tan X, Mao H, et al. . 2010. Jasmonate perception by inositolphosphate- potentiated COI1–JAZ co-receptor. Nature 468: 400–405. PubMed PMC

Shikanai T. 2007. Cyclic electron transport around photosystem I: genetic approaches. Annual Review of Plant Biology 58: 199–217. PubMed

Silva SR, Diaz YCA, Penha HA, et al. . 2016. The chloroplast genome of Utricularia reniformis sheds light on the evolution of the ndh gene complex of terrestrial carnivorous plants from the Lentibulariaceae family. PLoS One 11: e0165176. PubMed PMC

Sirová D, Adamec L, Vrba J. 2003. Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytologist 159: 669–675. PubMed

Sirová D, Šantrůček J, Adamec L, et al. . 2014. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important? Annals of Botany 114: 125–133. PubMed PMC

Sirová D, Bárta J, Borovec J, Vrba J. 2018a. The Utricularia-associated microbiome: composition, function, and ecology. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 349–358.

Sirová D, Bárta J, Šimek K, et al. . 2018b. Hunters or farmers? Microbiome characteristics help elucidate the diet composition in an aquatic carnivorous plant. Microbiome 6: e225. PubMed PMC

Spomer GG. 1999. Evidence of protocarnivorous capabilities in Geranium viscosissimum and Potentilla arguta and other sticky plants. International Journal of Plant Science 160: 98–101.

Suda H, Mano H, Toyota M, et al. . 2020. Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants 6: 1219–1224. PubMed

Thines B, Katsir L, Melotto M, et al. . 2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448: 661–665. PubMed

Thornhill AH, Harper IS, Hallam ND. 2008. The development of the digestive glands and enzymes in the pitchers of three Nepenthes species: N. alata, N. tobaica, and N. ventricosa (Nepenthaceae). International Journal of Plant Sciences 169: 615–624.

Tiffen P. 2004. Comparative evolutionary histories of chitinase genes in the genus Zea and family Poaceae. Genetics 167: 1331–1340. PubMed PMC

Van der Ent A, Sumail S, Clarke C. 2015. Habitat differentiation of obligate ultramafic Nepenthes endemic to Mount Kinabalu and Mount Tambuyukon (Sabah, Malaysia). Plant Ecology 216: 789–807.

Veleba A, Bureš P, Adamec L, Šmarda P, Lipnerová I, Horová L. 2014. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. New Phytologist 203: 22–28. PubMed

Veleba A, Šmarda P, Zedek F, Horová L, Šmerda J, Bureš P. 2017. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Annals of Botany 119: 409–416. PubMed PMC

Veleba A, Zedek F, Horová L, et al. . 2020. Is the evolution of carnivory connected with genome size reduction? American Journal of Botany 107: 1253–1259. PubMed

Vu GTH, Schmutzer T, Bull F, et al. . 2015. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome 8: e3. PubMed

Wan J, Zhang XC, Neece D, et al. . 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. The Plant Cell 20: 471–481. PubMed PMC

Wan Zakaria WNA, Aizat WM, Goh HH, Mohd Noor N. 2019. Protein replenishment in pitcher fluids of Nepenthes × ventrata revealed by quantitative proteomics (SWATH-MS) informed by transcriptomics. Journal of Plant Research 132: 681–694. PubMed

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111: 1021–1058. PubMed PMC

Wen F, White GJ, VanEtten HD, Xiong Z, Hawes MC. 2009. Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiology 151: 820–829. PubMed PMC

Wheeler GL, Carstens BC. 2018. Evaluating the adaptive evolutionary convergence of carnivorous plant taxa through functional genomics. PeerJ 6: e4322. PubMed PMC

Whitewoods CD, Gonçalves B, Cheng J, et al. . 2020. Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. Science 367: 91–96. PubMed

Wicke S, Naumann J. 2018. Molecular evolution of plastid genomes in parasitic flowering plants. In: Chaw S-M, Jansen RK, eds. Advances in botanical research. Cambridge, MA: Academic Press, 315–347.

Wicke S, Schäferhoff B, dePamphilis CW, Müller KF. 2014. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. Molecular Biology and Evolution 31: 529–545. PubMed

Ye W, Munemasa S, Shinya T, et al. . 2020. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proceedings of the National Academy of Sciences, USA 117: 20932–20942. PubMed PMC

Yilamujiang A, Reichelt M, Mithöfer A. 2016. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous Nepenthes plants. Annals of Botany 118: 369–375. PubMed PMC

Yilamujiang A, Zhu A, Ligabue-Braun R, et al. . 2017. Coprophagous features in carnivorous Nepenthes plants: a task for ureases. Scientific Reports 7: e11647. PubMed PMC

Zhang X, Dong W, Sun J, et al. . 2015. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant Journal 81: 258–267. PubMed

Zulkapli MM, Ab Ghani NS, Ting TY, Aizat WM, Goh HH. 2021. Transcriptomic and proteomic analyses of Nepenthes ampullaria and Nepenthes rafflesiana reveal parental molecular expression in the pitchers of their hybrid, Nepenthes × hookeriana. Frontiers in Plant Science 11: e625507. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace