Recent ecophysiological, biochemical and evolutional insights into plant carnivory
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34111238
PubMed Central
PMC8389183
DOI
10.1093/aob/mcab071
PII: 6296013
Knihovny.cz E-zdroje
- Klíčová slova
- Dionaea, Drosera, Nepenthes, Carnivorous plant, co-option, cost–benefit relationships, digestive enzymes, evolution of carnivory, hunting cycle, mineral nutrient economy, regulation of enzyme secretion, terrestrial and aquatic species,
- MeSH
- fotosyntéza MeSH
- listy rostlin MeSH
- masožravci * MeSH
- rostliny * genetika MeSH
- živiny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- živiny MeSH
BACKGROUND: Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE: We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS: Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
Zobrazit více v PubMed
Abbott MJ, Brewer JS. 2016. Competition does not explain the absence of a carnivorous pitcher plant from a nutrient-rich marsh. Plant and Soil 409: 495–504.
Adamec L. 1997. Mineral nutrition of carnivorous plants: a review. Botanical Review 63: 273–299.
Adamec L. 2002. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytologist 155: 89–100. PubMed
Adamec L. 2005. Ecophysiological characterization of carnivorous plant roots: oxygen fluxes, respiration, and water exudation. Biologia Plantarum 49: 247–255.
Adamec L. 2006. Respiration and photosynthesis of bladders and leaves of aquatic PubMed
Adamec L. 2011. Ecophysiological look at plant carnivory: why are plants carnivorous? In: Seckbach J, Dubinski Z, eds. All flesh is grass. Plant–animal interrelationships. Cellular origin, life in extreme habitats and astrobiology vol. 16. Dordrecht: Springer Science + Business Media B. V., 455–489.
Adamec L. 2012. Why do aquatic carnivorous plants prefer growing in dystrophic waters? Acta Biologica Slovenica 55: 3–8.
Adamec L. 2014. Different reutilization of mineral nutrients in senescent leaves of aquatic and terrestrial carnivorous
Adamec L. 2018. Ecophysiology of aquatic carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 256–269.
Adamec L, Pavlovič A. 2018. Mineral nutrition of terrestrial carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 221–231.
Adamec L, Kohout P, Beneš K. 2006. Root anatomy of three carnivorous plant species. Carnivorous Plant Newsletter 35: 19–22.
Adamec L, Sirová D, Vrba J. 2010. Contrasting growth effects of prey capture in two carnivorous plant species. Fundamental and Applied Limnology 176: 153–160.
Adlassnig W, Peroutka M, Eder G, Pois W, Lichtscheidl IK. 2006. Ecophysiological observations on
Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T, Lichtscheidl IK. 2012. Endocytotic uptake of nutrients in carnivorous plants. The Plant Journal 71: 303–313. PubMed
Albert VA, Jobson RW, Michael TP, Taylor DJ. 2010. The carnivorous bladderwort ( PubMed
Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T. 2021. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew ( PubMed PMC
Athauda SBP, Matsumoto K, Rajapakshe S, et al. 2004. Enzymic and structural characterization of nepenthesin, a unique member of a novel subfamily of aspartic proteinases. The Biochemical Journal 381: 295–306. PubMed PMC
Atsuzawa, K, Kanaizumi D, Ajisaka M, et al. 2020. Fine structure of PubMed
Bárta J, Stone JD, Pech J, et al. 2015. The transcriptome of PubMed PMC
Bazile V, Le Moguédec G, Marshall DJ, Gaume L. 2015. Fluid physico-chemical properties influence capture and diet in PubMed PMC
Bemm F, Becker D, Larisch C, et al. 2016. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Research 26: 812–825. PubMed PMC
Bishop JG, Dean AM, Mitchell-Olds T. 2000. Rapid evolution in plant chitinase: molecular targets of selection in plant pathogen coevolution. Proceedings of the National Academy of Sciences, USA 97: 5322–5327. PubMed PMC
Bittleston LS. 2018. Commensals of
Böhm J, Scherzer S, Król E, et al. 2016 PubMed PMC
Böhm J, Scherzer S, Shabala S, et al. 2016 PubMed PMC
Brewer JS, Schlauer J. 2018. Biogeography and habitats of of carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 7–21.
Brewer JS, Baker DJ, Nero AS, Patterson AL, Roberts RS, Turner LM. 2011. Carnivory in plants as a beneficial trait in wetlands. Aquatic Botany 94: 62–70.
Buch F, Kaman WE, Bikker FJ, Yilamujiang A, Mithöfer A. 2015. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous PubMed PMC
Butts CT, Bierma JC, Martin RW. 2016 PubMed PMC
Butts CT, Zhang X, Kelly JE, et al. 2016 PubMed PMC
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in PubMed PMC
Cao M, Li Z, Dai X, Wu X, Li Y, Wu S. 2019. The complete plastid genome of carnivorous pitcher plant
Cao T, Xie P, Ni L, Zhang M, Xu J. 2009. Carbon and nitrogen metabolism of an eutrophication tolerative macrophyte,
Capó-Bauçà S, Font-Carrascosa M, Ribas-Carbó M, Pavlovič A, Galmés J. 2020. Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant PubMed PMC
Carretero-Paulet L, Librado P, Chang T-H, et al. 2015. High gene family turnover rates and gene space adaptation in the compact genome of the carnivorous plant PubMed
Chia TF, Aung HH, Osipov AN, Goh NK, Chia LS. 2004. Carnivorous pitcher plant uses free radicals in the digestion of prey. Redox Report 9: 255–261. PubMed
Crawford RMM. 1989. Studies in plant survival. Studies in ecology. Vol. 11. Oxford: Blackwell Scientific Publications.
Cross AT, Paniw M, Scatigna AV, et al. 2018. Systematics and evolution of small genera of carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 120–134.
Darnowski DW, Carroll DM, Płachno BJ, Kabanoff E, Cinnamon E. 2006. Evidence of protocarnivory in triggerplants ( PubMed
Darwin C. 1875. Insectivorous plants. London: John Murray.
Dávila-Lara A, Rodríguez-López CE, O’Connor SE, Mithöfer A. 2020. Metabolomics analysis reveals tissue-specific metabolite compositions in leaf blade and traps of carnivorous PubMed PMC
Dkhar J, Pareek A. 2019. PubMed PMC
Dkhar J, Bhaskar YK, Lynn A, Pareek A. 2020. Pitchers of PubMed PMC
Doxey AC, Yaish MWF, Moffatt BA, Griffith M, McConkey BJ. 2007. Functional divergence in the PubMed
Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A. 2006. Isolation and characterization of chitinase genes from pitchers of the carnivorous plant PubMed
Eilenberg H, Pnini-Cohen S, Rahamim Y, et al. 2010. Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant PubMed PMC
Ellison AM. 2006. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biology 8: 740–747. PubMed
Ellison AM, Adamec L. 2011. Ecophysiological traits of terrestrial and aquatic carnivorous plants: are the costs and benefits the same? Oikos 120: 1721–1731.
Ellison AM, Adamec L, eds. 2018
Ellison AM, Adamec L. 2018
Ellison AM, Gotelli NJ. 2002. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, PubMed PMC
Ellison AM, Gotelli NJ. 2009. Energetics and the evolution of carnivorous plants – Darwin’s ‘most wonderful plants in the world‘. Journal of Experimental Botany 60: 19–42. PubMed
Escalante-Pérez M, Król E, Stange A, et al. 2011. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proceedings of the National Academy of Sciences, USA 108: 15492–15497. PubMed PMC
Fasbender L, Maurer D, Kreuzwieser J.et al. 2017. The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration. New Phytologist 214: 597–606. PubMed
Filyushin MA, Kochieva EZ, Shchennikova AV, et al. 2019. Identification and expression analysis of chitinase genes in pitchers of PubMed
Fitzpatrick MC, Ellison AM. 2018. Estimating the exposure of carnivorous plants to rapid climatic change. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 389–407.
Fleischmann A, Michael TP, Rivadavia F, et al. 2014. Evolution of genome size and chromosome number in the carnivorous plant genus PubMed PMC
Fleischmann A, Schlauer J, Smith SA, Givnish TJ. 2018. Evolution of carnivory in angiosperms. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 23–41.
Fonseca S, Chini A, Hamberg M, et al. 2009. (+)-7-iso-Jasmonoyl-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology 5: 344–350. PubMed
Force A, Cresko WA, Pickett FB, Proulx SR, Amemiya C, Lynch M. 1999. The origin of subfunctions and modular gene regulation. Genetics 170: 433–446. PubMed PMC
Fukushima K, Fujita H, Yamaguchi T, Kawaguchi M, Tsukaya H, Hasebe M. 2015. Oriented cell division shapes carnivorous pitcher leaves of PubMed PMC
Fukushima K, Fang X, Alvarez-Ponce D, et al. 2017. Genome of the pitcher plant PubMed
Fukushima K, Narukawa H, Palfalvi G, Hasebe M. 2021. A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant PubMed PMC
Gao P, Loeffler TS, Honsel A, et al. 2015. Integration of trap- and root-derived nitrogen nutrition of carnivorous PubMed
Gaume L, Bazile V, Boussès P, Le Moguédec G, Marshall DJ. 2019. The biotic and abiotic drivers of ‘living’ diversity in the deadly traps of
Gergely ZR, Martinez DE, Donohoe BS, Mogelsvang S, Herder R, Staehelin LA. 2018. 3D electron tomographic and biochemical analysis of ER, Golgi and PubMed PMC
Gilbert KJ, Bittleston LS, Tong W, Pierce NE. 2020. Tropical pitcher plants ( PubMed PMC
Givnish TJ. 1989. Ecology and evolution of carnivorous plants. In: Abrahamson WG, ed. Plant–animal interactions. New York: McGraw-Hill Book Co., 243–290.
Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD. 1984. Carnivory in the bromeliad
Givnish TJ, Sparks KW, Hunter SJ, Pavlovič A. 2018. Why are plants carnivorous? Cost/benefit analysis, whole-plant growth, and the context-specific advantages of botanical carnivory. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 232–255.
Goh HH, Baharin A, Salleh FM, Ravee R, Wan Zakaria WNA, Noor NM. 2020. Transcriptome-wide shift from photosynthesis and energy metabolism upon endogenous fluid protein depletion in young PubMed PMC
Graham SW, Lam VKY, Merckx VSFT. 2017. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytologist 214: 48–55. PubMed
Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770–777. PubMed
Grover A. 2012. Plant chitinases: genetic diversity and physiological roles. Critical Reviews in Plant Sciences 31: 57–73.
Gruzdev EV, Kadnikov VV, Beletsky AV, et al. 2019. Plastid genomes of carnivorous plants PubMed PMC
Hanslin HM, Karlsson PS. 1996. Nitrogen uptake from prey and substrate as affected by prey capture level and plant reproductive status in four carnivorous plant species. Oecologia 106: 370–375. PubMed
Hatcher CR, Ryves DB, Millett J. 2020. The function of secondary metabolites in plant carnivory. Annals of Botany 125: 399–411. PubMed PMC
Hedrich R, Fukushima K. 2021. On the origin of carnivory: molecular physiology and evolution of plants on an animal diet. Annual Review of Plant Biology 72: 133–153. PubMed
Hessen DO, Jeyasingh PD, Neiman M, Weider LJ. 2009. Genome streamlining and the elemental costs of growth. Trends in Ecology and Evolution 25: 75–80. PubMed
Horner JD, Płachno BJ, Bauer U, Di Giusto B. 2018. Attraction of prey. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 157–166.
Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, et al. 2013. Architecture and evolution of a minute plant genome. Nature 498: 94–98. PubMed PMC
Jakšová J, Libiaková M, Bokor B, Petřík I, Novák O, Pavlovič A. 2020. Taste for protein: chemical signal from prey stimulates enzyme secretion through jasmonate signalling in the carnivorous plant Venus fytrap. Plant Physiology and Biochemistry 146: 90–97. PubMed
Jakšová J, Novák O, Adamec L, Pavlovič A. 2021. Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants ( PubMed
Jobson RW, Nielsen R, Laakkonen L, Wikström M, Albert VA. 2004. Adaptive evolution of cytochrome PubMed PMC
Jung J-H, Domian M, Klose C.et al. 2016. Phytochromes function as thermosensors in PubMed
Juniper BE, Robins RJ, Joel DM. 1989. The carnivorous plants. London: Academic Press Ltd.
Justin SHFW, Armstrong W. 1987. The anatomical characteristics of roots and plant response to soil flooding. New Phytologist 106: 465–495.
Karagatzides JD, Butler JL, Ellison AM. 2009. The pitcher plant PubMed PMC
Kocáb O, Jakšová J, Novák O, et al. 2020. Jasmonate-independent regulation of digestive enzyme activity in the carnivorous butterwort PubMed PMC
Kocáb O, Bačovčinová M, Bokor B, et al. 2021. Enzyme activities in two sister-species of carnivorous pitcher plants ( PubMed
Koller-Peroutka M, Krammer SPavlik A, Edlinger M, Lang I, Adlassnig W. 2019. Endocytosis and digestion in carnivorous pitcher plants of the family Sarraceniaceae. Plants (Basel) 8: e367. PubMed PMC
Krausko M, Perutka Z, Šebela M, et al. 2017. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant PubMed
Kruse J, Gao P, Eibelmeier M, Alfarraj S, Rennenberg H. 2017. Dynamics of amino acid redistribution in the carnivorous Venus flytrap ( PubMed
Laakkonen L, Jobson RW, Albert VA. 2006. A new model for the evolution of carnivory in the bladderwort plant ( PubMed
Lan T, Renner T, Ibarra-Laclette E.et al. 2017. Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proceedings of the National Academy of Sciences, USA 114: 4435–4441. PubMed PMC
La Porta CAM, Lionetti MC, Bonfanti S, et al. 2019. Metamaterial architecture from a self-shaping carnivorous plant. Proceedings of the National Academy of Sciences, USA 116: 18777–18782. PubMed PMC
Lee L, Zhang Y, Ozar B, Sensen CW, Schriemer DC. 2016. Carnivorous nutrition in pitcher plants ( PubMed
Legendre L, Darnowski DW. 2018. Biotechnology with carnivorous plants. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 270–282.
Legris M, Klose C, Burgie S, et al. 2016. Phytochrome B integrates light and temperature signals in PubMed
Li M, Wang F, Li S, et al. 2020. Importers drive leaf-to-leaf jasmonic acid transmission in wound-induced systemic immunity. Molecular Plant 13: 1485–1498. PubMed
Li N, Han X, Feng D, Yuan D, Huang L-J. 2019. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? International Journal of Molecular Sciences 20: e671. PubMed PMC
Libantová J, Kämäräinen T, Moravčíková J, Matušíková I, Salaj J. 2009. Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew ( PubMed
Libiaková M, Floková K, Novák O, Slováková L, Pavlovič A. 2014. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap ( PubMed PMC
Lloyd FE. 1942. The carnivorous plants. Waltham, MA: Chronica Botanica.
Matušíková I, Salaj J, Moravčíková J, Mlynárová L, Nap JP, Libantová J. 2005. Tentacles of in vitro-grown round-leaf sundew ( PubMed
Matušíková I, Pavlovič A, Renner T. 2018. Biochemistry of prey digestion and nutrient absorption. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 207–220.
Michalko J, Mészáros P, Renner T, et al. 2017. Molecular characterization and evolution of carnivorous sundew ( PubMed
Miller TE, Bradshaw WE, Holzapfel CM, 2018. Pitcher-plant communities as model systems for addressing fundamental questions in ecology and evolution. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 333–348.
Mithöfer A2011. Carnivorous pitcher plants: insights in an old topic. Phytochemistry 72: 1678–1682. PubMed
Mithöfer A, Reichelt M, Nakamura Y. 2014. Wound and insect-induced jasmonate accumulation in carnivorous PubMed
Miya A, Albert P, Shinya T, et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in PubMed PMC
Monte I, Franco-Zorrilla JM, García-Casado G, et al. 2020. A single JAZ repressor controls the jasmonate pathway in PubMed
Moran JA, Merbach MA, Livingston NJ, Clarke CM, Booth WE. 2001. Termite prey specialization in the pitcher plant
Moran JA, Hawkins BJ, Gowen BE, Robbins SL. 2010. Ion fluxes across the pitcher walls of three Bornean PubMed PMC
Moran JA, Anderson B, Chin L, Greenwood M, Clarke C, 2018. Nutritional mutualisms of
Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. 2013. Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500: 422–426. PubMed
Nakamura Y, Reichelt M, Mayer VE, Mithöfer A. 2013. Jasmonates trigger prey-induced formation of ‘outer stomach’ in carnivorous sundew plants. Proceedings of the Royal Society B: Biological Sciences 280: e20130228-28. PubMed PMC
Nevill PG, Howell KA, Cross AT, et al. 2019. Plastome-wide rearrangements and gene losses in carnivorous Droseraceae. Genome Biology and Evolution 11: 472–485. PubMed PMC
Nge FJ, Lambers H. 2018. Reassessing protocarnivory – how hungry are triggerplants? Australian Journal of Botany 66: 325–330.
Nishimura E, Kawahara M, Kodaira R, et al. 2013. S-like ribonuclease gene expression in carnivorous plants. Planta 238: 955–967. PubMed
Nishimura E, Jumyo S, Arai N, et al. 2014. Structural and functional characteristics of S-like ribonucleases from carnivorous plants. Planta 240: 147–159. PubMed
Owen TP, Lennon KA. 1999. Structure and development of the pitchers from the carnivorous plant PubMed
Owen TP, Lennon KA, Santo MJ, Anderson AN. 1999. Pathways for nutrient transport in the pitchers of the carnivorous plant
Palfalvi G, Hackl T, Terhoeven N, et al. 2020. Genomes of the Venus flytrap and close relatives unveil the roots of plant carnivory. Current Biology 30: 2312–2320. PubMed PMC
Passarinho PA, de Vries SC. 2002. PubMed PMC
Paszota P, Escalante-Perez M, Thomsen LR, et al. 2014. Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. Biochimica et Biophysica Acta 1844: 374–383. PubMed
Pavlovič A, Mithöfer A. 2019. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. Journal of Experimental Botany 70: 3379–3389. PubMed
Pavlovič A, Saganová M. 2015. A novel insight into the cost–benefit model for the evolution of botanical carnivory. Annals of Botany 115: 1075–1092. PubMed PMC
Pavlovič A, Singerová L, Demko V, Hudák J. 2009. Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant PubMed PMC
Pavlovič A, Singerová L, Demko V, Šantrůček J, Hudák J. 2010. Root nutrient uptake enhances photosynthetic assimilation in prey-deprived carnivorous pitcher plant
Pavlovič A, Slováková Ľ, Pandolfi C, Mancuso S. 2011. On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap ( PubMed PMC
Pavlovič A, Jakšová J, Novák O. 2017. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap ( PubMed
Pavlovič A, Libiaková M, Bokor B, Petřík I, Novák O, Baluška F. 2020. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap ( PubMed PMC
Płachno BJ, Adamec L, Huet H. 2009. Mineral nutrient uptake from prey and glandular phosphatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory. Annals of Botany 104: 649–654. PubMed PMC
Poppinga S, Hartmeyer SRH, Seidel R, Masselter T, Hartmeyer I, Speck T. 2012. Catapulting tentacles in a sticky carnivorous plant. PLoS One 7: e45735. PubMed PMC
Procko C, Murthy SE, Keenan WT, et al. 2021. Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous Droseraceae plants. eLife 10: e64250. PubMed PMC
Ravee R, Salleh FM, Goh HH. 2018. Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 6: e4914. PubMed PMC
Renner T, Specht CD. 2012. Molecular and functional evolution of class I chitinases for plant carnivory in the Caryophyllales. Molecular Biology and Evolution 29: 2971–2985. PubMed
Renner T, Specht CD. 2013. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. Current Opinion in Plant Biology 16: 436–442. PubMed PMC
Renner T, Lan T, Farr KM, et al. 2018. Carnivorous plant genomes. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press, 135–153.
Rice BA. 2011. What exactly is a carnivorous plant? Carnivorous Plant Newsletter 40: 19–23.
Risør MW, Thomsen LR, Sanggaard KW, et al. 2016. Enzymatic and structural characterization of the major endopeptidase in the Venus flytrap digestion fluid. Journal of Biological Chemistry 291: 2271–2287. PubMed PMC
Rottloff S, Stieber R, Maischak H, Turini FG, Heubl G, Mithöfer A. 2011. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, PubMed PMC
Rottloff S, Miguel S, Biteau F, et al. 2016. Proteome analysis of digestive fluids in PubMed PMC
Sadowski E-M, Seyfullah LJ, Sadowski F, Fleischmann A, Behling H, Schmidt AR. 2015. Carnivorous leaves from Baltic amber. Proceedings of the National Academy of Sciences, USA 112: 190–195. PubMed PMC
Scherzer S, Król E, Kreuzer I, et al. 2013. The PubMed
Scherzer S, Böhm J, Krol E.et al. , 2015. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proceedings of the National Academy of Sciences, USA 112: 7309–7314. PubMed PMC
Schulze W, Frommer WB, Ward JM. 1999. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant PubMed
Schulze WX, Sanggaard KW, Kreuzer I, et al. 2012. The protein composition of the digestive fluid from the Venus flytrap sheds light on prey digestion mechanisms. Molecular & Cell Proteomics 11: 1306–1319. PubMed PMC
Sheard LB, Tan X, Mao H, et al. 2010. Jasmonate perception by inositolphosphate- potentiated COI1–JAZ co-receptor. Nature 468: 400–405. PubMed PMC
Shikanai T. 2007. Cyclic electron transport around photosystem I: genetic approaches. Annual Review of Plant Biology 58: 199–217. PubMed
Silva SR, Diaz YCA, Penha HA, et al. 2016. The chloroplast genome of PubMed PMC
Sirová D, Adamec L, Vrba J. 2003. Enzymatic activities in traps of four aquatic species of the carnivorous genus PubMed
Sirová D, Šantrůček J, Adamec L, et al. 2014. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important? Annals of Botany 114: 125–133. PubMed PMC
Sirová D, Bárta J, Borovec J, Vrba J. 2018
Sirová D, Bárta J, Šimek K, et al. 2018 PubMed PMC
Spomer GG. 1999. Evidence of protocarnivorous capabilities in
Suda H, Mano H, Toyota M, et al. 2020. Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants 6: 1219–1224. PubMed
Thines B, Katsir L, Melotto M, et al. 2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448: 661–665. PubMed
Thornhill AH, Harper IS, Hallam ND. 2008. The development of the digestive glands and enzymes in the pitchers of three
Tiffen P. 2004. Comparative evolutionary histories of chitinase genes in the genus PubMed PMC
Van der Ent A, Sumail S, Clarke C. 2015. Habitat differentiation of obligate ultramafic
Veleba A, Bureš P, Adamec L, Šmarda P, Lipnerová I, Horová L. 2014. Genome size and genomic GC content evolution in the miniature genome-sized family Lentibulariaceae. New Phytologist 203: 22–28. PubMed
Veleba A, Šmarda P, Zedek F, Horová L, Šmerda J, Bureš P. 2017. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Annals of Botany 119: 409–416. PubMed PMC
Veleba A, Zedek F, Horová L, et al. 2020. Is the evolution of carnivory connected with genome size reduction? American Journal of Botany 107: 1253–1259. PubMed
Vu GTH, Schmutzer T, Bull F, et al. 2015. Comparative genome analysis reveals divergent genome size evolution in a carnivorous plant genus. Plant Genome 8: e3. PubMed
Wan J, Zhang XC, Neece D, et al. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in PubMed PMC
Wan Zakaria WNA, Aizat WM, Goh HH, Mohd Noor N. 2019. Protein replenishment in pitcher fluids of PubMed
Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111: 1021–1058. PubMed PMC
Wen F, White GJ, VanEtten HD, Xiong Z, Hawes MC. 2009. Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiology 151: 820–829. PubMed PMC
Wheeler GL, Carstens BC. 2018. Evaluating the adaptive evolutionary convergence of carnivorous plant taxa through functional genomics. PeerJ 6: e4322. PubMed PMC
Whitewoods CD, Gonçalves B, Cheng J, et al. 2020. Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. Science 367: 91–96. PubMed
Wicke S, Naumann J. 2018. Molecular evolution of plastid genomes in parasitic flowering plants. In: Chaw S-M, Jansen RK, eds. Advances in botanical research. Cambridge, MA: Academic Press, 315–347.
Wicke S, Schäferhoff B, dePamphilis CW, Müller KF. 2014. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. Molecular Biology and Evolution 31: 529–545. PubMed
Ye W, Munemasa S, Shinya T, et al. 2020. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proceedings of the National Academy of Sciences, USA 117: 20932–20942. PubMed PMC
Yilamujiang A, Reichelt M, Mithöfer A. 2016. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous PubMed PMC
Yilamujiang A, Zhu A, Ligabue-Braun R, et al. 2017. Coprophagous features in carnivorous PubMed PMC
Zhang X, Dong W, Sun J, et al. 2015. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant Journal 81: 258–267. PubMed
Zulkapli MM, Ab Ghani NS, Ting TY, Aizat WM, Goh HH. 2021. Transcriptomic and proteomic analyses of PubMed PMC
How the diversity in digestion in carnivorous plants may have evolved
How the sensory system of carnivorous plants has evolved