A novel insight into the cost-benefit model for the evolution of botanical carnivory
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
25948113
PubMed Central
PMC4648460
DOI
10.1093/aob/mcv050
PII: mcv050
Knihovny.cz E-zdroje
- Klíčová slova
- Action potential, Dionaea, Drosera, Nepenthes, Venus flytrap, botanical carnivory, carnivorous plant, cost–benefit, electrical signalling, jasmonates,
- MeSH
- biologická evoluce * MeSH
- biologické modely * MeSH
- Droseraceae fyziologie MeSH
- fyziologie rostlin * MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE: This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS: Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.
Zobrazit více v PubMed
Adamec L. 1997. Mineral nutrition of carnivorous plants – a review. Botanical Review 63: 273–299.
Adamec L. 2002. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytologist 155: 89–100. PubMed
Adamec L. 2003. Zero water flow in the carnivorous genus
Adamec L. 2006. Respiration and photosynthesis of bladders and leaves of aquatic PubMed
Adamec L. 2007. Oxygen concentrations inside the traps of the carnivorous plants PubMed PMC
Adamec L. 2008. The influence of prey capture on photosynthetic rate in two aquatic carnivorous plant species. Aquatic Botany 89: 66–70.
Adamec L. 2010a. Dark respiration of leaves and traps of terrestrial carnivorous plants: are there greater energetic costs in traps? Central European Journal of Biology 5: 121–124.
Adamec L. 2010b. Ecophysiological look at organ respiration in carnivorous plants: a review. In: Osterhoudt G, Barhydt J, eds. Cell respiration and cell survival: processes, types and effects. New York: Nova Science Publishers, Inc., 225–235.
Adamec L. 2011. The comparison of mechanically stimulated and spontaneous firings in traps of aquatic carnivorous
Adamec L. 2012. Firing and resetting characteristics of carnivorous
Adamec L, Vrba J, Sirová D. 2011. Fluorescence tagging of phosphatase and chitinase activity on different structures of
Adlassnig W, Peroutka M, Lendl T. 2011. Traps of carnivorous plants as habitat: composition of the fluid, biodiversity and mutualistic activities. Annals of Botany 107: 181–194. PubMed PMC
Affolter JM, Olivo RF. 1975. Action potentials in Venus’s-flytraps: long term observations following the capture of prey. American Midland Naturalist 93: 443–445.
Albert VA, Williams SE, Chase MW. 1992. Carnivorous plants: phylogeny and structural evolution. Science 257: 1491–1495. PubMed
An C-I., Fukusaki E-I, Kobayashi A. 2001. Plasma-membrane H PubMed
Anderson B. 2005. Adaptations to foliar absorption of faeces: a pathway in plant carnivory. Annals of Botany 95: 757–761. PubMed PMC
Anderson B, Midgley JJ. 2003. Digestive mutualism, an alternate pathway in plant carnivory. Oikos 102: 221–224.
Attaran E, Major IT, Cruz JA, Rosa BA, et al. 2014. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiology 165: 1302–1314. PubMed PMC
Baldwin IT. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proceedings of the National Academy of Sciences, USA 95: 8113–8118. PubMed PMC
Bazile V, Le Moguédec G, Marshall DJ, Gaume L. 2015. Fluid physico-chemical properties influence capture and diet in PubMed PMC
Bazile V, Moran JA, Moguédec GL, Marshall DJ, Gaume L. 2012. A carnivorous plant fed by its symbiont: a unique multi-faceted nutritional mutualism. PLoS One 7: e36179. PubMed PMC
Beilby MJ. 2007. Action potential in Charophytes. International Review of Cytology 257: 43–82. PubMed
Bohn HF, Federle W. 2004. Insect aquaplaning: PubMed PMC
Bonhomme V, Gounand I, Alaux C, Jousselin E, Barthélémy D, Gaume L. 2011a. The plant-ant
Bonhomme V, Pelloux-Prayer H, Jousselin E, Forterre Y, Labat J-J, Gaume L. 2011b. Slippery or sticky? Functional diversity in the trapping strategy of PubMed
Brittnacher J. 2011. Murderous plants. Carnivorous Plant Newsletter 40: 17–18.
Bruzzese BM, Bowler R, Massicotte HB, Fredeen AL. 2010. Photosynthetic light response in three carnivorous plant species:
Chandler GE, Anderson JW. 1976. Studies on the nutrition and growth of
Chase MW, Christenhusz MJM, Sanders D, Fay MF. 2009. Murderous plants: Victorian Gothic, Darwin and modern insights into vegetable carnivory. Botanical Journal of the Linnean Society 161: 329–356.
Chia TF, Aung HH, Osipov AN, Goh NK, Chia LS. 2004. Carnivorous pitcher plant uses free radicals in the digestion of prey. Redox Report 9: 255–261. PubMed
Chin L, Moran JA, Clarke C. 2010. Trap geometry in three giant montane pitcher plant species from Borneo is a function of tree shrew body size. New Phytologist 186: 461–470. PubMed
Clarke CM. 1997. Nepenthes of Borneo. Kota Kinabalu, Malaysia: Natural History Publication.
Clarke CM, Bauer U, Lee CC, Tuen AA, Rembold K, Moran JA. 2009. Tree shrew lavatories: a novel sequestration strategy in a tropical pitcher plant. Biology Letters 5: 632–635. PubMed PMC
Clarke CM, Moran JA. 2001. Ecology. In: Clarke CM, ed. Nepenthes of Sumatra and Peninsular Malaysia. Kota Kinabalu, Malaysia: Natural History Publication, 29–75.
Cresswell JE. 1998. Morphological correlates of necromass accumulation in the traps of an Eastern tropical pitcher plant, PubMed
Darwin C. 1875. Insectivorous plants. London: John Murray.
Darwin F. 1878. Experiments on the nutritions of
Dézerald O, Leroy C, Corbara B, et al. 2013. Food-web structure in relation to environmental gradients and predator–prey ratios in tank-bromeliad ecosystems. PLoS One 8: e71735. PubMed PMC
Dixon KW, Pate JS, Bailey WJ. 1980. Nitrogen nutrition of the tuberous sundew
Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A. 2006. Isolation and characterization of chitinase genes from pitchers of the carnivorous plant PubMed
Ellison AM. 2006. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biology 8: 740–747. PubMed
Ellison AM, Adamec L. 2011. Ecophysiological traits of terrestrial and aquatic carnivorous plants: are the costs and benefits the same? Oikos 120: 1721–1731.
Ellison AM, Farnsworth EJ. 2005. The cost of carnivory for PubMed
Ellison AM, Gotelli NJ. 2001. Evolutionary ecology of carnivorous plants. Trends in Ecology and Evolution 16: 623–629.
Ellison AM, Gotelli NJ. 2002. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, PubMed PMC
Ellison AM, Gotelli NJ. 2009. Energetics and the evolution of carnivorous plants – Darwin’s ‘most wonderful plants in the world’. Journal of Experimental Botany 60: 19–42. PubMed
Escalante-Pérez M, Krol E, Stange A, et al. 2011. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proceedings of the National Academy of Sciences, USA 108: 15492–15497. PubMed PMC
Evans JR. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19. PubMed
Farnsworth EJ, Ellison AM. 2008. Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. Journal of Ecology 96: 213–221.
Feller U, Anders I, Mae T. 2008. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany 59: 1615–1624. PubMed
Fisahn J, Herde O, Willmitzer L, Peňa-Cortés H. 2004. Analysis of the transient increase in cytosolic Ca PubMed
Frank JH, O’Meara GF. 1984. The bromeliad
Fromm J, Lautner S. 2007. Electrical signals and their physiological significance in plants. Plant, Cell and Environment 30: 249–257. PubMed
Gallé A, Lautner S, Flexas J, Fromm J. 2015. Environmental stimuli and physiological responses: the current view on electrical signalling. Environmental and Experimental Botany 114: 15–21.
Gallie DR, Chang S-C. 1997. Signal transduction in the carnivorous plant PubMed PMC
Galmés J, Kapralov MV, Andralojc PJ, et al. 2014. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant, Cell and Environment 37: 1989–2001. PubMed
Gao P, Loeffler TS, Honsel A, et al. 2015. Integration of trap- and root-derived nitrogen nutrition of carnivorous PubMed
Gaume L, Forterre Y. 2007. A viscoelastic deadly fluid in carnivorous pitcher plants. PLoS One 2: e1185. PubMed PMC
Gaume L, Perret P, Gorb E, Gorb S, Labat JJ, Rowe N. 2004. How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Structure and Development 33: 103–111. PubMed
Givnish TJ. 1989. Ecology and evolution of carnivorous plants. In: Abrahamson WG, ed. Plant–animal interactions. New York: McGraw-Hill, 243–290.
Givnish TJ, 2015. New evidence on the origin of carnivorous plants. Proceedings of the National Academy of Sciences, USA 112: 10–11. PubMed PMC
Givnish TJ, Barfuss MHJ, Van Ee B, et al. 2014. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Molecular Phylogenetics and Evolution 71: 55–78. PubMed
Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD. 1984. Carnivory in the bromeliad
Givnish TJ, Sytsma KJ, Smith JF, Hahn WJ, Benzing DH, Burkhardt EM. 1997. Molecular evolution and adaptive radiation in
Gorb E, Kastner V, Peressadko A, et al. 2004. Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant PubMed
Gowda DC, Reuter G, Schauer R. 1983. Structural studies of an acidic polysaccharide from the mucin secreted by
Grafe TU, Schöner CR, Kerth G, Junaidi A, Schöner MG. 2011. A novel resource–service mutualism between bats and pitcher plants. Biology Letters 7: 436–439. PubMed PMC
Greenwood M, Clarke C, Lee CC, Gunsalam A, Clarke RH. 2011. A unique resource mutualism between the giant Bornean pitcher plant, PubMed PMC
Hájek T, Adamec L. 2010. Photosynthesis and dark respiration of leaves of terrestrial carnivorous plants. Biologia 65: 69–74.
Harder R, Zemlin I. 1968. Blütenbildung von PubMed
Hatano N, Hamada T. 2008. Proteome analysis of pitcher fluid of the carnivorous plant PubMed
Hatano N, Hamada T. 2012. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant PubMed
He J, Zain A. 2012. Photosynthesis and nitrogen metabolism of
Heil M, Baldwin IT. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science 7: 61–67. PubMed
Herde O, Peña-Cortéz H, Willmitzer L, Fisahn J. 1997. Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant, Cell and Environment 20: 136–141.
Hlaváčková V, Krchňák P, Nauš J, Novák O, Špundová M, Strnad M. 2006. Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225: 235–244. PubMed
Hodick D, Sievers A. 1988. The action potential of PubMed
Ibarra-Laclette E, Albert VA, Pérez-Torres CA, et al. 2011. Transcriptomics and molecular evolutionary rate analysis of the bladderwort ( PubMed PMC
Inselsbacher E, Cambui CA, Richter A, Stange CF, Mercier H, Wanek W. 2007. Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad PubMed
Jaffé K, Michelangeli F, Gonzales JM, Miras B, Ruiy MC. 1992. Carnivory in pitcher plants of the genus
Jaffe MJ. 1973. The role of ATP in mechanically stimulated rapid closure of Venus’s flytrap. Plant Physiology 51: 17–18. PubMed PMC
Jobson RW, Nielsen R, Laakkonen L, Wikström M, Albert VA. 2004. Adaptive evolution of cytochrome c oxidase: infrastructure for a carnivorous plant radiation. Proceedings of the National Academy of Sciences, USA 101: 18064–18068. PubMed PMC
Juniper BE, Robins RJ, Joel DM. 1989. The carnivorous plants. London: Academic Press.
Karagatzides JD, Ellison AM. 2009. Construction costs, payback times, and the leaf economics of carnivorous plants. American Journal of Botany 96: 1612–1619. PubMed
Karlsson PS, Pate JS. 1992. Contrasting effect of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorous economy of pygmy species of PubMed
Knight SE. 1992. Costs of carnivory in the common bladderwort, PubMed
Knight SE., Frost TM. 1991. Bladder control in
Koller-Peroutka M, Lendl T, Watzka M, Adlassnig W. 2015. Capture of algae promotes growth and propagation in aquatic PubMed PMC
Krol E, Dziubinska H, Stolarz M, Trebacz K. 2006. Effects of ion channel inibitors on cold- and electrically-induced action potentials in
Król E, Plachno BJ, Adamec L, Stolarz M, Dziubinska H., Trebacsz K. 2012. Quite a few reasons for calling carnivores ‘the most wonderful plants in the world’. Annals of Botany 109: 47–64. PubMed PMC
Kruse J, Gao P, Honsel A, et al. 2014. Strategy of nitrogen acquisition and utilization by carnivorous PubMed
Laakkonen L, Jobson RW, Albert VA. 2006. A new model for the evolution of carnivory in the bladderwort plant ( PubMed
Libiaková M, Floková K, Novák O, Slováková Ľ, Pavlovič A. 2014. Abundance of cysteine endopeptidase Dionain in digestive fluid of Venus flytrap ( PubMed PMC
Maffei ME, Mithöffer A, Boland W. 2007. Before gene expression: early events in plant–insect interaction. Trends in Plant Science 12: 310–316. PubMed
Matušíková I, Salaj J, Moravčíková J, Mlynárová L, Nap JP, Libantová J. 2005. Tentacles of PubMed
Meldau S, Ullman-Zeunert L, Govind G, Bartram S, Baldwin IT. 2012. MAPK-dependent JA and SA signalling in PubMed PMC
Méndez M, Karlsson PS. 1999. Costs and benefits of carnivory in plants: insights from the photosynthetic performance of four carnivorous plants in a subarctic environment. Oikos 86: 105–112.
Mithöfer A, Reichelt M, Nakamura Y. 2014. Wound and insect-induced jasmonate accumulation in carnivorous PubMed
Moran JA, Moran AJ. 1998. Foliar reflectance and vector analysis reveal nutrient stress in prey-deprived pitcher plants (
Moran JA, Clarke CM, Hawkins BJ. 2003. From carnivore to detritivore? Isotopic evidence for leaf litter utilization by the tropical pitcher plant
Moran JA, Clarke C, Greenwood M, Chin L. 2012. Tuning of color contrast signals to visual sensitivity maxima of tree shrews by three Bornean highland PubMed PMC
Moran JA, Hawkins BJ, Gowen BE, Robbins SL. 2010. Ion fluxes across the pitcher walls of three Bornean PubMed PMC
Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. 2013. Glutamate receptor-like genes mediate leaf-to-leaf wound signals. Nature 500: 422–426. PubMed
Nabity PD, Zavala JA, DeLucia EH. 2013. Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in PubMed PMC
Nakamura Y, Reichelt M, Mayer VE, Mithöfer A. 2013. Jasmonates trigger prey-induced formation of ‘outer stomach’ in carnivorous sundew plants. Proceedings of the Royal Society B: Biological Sciences 280: 20130228. PubMed PMC
Nishi AH, Vasconcellos-Neto J, Romero GQ. 2013. The role of multiple partners in a digestive mutualism with a protocarnivorous plant. Annals of Botany 111: 143–150. PubMed PMC
Nishimura E, Kawahara M, Kodaira R, et al. 2013. S-like ribonuclease gene expression in carnivorous plants. Planta 238: 955–967. PubMed
Osunkoya OO, Daud SD, Di-Giusto B, Wimmer FL, Holige TM. 2007. Construction costs and physico-chemical properties of the assimilatory organs of PubMed PMC
Osunkoya OO, Daud SD, Wimmer FL. 2008. Longevity, lignin content and construction cost of the assimilatory organs of PubMed PMC
Paszota P, Escalante-Perez M, Thomsen LR, et al. 2014. Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. Biochimica et Biophysica Acta 1844: 374–383. PubMed
Pavlovič A. 2010. Spatio-temporal changes of photosynthesis in carnivorous plants in response to prey capture, retention and digestion. Plant Signaling and Behavior 5: 1325–1329. PubMed PMC
Pavlovič A. 2011. Photosynthetic characterization of Australian pitcher plant
Pavlovič A. 2012a. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus PubMed PMC
Pavlovič A. 2012b. The effect of electrical signals on photosynthesis and respiration. In: Volkov A, ed. Plant electrophysiology – signaling and responses. Berlin: Springer-Verlag, 33–62.
Pavlovič A, Mancuso S. 2011. Electrical signaling and photosynthesis. Can they co-exist together? Plant Signaling and Behavior 6: 840–842. PubMed PMC
Pavlovič A, Masarovičová E, Hudák J. 2007. Carnivorous syndrome in Asian pitcher plants of the genus PubMed PMC
Pavlovič A, Singerová L, Demko V, Hudák J. 2009. Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant PubMed PMC
Pavlovič A, Demko V, Hudák J. 2010a. Trap closure and prey retention in Venus flytrap ( PubMed PMC
Pavlovič A, Singerová L, Demko V, Šantrůček J, Hudák J. 2010b. Root nutrient uptake enhances photosynthetic assimilation in prey-deprived carnivorous pitcher plant
Pavlovič A, Slováková Ľ, Pandolfi C, Mancuso S. 2011a. On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap ( PubMed PMC
Pavlovič A, Slováková Ľ, Šantrůček J. 2011b. Nutritional benefit from leaf litter utilization in the pitcher plants PubMed
Pavlovič A, Krausko M, Libiaková M, Adamec L. 2014. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew PubMed PMC
Pereira CG, Almenara DP, Winter CE, Fritsch CE, Lambers H, Oliviera RS. 2012. Underground leaves of PubMed PMC
Peroutka M, Adlassnig W, Volgger M, Lendl T, Url WG, Lichtscheidl IK. 2008.
Plachno B, Adamec L, Huet H. 2009. Mineral nutrient uptake from prey and glandular phosphatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory. Annals of Botany 104: 649–654. PubMed PMC
Poppinga S, Hartmeyer SRH, Seidel R. 2012. Catapulting tentacles in a sticky carnivorous plant. PLoS One 7: e45735. PubMed PMC
Renner T, Specht CD. 2011. A sticky situation: assessing adaptations for plant carnivory in the Caryophyllales by means of stochastic character mapping. International Journal of Plant Sciences 172: 889–901.
Revill MJW, Stanley S, Hibberd JM. 2005. Plastid genome structure and loss of photosynthetic ability in the parasitic genus PubMed
Rice BM. 2011. What exactly is a carnivorous plant? Carnivorous Plant Newsletter 40: 19–22.
Riedel M, Eichner A, Jetter R. 2003. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in PubMed
Rischer H, Hamm A, Bringmann G. 2002. PubMed
Robins RJ, Juniper BE. 1980. The secretory cycle of
Romero GQ, Mazzafera P, Vasconcellos-Neto J, Trivelin PCO. 2006. Bromeliad-living spiders improve host plant nutrition and growth. Ecology 87: 803–808. PubMed
Rottloff S, Stieber R, Maischak H, Turini FG, Heubl G, Mithöfer A. 2011. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, PubMed PMC
Rottloff S, Mithöfer A, Müller U, Kilper R. 2013. Isolation of viable multicellular glands from tissue of the carnivorous plant, PubMed PMC
Sadowski E-M, Seyfullaha LJ, Sadowski F, Fleischmann A, Behling H, Schmidt AR. 2015. Carnivorous leaves from Baltic amber. Proceedings of the National Academy of Sciences, USA 112: 190–195. PubMed PMC
Scharmann M, Grafe TU. 2013. Reinstatement of
Scherzer S, Krol E, Kreuzer I, et al. 2013. The PubMed
Schulze W, Frommer WB, Ward JM. 1999. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant PubMed
Sirová D, Adamec L, Vrba J. 2003. Enzymatic activities in traps of four aquatic species of the carnivorous genus PubMed
Sirová D, Borovec J, Šantrůčková H, Šantrůček J, Vrba J, Adamec L. 2010. PubMed
Sirová D, Borovec J, Picek T, Adamec L, Nedbalová L, Vrba J. 2011. Ecological implications of organic carbon dynamics in the traps of aquatic carnivorous PubMed
Sydenham PH, Findlay GP. 1975. Transport of solutes and water by resetting bladders of
Thorén LM, Karlsson S. 1998. Effects of supplementary feeding on growth and reproduction of three carnivorous plant species in subarctic environment. Journal of Ecology 86: 501–510.
Thorén LM, Tuomi J, Kämäräinen T, Laine K. 2003. Resource availability affects investment in carnivory in PubMed
Thornham DG, Smith JM, Grafe TU, Federle W. 2012. Setting the trap: cleaning behaviour of
Vadassery J, Reichelt M, Jimenez-Aleman GH, Boland W, Mithöfer A. 2014. Neomycin inhibition of (+)-7-iso-lasmonoyl-l-isoleucine accumulation and signaling. Journal of Chemical Ecology 40: 676–686. PubMed
Vincent O, Roditchev I, Marmottant P. 2011a. Spontaneous firings of carnivorous aquatic PubMed PMC
Vincent O, Weißkopf C, Poppinga S, et al. 2011b. Ultra-fast underwater suction traps. Proceedings of the Royal Society B: Biological Sciences 278: 2909–2914. PubMed PMC
Volkov AG, Adesina T, Jovanov E. 2007. Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signaling and Behavior 2: 139–145. PubMed PMC
Volkov AG, Adesina T, Markin VS, Jovanov E. 2008. Kinetics and mechanism of PubMed PMC
Vos IA, Pieterse CMJ, van Wees SCM. 2013. Costs and benefits of hormone-regulated plant defences. Plant Pathology 62: 43–55.
Vredenberg W, Pavlovič A. 2013. Chlorophyll PubMed
Wakefield AE, Gotelli NJ, Wittman SE, Ellison AM. 2005. Prey addition alters nutrient stoichiometry of the carnivorous plant
Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in PubMed PMC
Wells K, Lakim MB, Schulz S, Ayasse M. 2011. Pitchers of
Wicke S, Schäferhoff B, dePamphilis CW, Müller KF. 2014. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. Molecular Biology and Evolution 31: 529–545. PubMed
Williams SE, Bennett AB. 1982. Leaf closure in the Venus flytrap: an acid growth response. Science 218: 1120–1121. PubMed
Williams SE, Pickard BG. 1972a. Receptor potentials and action potentials in PubMed
Williams SE, Pickard BG. 1972b. Properties of action potentials in PubMed
Williams SE, Pickard BG. 1980. The role of action potentials in the control of capture movements of
Zamora R, Gómez JM, Hódar JA. 1998. Fitness responses of a carnivorous plant in contrasting ecological scenarios. Ecology 79: 1630–1644.
How the diversity in digestion in carnivorous plants may have evolved
Recent ecophysiological, biochemical and evolutional insights into plant carnivory