Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates

. 2014 ; 9 (8) : e104424. [epub] 20140825

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25153528

The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.

Zobrazit více v PubMed

Darwin C (1875) Insectivorous plants. John Murray, London.

Burdon-Sanderson JS (1873) Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula . Proc R Soc 21: 495–496.

Krol E, Dziubinska H, Stolarz M, Trebacz K (2006) Effects of ion channel inhibitors on cold- and ellectrically-induced action potentials in Dionaea muscipula . Biol Plantarum 50: 411–416.

Brown WH (1916) The mechanism of movement and the duration of the effect of stimulation in the leaves of Dionaea . Am J Bot 3: 68–90.

Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174: 8–18. PubMed

Volkov AG, Adesina T, Jovanov E (2007) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2: 139–145. PubMed PMC

Volkov AG, Adesina T, Markin VS, Jovanov E (2008) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146: 694–702. PubMed PMC

Volkov AG, Carrell H, Baldwin A, Markin VS (2009) Electrical memory in Venus flytrap. Bioelectrochemistry 75: 142–147. PubMed

Volkov AG, Carrell H, Markin VS (2009) Biologically closed electrical circuits in Venus Flytrap. Plant Physiol 149: 1661–1667. PubMed PMC

Hodick D, Sievers A (1989) On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179: 32–42. PubMed

Forterre Y, Skotheim JM, Dumais J, Mahadevan L (2005) How the Venus flytrap snaps. Nature 433: 421–425. PubMed

Markin VS, Volkov AG, Jovanov E (2008) Active movements in plants: mechanism of trap closure by Dionaea muscipula Ellis. Plant Signal Behav 3: 778–783. PubMed PMC

Williams ME, Bennett AB (1982) Leaf closure in the Venus flytrap: an acid growth response. Science 218: 1120–1121. PubMed

Volkov AG, Harris SL, Vilfranc CL, Murphy VA, Wooten JD, et al. (2013) Venus flytrap biomechanics: Forces in the Dionaea muscipula trap. J Plant Physiol 170: 25–32. PubMed

Affolter JM, Olivo RF (1975) Action potentials in Venus's-flytraps: long term observations following the capture of prey. Am Midl Nat 93: 443–445.

Robins RJ (1976) The nature of the stimuli causing digestive juice secretion in Dionaea muscipula Ellis (Venus‘s flytrap). Planta 128: 263–265. PubMed

Lichtner FT, Williams SE (1977) Prey capture and factors controlling trap narrowing in Dionaea (Droseraceae). Am J Bot 64: 881–886.

Ueda M, Tokunaga T, Okada M, Nakamura Y, Takada N, et al. (2010) Trap-closing chemical factors of the Venus flytrap (Dionaea muscipula Ellis). ChemBioChem 11: 2378–2383. PubMed

Escalante-Pérez M, Krol E, Stange A, Geiger D, Al-Rasheid KA, et al. (2011) A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. PNAS USA 108: 15492–15497. PubMed PMC

Scala J, Iott K, Schwab DW, Semersky FE (1969) Digestive secretion of Dionaea muscipula (Venus's-flytrap). Plant Physiol 44: 367–371. PubMed PMC

Robins RJ, Juniper BE (1980) The secretory cycle of Dionaea muscipula Ellis. IV. The enzymology of the secretion. New Phytol 86: 401–412.

Takahashi K, Matsumoto K, Nishi W, Muramatsu M, Kubota K (2009) Comparative studies on the acid proteinase activities in the digestive fluids of Nepenthes, Cephalotus, Dionaea, and Drosera . Carnivorous Plant Newsletter 38: 75–82.

Athauda SBP, Matsumoto K, Rajapakshe S, Kuribayashi M, Kojima M, et al. (2004) Enzymic and structural characterization of nepenthesin, a unique member of a novel subfamily of aspartic proteinases. Biochem J 381: 295–306. PubMed PMC

Takahashi K, Suzuki T, Nishii W, Kubota K, Shibata C, et al. (2011) A cysteine endopeptidase (“Dionain”) is involved in the digestive fluid of Dionaea muscipula (Venus's flytrap). Biosci Biotech Biochem 75: 346–348. PubMed

Schulze WX, Sanggaard KW, Kreuzer I, Knudsen AD, Bemm F, et al. (2012) The protein composition of the digestive fluid from the Venus flytrap sheds light on prey digestion mechanisms. Mol Cell Proteom 11: 1306–1319. PubMed PMC

Takahashi K, Nishii W, Shibata C (2012) The digestive fluid of Drosera indica contains a cysteine endopeptidase (“Droserain”) similar to Dionain from Dionaea muscipula . Carnivorous Plant Newsletter 41: 132–134.

Ellison A (2006) Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol 8: 740–747. PubMed

Pavlovič A, Krausko M, Libiaková M, Adamec L (2014) Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis . Ann Bot 113: 69–78. PubMed PMC

Hlaváčková V, Krchňák P, Nauš J, Novák O, Špundová M, et al. (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225: 235–244. PubMed

Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, et al. (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283: 16400–16407. PubMed

Matušíková I, Salaj J, Moravčíková J, Mlynárová L, Nap JP, et al. (2005) Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222: 1020–1027. PubMed

Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. London, UK: Academic Press.

Volkov AG, Pinnock MR, Lowe DC, Gay MS, Markin VS (2011) Complete hunting cycle of Dionaea muscipula: Consecutive steps and their electrical properties. J Plant Physiol 168: 109–120. PubMed

Balotin NM, DiPalma JR (1962) Spontaneous electrical activity of Dionaea muscipula . Science 138: 1338–1339. PubMed

Scherzer S, Krol E, Kreuzer I, Kruse J, Karl F, et al. (2013) The Dionaea muscipula ammonium channel DmAMT1 provides NH4 + uptake associated with Venus flytrap's prey digestion. Curr Biol 23: 1649–1657. PubMed

Dick CF, Dos-Santos ALA, Meyer-Fernandes JR (2011). Inorganic phosphate as an important regulator of Phosphatases. Enzyme Res 2011: ID 103980. PubMed PMC

Gallie DR, Chang SC (1997) Signal transduction in the carnivorous plant Sarracenia purpurea . Plant Physiol 115: 1461–1471. PubMed PMC

Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana . J Exp Bot 57: 2775–2784. PubMed

Rottloff S, Stieber R, Maischak H, Turini FG, Heubl G, et al. (2011) Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes . J Exp Bot 62: 4639–4647. PubMed PMC

Mithöfer A (2011) Carnivorous pitcher plants: insight in an old topic. Phytochemistry 72: 1678–1682. PubMed

Hatano N, Hamada T (2012) Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata . J Proteom 75: 4844–4852. PubMed

Paszota P, Escalante-Perez M, Thomsen LR, Risør MW, Dembski A, et al. (2014) Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. Biochim Biophys Acta 1844: 374–383. PubMed

Robins RJ, Juniper BE (1980) The secretory cycle of Dionaea muscipula Ellis. II. Storage and synthesis of the secretory proteins. New Phytol 86: 297–311.

Robins RJ, Juniper BE (1980) The secretory cycle of Dionaea muscipula Ellis. III. The mechanism of release of digestive fluid. New Phytol 86: 313–327.

Nishimura E, Kawahara M, Kodaira R, Kume M, Arai N, et al. (2013) S-like ribonuclease gene expression in carnivorous plants. Planta 238: 955–967. PubMed

Stephenson P, Hogan J (2006) Cloning and characterization of a ribonuclease, a cysteine proteinase, and an aspartic proteinase from pitchers of the carnivorous plant Nepenthes ventricosa Blanco. Int J Plant Sci 167: 239–248.

Hatano N, Hamada T (2008) Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata . J Proteome Res 7: 809–816. PubMed

Fisahn J, Herde O, Willmitzer L, Peňa-Cortés H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: Requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45: 456–459. PubMed

Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signals. Nature 500: 422–426. PubMed

Monshausen GB, Haswell ES (2013) A force of nature: molecular mechanisms of mechanoperception in plants. J Exp Bot 64: 4663–4680. PubMed PMC

Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111: 1024–1058. PubMed PMC

Nakamura Y, Reichelt M, Mayer VE, Mithöfer A (2013) Jasmonates trigger prey-induced formation of outer stomach in carnivorous sundew plants. Proc R Soc B 280: 20130228. PubMed PMC

Mithöfer A, Reichelt M, Nakamura Y (2014) Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin. Plant Biol DOI:10.1111/plb.12148. PubMed

Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis . The Plant Cell 16: 2117–2127. PubMed PMC

Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, et al. (2009) (+)-7-iso-Jasmonyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chem Biol 5: 344–350. PubMed

Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, et al. (2010) Jasmonate perception by inositol-phosphate-potentiated COI-JAZ co-receptor. Nature 468: 400–407. PubMed PMC

Ballaré CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16: 249–257. PubMed

Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, et al. (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146: 952–964. PubMed PMC

Wang L, Allmann S, Wu J, Baldwin IT (2008) Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-aminoacid conjugates play different roles in herbivore resistance of Nicotiana attenuatta . Plant Physiol 146: 904–915. PubMed PMC

Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plants defense in the absence of jasmonic acid: The role of cyclopentenones. PNAS USA 98: 12837–12842. PubMed PMC

Taki N, Sasaki-Sekimoto Y, Obayashii T, Kikuta A, Kobayashi K, et al. (2005) 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis . Plant Physiol 139: 1268–1283. PubMed PMC

Stelmach BA, Müller A, Weiler EW (1999) 12-oxo-phytodienoic acid and indole-3-acetic acid in jasmonic acid-treated tendrils of Bryonia dioica . Phytochemistry 51: 187–192.

Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984) Carnivory in the bromeliad Brocchinia reducta with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient poor habitats. Am Nat 124: 479–497.

Pavlovič A, Demko V, Hudák J (2010) Trap closure and prey retention in Venus flytrap (Dionaea muscipula) temporarily reduces photosynthesis and stimulates respiration. Ann Bot 105: 37–44. PubMed PMC

Pavlovič A, Slováková L', Pandolfi C, Mancuso S (2011) On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis.). J Exp Bot 62: 1991–2000. PubMed PMC

Jaffe MJ (1973) The role of ATP in mechanically stimulated rapid closure of the Venus's-flytrap. Plant Physiol 51: 17–18. PubMed PMC

Farnsworth EJ, Ellison AM (2008) Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. J Ecol 96: 213–221.

Pavlovič A, Singerová L, Demko V, Hudák J (2009) Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis . Ann Bot 104: 307–314. PubMed PMC

Pavlovič A, Slováková L', Šantrůček J (2011) Nutritional benefit from leaf litter utilization in the pitcher plant Nepenthes ampullaria . Plant Cell Environ 34: 1865–1873. PubMed

Kruse J, Gao P, Honsel A, Kreuzwieser J, Burzlaff T, et al. (2014) Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula . Oecologia 174: 839–851. PubMed

Gibson TC, Waller DM (2009) Evolving Darwin's ‘most wonderful’ plant: ecological steps to a snap-trap. New Phytol 183: 575–587. PubMed

Schulze W, Schulze ED, Schulze I, Oren R (2001) Quantification of insect nitrogen utilization by the Venus flytrap Dionaea muscipula catching prey with highly variable isotope signatures. J Exp Bot 52: 1041–1049. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace