The carnivorous rainbow plant Byblis filifolia Planch. secretes digestive enzymes in response to prey capture independently of jasmonates
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
MZE-RO0423
Ministry of Agriculture, Czech Republic
PubMed
40387350
PubMed Central
PMC12096042
DOI
10.1111/plb.70029
Knihovny.cz E-resources
- Keywords
- Byblis, Carnivorous plant, Drosera, digestive enzyme, jasmonic acid, phytohormones, sundew,
- MeSH
- Amino Acids metabolism pharmacology MeSH
- Caryophyllales * enzymology physiology metabolism MeSH
- Cyclopentanes * metabolism MeSH
- Drosera physiology MeSH
- Indenes metabolism pharmacology MeSH
- Carnivorous Plant * enzymology physiology metabolism MeSH
- Oxylipins * metabolism MeSH
- Plant Growth Regulators * metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amino Acids MeSH
- coronatine MeSH Browser
- Cyclopentanes * MeSH
- Indenes MeSH
- jasmonic acid MeSH Browser
- Oxylipins * MeSH
- Plant Growth Regulators * MeSH
Carnivorous plants from the order Caryophyllales co-opted plant phytohormones from a group of jasmonates to regulate digestive enzyme activity. However, not all genera of carnivorous plants have been thoroughly explored, and the digestive physiology of Australian carnivorous rainbow plants of the genus Byblis (order Lamiales) is poorly understood. Here, we investigated the composition of digestive enzymes in the secreted fluid of Byblis filifolia using LC/MS, measured enzyme activity, and analysed tissue phytohormone levels after experimental feeding with fruit flies and coronatine application. Several hydrolytic digestive enzymes were identified in the secreted digestive fluid, the levels of which clearly increased in the presence of insect prey. However, in contrast to the sundew Drosera capensis, endogenous jasmonates do not accumulate, and coronatine, a molecular mimic of jasmonates, is unable to trigger enzyme secretion. Our results showed that B. filifolia is fully carnivorous, with its own digestive enzyme repertoire. However, in contrast to carnivorous genera from the Caryophyllales order, these enzymes are not regulated by jasmonates. This indicates that jasmonates have not been repeatedly co-opted to regulate digestive enzyme activity during the evolution of carnivorous plants.
See more in PubMed
Adamec L., Matušíková I., Pavlovič A. (2021) Recent ecophysiological, biochemical and evolutional insights into plant carnivory. Annals of Botany, 128, 241–259. PubMed PMC
Allan G. (2019a) Evidence of motile traps in Byblis . Carnivorous Plant Newsletter, 48, 51–63.
Allan G. (2019b) Nocturnal and diurnal digestive responses in Byblis gigantea, Drosophyllum lusitanicum, and Roridula gorgonias . Carnivorous Plant Newsletter, 48, 64–73.
Anderson B., Midgley J.J. (2003) Digestive mutualism, an alternate pathway in plant carnivory. Oikos, 102, 221–224.
Antão C.M., Malcata F.X. (2005) Plant serine proteases: Biochemical, physiological and molecular features. Plant Physiology and Biochemistry, 43, 637–650. PubMed
Arai N., Ohno Y., Jumyo S., Hamaji Y., Ohyama T. (2021) Organ‐specific expression and epigenetic traits of genes encoding digestive enzymes in the lance‐leaf sundew (Drosera adelae). Journal of Experimental Botany, 72, 1946–1961. PubMed PMC
Bemm F., Becker D., Larisch C., Kreuzer I., Escalante‐Perez M., Schulze W.X., Ankenbrand M., Van de Weyer A.L., Krol E., Al‐Rasheid K.A., Mithöfer A., Weber A.P., Schultz J., Hedrich R. (2016) Venus flytrap carnivorous lifestyle builds on herbivore defence strategies. Genome Research, 26, 812–825. PubMed PMC
Bruce A.N. (1905) On the activity of the glands of Byblis gigantea . Notes of the Royal Botanic Garden Edinburgh, 16, 89–98.
Conran J.G., Houben A., Lowrie A. (2002a) Chromosome numbers in Byblidaceae. Australian Journal of Botany, 50, 583–586.
Conran J.G., Lowrie A., Moyle‐Croft J. (2002b) A revision of Byblis (Byblidaceae) in south‐western Australia. Nuytsia, 15, 11–19.
Cross A.T., Paniw M., Scatigna A.V., Kalfas N., Anderson B., Givnish T.J., Fleischmann A. (2018) Systematics and evolution of small genera of carnivorous plants. In: Ellison A.M., Adamec L. (Eds), Carnivorous plants: Physiology, ecology, and evolution. Oxford University Press, Oxford, UK, pp 120–134.
Di Tommaso P., Moretti S., Xenarios I., Orobitg M., Montanyola A., Chang J.M., Taly J.F., Notredame C. (2011) T‐coffee: A web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39, W13–W17. PubMed PMC
Ellis A.G., Midgley J.J. (1996) A new plant–animal mutualism involving a plant with sticky leaves and a resident hemipteran insect. Oecologia, 106, 478–481. PubMed
Figueiredo J., Silva M.S., Figueiredo A. (2018) Subtilisin‐like proteases in plant defence: The past, the present and beyond. Molecular Plant Pathology, 19, 1017–1028. PubMed PMC
Fukushima K., Fang X., Alvarez‐Ponce D., Cai H., Carretero‐Paulet L., Chen C., Chang T.H., Farr K.M., Fujita T., Hiwatashi Y., Hoshi Y., Imai T., Kasahara M., Librado P., Mao L., Mori H., Nishiyama T., Nozawa M., Pálfalvi G., Pollard S.T., Rozas J., Sánchez‐Gracia A., Sankoff D., Shibata T.F., Shigenobu S., Sumikawa N., Uzawa T., Xie M., Zheng C., Pollock D.D., Albert V.A., Li S., Hasebe M. (2017) Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nature Ecology & Evolution, 1, e0059. PubMed
Fukushima K., Imamura K., Nagano K., Hoshi Y. (2011) Contrasting patterns of the 5S and 45S rDNA evolutions in the Byblis liniflora complex (Byblidaceae). Journal of Plant Research, 124, 231–244. PubMed PMC
Givnish T.J., Burkhardt E.L., Happel R.E., Weintraub J.D. (1984) Carnivory in the bromeliad Brocchinia reducta with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient poor habitats. The American Naturalist, 124, 479–497.
Givnish T.J., Sparks K.W., Hunter S.J., Pavlovič A. (2018) Why are plants carnivorous? Cost/benefit analysis, whole‐plant growth, and the context‐specific advantages of botanical carnivory. In: Ellison A.M., Adamec L. (Eds), Carnivorous plants: Physiology, ecology, and evolution. Oxford University Press, Oxford, UK, pp 232–255.
Hartmeyer S. (1997a) Carnivory of Byblis revisited: A simple method for enzyme testing on carnivorous plants. Carnivorous Plant Newsletter, 26, 39–45.
Hartmeyer S. (1997b) Carnivory of Byblis revisited II: The phenomenon of symbiosis on insect trapping plants. Carnivorous Plant Newsletter, 27, 110–113.
Hartmeyer S., Hartmeyer I. (2019) Observations and tests on cultivated tropical Byblis . Carnivorous Plant Newsletter, 48, 74–78.
Hatano N., Hamada T. (2012) Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata . Journal of Proteomics, 75, 4844–4852. PubMed
Heslop‐Harrison Y., Heslop‐Harrison J. (1980) Chloride ion movement and enzyme secretion from the digestive glands of Pinguicula . Annals of Botany, 45, 729–731.
Jakšová J., Adamec L., Petřík I., Novák O., Šebela M., Pavlovič A. (2021) Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). Plant Physiology and Biochemistry, 166, 459–465. PubMed
Jakšová J., Libiaková M., Bokor B., Petřík I., Novák O., Pavlovič A. (2020) Taste for protein: Chemical signal from prey stimulates enzyme secretion through jasmonate signalling in the carnivorous plant Venus flytrap. Plant Physiology and Biochemistry, 146, 90–97. PubMed
Juniper B.E., Robins R.J., Joel D.M. (1989) The carnivorous plants. Academic Press, Oxford, UK, pp 354.
Kocáb O., Jakšová J., Novák O., Petřík I., Lenobel R., Chamrád I., Pavlovič A. (2020) Jasmonate‐independent regulation of digestive enzyme activity in the carnivorous butterwort Pinguicula × Tina . Journal of Experimental Botany, 71, 3749–3758. PubMed PMC
Krausko M., Perutka Z., Šebela M., Šamajová O., Šamaj J., Novák O., Pavlovič A. (2017) The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis . New Phytologist, 213, 1818–1835. PubMed
Lee L., Zhang Y., Ozar B., Sensen C.W., Schriemer D.C. (2016) Carnivorous nutrition in pitcher plants (Nepenthes spp.) via an unusual complement of endogenous enzymes. Journal of Proteome Research, 15, 3108–3117. PubMed
Li Y.‐X., Chen A., Leu W.‐M. (2023) Sessile trichomes play major roles in prey digestion and absorption, while stalked trichomes function in prey predation in Byblis guehoi . International Journal of Molecular Sciences, 24, 5305. PubMed PMC
Libiaková M., Floková K., Novák O., Slováková L., Pavlovič A. (2014) Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates. PLoS One, 9, e104424. PubMed PMC
Lloyd F. (1942) The carnivorous plants. Chronica Botanica, Waltham, MA, pp 352.
Lowrie A. (2013) Carnivorous plants of Australia. Magnum Opus, Redfern Natural History Productions.
Lowrie A., Conran J.G. (1998) A taxonomic revision of the genus Byblis (Byblidaceae) in northern Australia. Nuytsia, 12, 59–74.
Matsumura M., Nomoto M., Itaya T., Aratani Y., Iwamoto M., Matsuura T., Hayashi Y., Mori T., Skelly M.J., Yamamoto Y.Y., Kinoshita T., Mori I.C., Suzuki T., Betsuyaku S., Spoel S.H., Toyota M., Tada Y. (2022) Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana . Nature Communications, 13, 1216.10.1038/s41467-022-28813-8 PubMed DOI PMC
Matušíková I., Salaj J., Moravčíková J., Mlynárová L., Nap J.P., Libantová J. (2005) Tentacles of in vitro‐grown round‐leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Planta, 222, 1020–1027. PubMed
Mithöfer A., Reichelt M., Nakamura Y. (2014) Wound and insect‐induced jasmonate accumulation in carnivorous Drosera capensis: Two sides of the same coin. Plant Biology, 16, 982–987. PubMed
Nakamura Y., Reichelt M., Mayer V.E., Mithöfer A. (2013) Jasmonates trigger prey‐induced formation of ‘outer stomach’ in carnivorous sundew plants. Proceedings of the Royal Society B: Biological Sciences, 280, e20130228‐28. PubMed PMC
Nishimura E., Kawahara M., Kodaira R., Kume M., Arai N., Nishikawa J., Ohyama T. (2013) S‐like ribonuclease gene expression in carnivorous plants. Planta, 238, 955–967. PubMed
Pavlovič A. (2022) How the sensory system of carnivorous plants has evolved. Plant Communications, 3, 100462. PubMed PMC
Pavlovič A., Jakšová J., Novák O. (2017) Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytologist, 216, 927–938. PubMed
Pavlovič A., Koller J., Vrobel O., Chamrád I., Lenobel R., Tarkowski P. (2024) Is the co‐option of jasmonate signalling for botanical carnivory a universal trait for all carnivorous plants? Journal of Experimental Botany, 75, 334–349. PubMed PMC
Pavlovič A., Mithöfer A. (2019) Jasmonate signalling in carnivorous plants: Copycat of plant defence mechanisms. Journal of Experimental Botany, 70, 3379–3389. PubMed
Pavlovič A., Saganová M. (2015) A novel insight into the cost–benefit model for the evolution of botanical carnivory. Annals of Botany, 115, 1075–1092. PubMed PMC
Pavlovič A., Vrobel O., Tarkowski P. (2023) Water cannot activate traps of the carnivorous sundew plant Drosera capensis: On the trail of Darwin's 150‐years‐old mystery. Plants, 12, 1820. PubMed PMC
Plachno B.J., Adamec L., Huet H. (2009) Mineral nutrient uptake from prey and glandular phosphatase activity as a dual test of carnivory in semi‐desert plants with glandular leaves suspected of carnivory. Annals of Botany, 104, 649–654. PubMed PMC
Poppinga S., Knorr N., Ruppert S., Speck T. (2022) Chemonastic stalked glands in the carnivorous rainbow plant Byblis gigantea LINDL. (Byblidaceae, Lamiales). International Journal of Molecular Sciences, 23, 11514. PubMed PMC
Procko C., Radin I., Hou C., Richardson R.A., Haswell E.S., Chory J. (2022) Dynamic calcium signals mediate the feeding response of the carnivorous sundew plant. Proceedings of the National Academy of Sciences, 119, e2206433119. PubMed PMC
Rottloff S., Miguel S., Biteau F., Nisse E., Hammann P., Kuhn L., Chicher J., Bazile V., Gaume L., Mignard B., Hehn A., Bourgaud F. (2016) Proteome analysis of digestive fluids in Nepenthes pitchers. Annals of Botany, 117, 479–495. 10.1093/aob/mcw001 PubMed DOI PMC
Saganová M., Bokor B., Stolárik T., Pavlovič A. (2018) Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes . Planta, 248, 451–464. PubMed
Schägger H. (2006) Tricine–SDS‐PAGE. Nature Protocols, 1, 16–22. PubMed
Schulze W.X., Sanggaard K.W., Kreuzer I., Knudsen A.D., Bemm F., Thøgersen I.B., Bräutigam A., Thomsen L.R., Schliesky S., Dyrlund T.F., Escalante‐Perez M., Becker D., Schultz J., Karring H., Weber A., Højrup P., Hedrich R., Enghild J.J. (2012) The protein composition of the digestive fluid from the Venus flytrap sheds light on prey digestion mechanisms. Molecular & Cell Proteomics, 11, 1306–1319. PubMed PMC
Skates L.M. (2021) How carnivorous are carnivorous plants? Exploring nutritional rewards from prey using stable isotope techniques. PhD thesis The University of Western Australia, Perth, Australia, pp 177.
Suda H., Mano H., Toyota M., Fukushima K., Mimura T., Tsutsui I., Hedrich R., Tamada Y., Hasebe M. (2020) Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants, 6, 1219–1224. PubMed
Takahashi K., Matsumoto K., Nishii W., Muramatsu M., Kubota K., Shibata C., Athauda S.B.P. (2009) Comparative studies on the acid proteinase activities in the digestive fluids of Nepenthes, Cephalotus, Dionaea, and Drosera . Carnivorous Plant Newsletter, 38, 75–82.
Thumuluri V., Almagro Armenteros J.J., Johansen A.R., Nielsen H., Winther O. (2022) DeepLoc 2.0: Multi‐label subcellular localization prediction using protein language models. Nucleic Acids Research, 50, W228–W234. PubMed PMC
Tran N.H., Qiao R., Xin L., Chen X., Liu C., Zhang X., Shan B., Ghodsi A., Li M. (2018) Deep learning enables de novo peptide sequencing from data‐independent‐acquisition mass spectrometry. Nature Methods, 16, 63–66. PubMed
Tripathi L.P., Sowdhamini R. (2006) Cross genome comparisons of serine proteases in Arabidopsis and rice. BMC Genomics, 7, 200. PubMed PMC
Vizcaíno J.A., Côté R.G., Csordas A., Dianes J.A., Fabregat A., Foster J.M., Griss J., Alpi E., Birim M., Contell J., O'Kelly G., Schoenegger A., Ovelleiro D., Pérez‐Riverol Y., Reisinger F., Ríos D., Wang R., Hermjakob H. (2013) The proteomics identifications (PRIDE) database and associated tools: Status in 2013. Nucleic Acids Research, 41, D1063–D1069. PubMed PMC
Vlčko T., Tarkowská D., Široká J., Pěnčík A., Simerský R., Chamrád I., Lenobel R., Novák O., Ohnoutková L. (2023) Hormone profiling and the root proteome analysis of itpk1 mutant seedlings of barley (Hordeum vulgare) during the red‐light induced photomorphogenesis. Environmental and Experimental Botany, 213, 105428.
Wang J., Chitsaz F., Derbyshire M.K., Gonzales N.R., Gwadz M., Lu S., Marchler G.H., Song J.S., Thanki N., Yamashita R.A., Yang M., Zhang D., Zheng C., Lanczycki C.J., Marchler‐Bauer A. (2023) The conserved domain database in 2023. Nucleic Acids Research, 51, D384–D388. PubMed PMC
Zulkapli M.M., Ghani N.S.A., Ting T.Y., Aizat W.M., Goh H.‐H. (2021) Transcriptomic and proteomic analyses of Nepenthes ampullaria and Nepenthes rafflesiana reveal parental molecular expression in the pitchers of their hybrid, Nepenthes × hookeriana . Frontiers in Plant Science, 11, 625507. PubMed PMC