Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-07366Y
Grantová Agentura České Republiky
LO1204
Ministerstvo Školství, Mládeže a Tělovýchovy
26240220086
European Regional Development Fund
PubMed
29767335
DOI
10.1007/s00425-018-2917-7
PII: 10.1007/s00425-018-2917-7
Knihovny.cz E-zdroje
- Klíčová slova
- Carnivorous plant, Chitin, Chitinase, Enzyme, Nepenthesin, Pitcher plant, Protease,
- MeSH
- Caryophyllales enzymologie fyziologie ultrastruktura MeSH
- chitin metabolismus MeSH
- chlorid amonný farmakologie MeSH
- enzymy genetika metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- masožravci MeSH
- membránové potenciály MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sérový albumin hovězí metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitin MeSH
- chlorid amonný MeSH
- enzymy MeSH
- rostlinné proteiny MeSH
- sérový albumin hovězí MeSH
Nepenthes regulates enzyme activities by sensing stimuli from the insect prey. Protein is the best inductor mimicking the presence of an insect prey. Carnivorous plants of the genus Nepenthes have evolved passive pitcher traps for prey capture. In this study, we investigated the ability of chemical signals from a prey (chitin, protein, and ammonium) to induce transcription and synthesis of digestive enzymes in Nepenthes × Mixta. We used real-time PCR and specific antibodies generated against the aspartic proteases nepenthesins, and type III and type IV chitinases to investigate the induction of digestive enzyme synthesis in response to different chemical stimuli from the prey. Transcription of nepenthesins was strongly induced by ammonium, protein and live prey; chitin induced transcription only very slightly. This is in accordance with the amount of released enzyme and proteolytic activity in the digestive fluid. Although transcription of type III chitinase was induced by all investigated stimuli, a significant accumulation of the enzyme in the digestive fluid was found mainly after protein and live prey addition. Protein and live prey were also the best inducers for accumulation of type IV chitinase in the digestive fluid. Although ammonium strongly induced transcription of all investigated genes probably through membrane depolarization, strong acidification of the digestive fluid affected stability and abundance of both chitinases in the digestive fluid. The study showed that the proteins are universal inductors of enzyme activities in carnivorous pitcher plants best mimicking the presence of insect prey. This is not surprising, because proteins are a much valuable source of nitrogen, superior to chitin. Extensive vesicular activity was observed in prey-activated glands.
Zobrazit více v PubMed
Plant Physiol. 1997 Dec;115(4):1461-71 PubMed
Genome Res. 2016 Jun;26(6):812-25 PubMed
J Proteome Res. 2016 Sep 2;15(9):3108-17 PubMed
Nat Ecol Evol. 2017 Feb 06;1(3):59 PubMed
Sci Rep. 2017 Sep 14;7(1):11647 PubMed
Ann Bot. 2016 Mar;117(3):479-95 PubMed
Plant Physiol Biochem. 2016 Jul;104:11-6 PubMed
Trends Plant Sci. 2007 Jul;12(7):310-6 PubMed
Planta. 2017 Feb;245(2):313-327 PubMed
Sci Rep. 2017 Sep 12;7(1):11281 PubMed
PLoS One. 2011;6(9):e25144 PubMed
PLoS One. 2015 Mar 09;10(3):e0118853 PubMed
Methods. 2001 Dec;25(4):402-8 PubMed
New Phytol. 2017 Mar;213(4):1818-1835 PubMed
J Exp Bot. 2010 Mar;61(5):1365-74 PubMed
Carbohydr Res. 2012 Nov 1;361:170-4 PubMed
New Phytol. 2017 Nov;216(3):927-938 PubMed
Am J Bot. 2013 Dec;100(12):2478-84 PubMed
PLoS One. 2012;7(5):e36179 PubMed
PLoS One. 2013 May 22;8(5):e63556 PubMed
Front Plant Sci. 2013 May 16;4:139 PubMed
Biochem J. 2004 Jul 1;381(Pt 1):295-306 PubMed
Biol Lett. 2009 Oct 23;5(5):632-5 PubMed
Sci Rep. 2016 Aug 02;6:30980 PubMed
Protein Expr Purif. 2014 Mar;95:121-8 PubMed
Nature. 2002 Jan 3;415(6867):36-7 PubMed
J Exp Bot. 2011 Aug;62(13):4639-47 PubMed
Ann Bot. 2016 Aug;118(2):369-75 PubMed
Nucleic Acids Res. 2001 May 1;29(9):e45 PubMed
Glycobiology. 2012 Mar;22(3):345-51 PubMed
Curr Biol. 2016 Feb 8;26(3):286-95 PubMed
Planta. 2005 Dec;222(6):1020-7 PubMed
Plant J. 1999 Mar;17(6):637-46 PubMed
PLoS One. 2014 Aug 25;9(8):e104424 PubMed
J Exp Bot. 2006;57(11):2775-84 PubMed
Ann Bot. 2013 Mar;111(3):375-83 PubMed
Plant Cell Environ. 2011 Nov;34(11):1865-73 PubMed
J Exp Bot. 2010 Mar;61(3):911-22 PubMed
Biol Lett. 2011 Jun 23;7(3):436-9 PubMed
J Proteomics. 2012 Aug 3;75(15):4844-52 PubMed
Curr Biol. 2013 Sep 9;23(17):1649-57 PubMed
Phytochemistry. 2011 Sep;72(13):1678-82 PubMed
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4822-4827 PubMed
New Phytol. 2018 Feb;217(3):1035-1041 PubMed
Planta. 2001 Mar;212(4):547-55 PubMed
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19613-8 PubMed
Mol Biol Evol. 2012 Oct;29(10):2971-85 PubMed
Plant Sci. 2013 Apr;203-204:74-8 PubMed
Plant J. 2012 Jul;71(2):303-13 PubMed
Biotechnol Rep (Amst). 2017 Jan 05;13:72-79 PubMed
Planta. 1972 Sep;103(3):222-40 PubMed
J Proteome Res. 2008 Feb;7(2):809-16 PubMed