Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula)
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31677265
PubMed Central
PMC6948209
DOI
10.1093/aob/mcz177
PII: 5611149
Knihovny.cz E-zdroje
- Klíčová slova
- Dionaea muscipula, Anaesthesia, Venus flytrap, action potential, anaesthetic, carnivorous plant, diethyl ether, electrical signal, jasmonic acid, plant movement,
- MeSH
- anestezie * MeSH
- cyklopentany MeSH
- Droseraceae * MeSH
- ether MeSH
- oxylipiny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- ether MeSH
- jasmonic acid MeSH Prohlížeč
- oxylipiny MeSH
BACKGROUND AND AIMS: General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS: We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS: Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS: The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.
Comenius University Science Park Comenius University in Bratislava Ilkovičova Bratislava Slovakia
Zobrazit více v PubMed
Andersen OS, Koeppe RE 2nd. 2007. Bilayer thickness and membrane protein function: an energetic perspective. Annual Review of Biophysics and Biomolecular Structure 36:107–130. PubMed
Affolter JM, Olivo RF. 1975. Action potentials in Venus’s-flytraps: long term observations following the capture of prey. American Midland Naturalist 93: 443–445.
Attaran E, Major IT, Cruz JA, et al. . 2014. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiology 165: 1302–1314. PubMed PMC
Becker D, Geiger D, Dunkel M, et al. . 2004. AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proceedings of the National Academy of Sciences USA 101: 15621–15626. PubMed PMC
van Bel AJ, Furch AC, Will T, Buxa SV, Musetti R, Hafke JB. 2014. Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway. Journal of Experimental Botany 65: 1761–1787. PubMed
Bemm F, Becker D, Lariä C, et al. . 2016. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Research 26: 812–825. PubMed PMC
Bernard C. 1878. Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. (Librairie J.-B. Baillière et Fils).
Böhm J, Scherzer S, Krol E, et al. . 2016. a The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Current Biology 26: 286–295. PubMed PMC
Böhm J, Scherzer S, Shabala S, et al. . 2016. b Venus Flytrap HKT1-Type Channel provides for prey sodium uptake into carnivorous plant without conflicting with electrical excitability. Molecular Plant 9: 428–436. PubMed PMC
Chini A, Fonseca S, Fernández G, et al. , 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671. PubMed
Cuin TA, Dreyer I, Michard E. 2018. The role of potassium channels in Arabidopsis thaliana long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials. International Journal of Molecular Sciences 19: 926. PubMed PMC
De Geyter N, Gholami A, Goormachtig S, Goossens A. 2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science 17: 349–359. PubMed
De Luccia TP. 2012. Mimosa pudica, Dionaea muscipula and anesthetics. Plant Signaling & Behavior 7: 1163–1167. PubMed PMC
Ellis C, Karafyllidis I, Wasternack C, Turner JG. 2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. The Plant Cell 14: 1557–1566. PubMed PMC
Escalante-Pérez M, Krol E, Stange A, et al. . 2011. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proceedings of the National Academy of Sciences USA 108: 15492–15497. PubMed PMC
Felle HH, Zimmermann MR. 2007. Systemic signalling in barley through action potentials. Planta 226: 203–214. PubMed
Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. 2014. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105: 147–157. PubMed
Franks NP. 2008. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nature Reviews Neuroscience 9: 370–386. PubMed
Franks NP, Lieb WR. 1984. Do general anaesthetics act by competitive binding to specific receptors? Nature 310: 599–601. PubMed
Fromm J, Lautner S. 2007. Electrical signals and their physiological significance in plants. Plant, Cell and Environment 30: 249–257. PubMed
Funk CD. 2001. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294: 1871–1875. PubMed
Gibson TC, Waller DM. 2009. Evolving Darwin’s ‘most wonderful’ plant: ecological steps to a snap-trap. New Phytologist 183: 575–587. PubMed
Gilroy S, Suzuki N, Miller G, et al. . 2014. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science 19: 623–630. PubMed
Grémiaux A, Yokawa K, Mancuso S, Baluška F. 2014. Plant anesthesia supports similarities between animals and plants: Claude Bernard’s forgotten studies. Plant Signaling and Behavior 9: e27886. PubMed PMC
Hatano N, Hamada T. 2008. Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata. Journal of Proteome Research 7: 809–816. PubMed
Hatano N, Hamada T. 2012. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata. Journal of Proteomics 75: 4844–4452. PubMed
Hedrich R, Neher E. 2018. Venus flytrap: how an excitable, carnivorous plant works. Trends in Plant Science 23: 220–234. PubMed
Hedrich R, Salvador-Recatalà V, Dreyer I. 2016. Electrical wiring and long-distance plant communication. Trends in Plant Science 21: 376–387. PubMed
Herold KF, Hemmings HC. 2012. Sodium channels as targets for volatile anesthetics. Frontiers in Pharmacology 3, article 50. PubMed PMC
Hodick D, Sievers A. 1988. The action potential of Dionaea muscipula Ellis. Planta 174: 8–18. PubMed
Ilík P, Hlaváčková V, Krchňák P, Nauš J. 2010. A low-noise multi-channel device for the monitoring of systemic electrical signal propagation in plants. Biologia Plantarum 54: 185–190.
Kiep V, Vadassery J, Lattke J, Maaß JP, Boland W, Peiter E, Mithöfer A. 2015. Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytologist 207: 996–1004. PubMed
Krasowski MD, Harrison NL. 2000. The actions of ether, alcohol and alkane general anaesthetics on GABAA and glycine receptors and the effects of TM2 and TM3 mutations. British Journal of Pharmacology 129: 731–743. PubMed PMC
Krausko M, Perutka Z, Šebela M, et al. . 2017. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. New Phytologist 213: 1818–1835. PubMed
Krol E, Dziubinska H, Stolarz M, Trebacz K. 2006. Effects of ion channel inhibitors on cold- and electrically-induced action potentials in Dionaea muscipula. Biologia Plantarum 50: 411–416.
Lam HM, Chiu J, Hsieh MH, et al. . 1998. Glutamate-receptor genes in plants. Nature 396: 125–126. PubMed
Lerner RA. 1997. A hypothesis about the endogenous analogue of general anesthesia. Proceedings of the National Academy of Sciences USA 94: 13375–13377. PubMed PMC
Libiaková M, Floková K, Novák O, Slováková Ľ, Pavlovič A. 2014. Abundance of cysteine endopeptidase Dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates. PLoS One 9: e104424. PubMed PMC
MacIver BM, Tanelian DL. 1990. Volatile anesthetics excite mammalian nociceptor afferents recorded in vitro. Anesthesiology 72: 1022–1030. PubMed
Maffei ME, Mithöfer A, Boland W. 2007. Before gene expression: early events in plant–insect interaction. Trends in Plant Science 12: 310–316. PubMed
Martin DC, Plagenhoef M, Abraham J, Dennison RL, Aronstam RS. 1995. Volatile anesthetics and glutamate activation of N-methyl-d-aspartate receptors. Biochemical Pharmacology 49: 809–817. PubMed
Mielke S, Gasperini D. 2019. Interplay between plant cell walls and jasmonate production. Plant Cell and Physiology (in press), doi:10.1093/pcp/pcz119. PubMed DOI
Meyer H. 1899. Zur Theorie der Alkoholnarkose. Archiv for Experimentelle Pathologie und Pharmakologie 42:109–118.
Milne A, Beamish T. 1999. Inhalation and local anesthetics reduce tactile and thermal responses in Mimosa pudica. Canadian Journal of Anesthesia 46: 287–289. PubMed
Mihic SJ, Ye Q, Wick MJ, et al. . 1997. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389: 385–389. PubMed
Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. 2013. Glutamate receptor-like genes mediate leaf-to-leaf wound signals. Nature 500: 422–426. PubMed
Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE. 2018. Identification of cell populations necessary for leaf-to-leaf electrical signaling in wounded plant. Proceedings of the National Academy of Sciences USA 115: 10178–10183. PubMed PMC
Orser BA, Canning KJ, Macdonald JF. 2002. Mechanisms of general anesthesia. Current Opinion in Anesthesiology 15: 427–433. PubMed
Overton CE. 1901. Studien über die Narkose zugleich ein Beitrag zur Allgemeinen Pharmakologie. Berlin: Fischer Verlag.
Pan Z, Camara B, Gardner HW, Backhaus RA. 1998. Aspirin inhibition and acetylation of the plant cytochrome P450, allene oxide synthase, resembles that of animal prostaglandin endoperoxide H synthase. The Journal of Biological Chemistry 273: 18139–18145. PubMed
Paszota P, Escalante-Perez M, Thomsen LR, et al. . 2014. Secreted major Venus flytrap chitinase enables digestion of arthropod prey. Biochimica et Biophysica Acta 1844: 374–383. PubMed
Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M. 1999. Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neuroscience 2: 422–426. PubMed
Pauwels L, Inzé D, Goossens A. 2009. Jasmonate-inducible gene: what does it mean? Trends in Plant Science 14: 87–91. PubMed
Pavlovič A, Jakšová J, Novák O. 2017. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytologist 216: 927–938. PubMed
Pavlovič A, Mithöfer A. 2019. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms Journal of Experimental Botany 70: 3379–3389. PubMed
Pavlovič A, Saganová M. 2015. A novel insight into the cost–benefit model for the evolution of botanical carnivory. Annals of Botany 115: 1075–1092. PubMed PMC
Pena-Cortés H, Albrecht T, Prat S, Weiler EW, Willmitzer L. 1993. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123–128.
Peyronnet R, Tran D, Girault T, Frachisse J-M. 2014. Mechanosensitive channels: feeling tension in a world under pressure. Frontiers in Plant Science 5: 558. PubMed PMC
Ramesh SA, Tyerman SD, Xu B, et al. . 2015. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nature Communication 6: 7879. PubMed PMC
Ricciotti E, FitzGerald GA. 2011. Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology 31: 986–1000. PubMed PMC
Rinaldi A. 2014. Reawakening anaesthesia research. EMBO Reports 15: 1113–1118. PubMed PMC
Risør MW, Thomsen LR, Sanggaard KW, et al. . 2016. Enzymatic and structural characterization of the major endopeptidase in the Venus flytrap digestion fluid. Journal of Biological Chemistry 291: 2271–2287. PubMed PMC
Saganová M, Bokor B, Stolárik T, Pavlovič A. 2018. Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes. Planta 248: 451–464. PubMed
Salvador-Recatalà V, Tjallingii WF, Farmer EE. 2014. Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytologist 203: 674–684. PubMed
Schägger H. 2006. Tricine-SDS-PAGE. Nature Protocols 1: 16–22. PubMed
Scherzer S, Böhm J, Krol E, et al. . 2015. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proceedings of the National Academy of Sciences, USA 112: 7309–7314. PubMed PMC
Scherzer S, Krol E, Kreuzer I, et al. . 2013. The Dionaea muscipula ammonium channel DmAMT1 provides NH4+ uptake associated with Venus flytrap’s prey digestion. Current Biology 23: 1649–1657. PubMed
Scherzer S, Shabala L, Hedrich B, et al. . 2017. Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proceedings of the National Academy of Sciences USA 114: 4822–4827. PubMed PMC
Schulze WX, Sanggaard KW, Kreuzer I, et al. . 2012. The protein composition of the digestive fluid from the Venus flytrap sheds light on prey digestion mechanisms. Molecular and Cellular Proteomics 11: 1306–1319. PubMed PMC
Sheard LB, Tan X, Mao H, et al. . 2010. Jasmonate perception by inositolphosphate- potentiated COI-JAZ co-receptor. Nature 468: 400–407. PubMed PMC
Staswick PE, Tiryaki I. 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to izoleucine in Arabidopsis. The Plant Cell 16: 2117–2127. PubMed PMC
Tang P, Xu Y. 2002. Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: the implication of molecular mechanisms of general anesthesia. Proceedings of the National Academy of Sciences USA 99: 16035–16040. PubMed PMC
Thines B, Katsir L, Melotto M, et al. . 2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448: 661–665. PubMed
Toyota M, Spencer D, Sawai-Toyota S, et al. . 2018. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361: 1112–1114. PubMed
Volkov AG. 2019. Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochemistry 125: 25–32. PubMed
Volkov AG, Adesina T, Markin VS, Jovanov E. 2008. Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiology 146: 694–702. PubMed PMC
Volkov AG, Carrell H, Baldwin A, Markin VS. 2009. Electrical memory in Venus flytrap. Bioelectrochemistry 75: 142–147. PubMed
Wang J, Wu D, Wang Y, Xie D. 2019. Jasmonate action in plant defense against insect. Journal of Experimental Botany 70: 3391–3400. PubMed
Weiland M, Mancuso S, Baluška F. 2016. Signalling via glutamate and GLRs in Arabidopsis thaliana. Functional Plant Biology 43: 1–25. PubMed
Weir CJ. 2006. The molecular mechanisms of general anaesthesia: dissecting the GABAA receptor. Continuing Education in Anaesthesia Critical Care & Pain 6: 49–53.
Wildon DC, Thain JF, Minchin PEH, et al. . 1992. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360: 62–65.
Yan C, Fan M, Yang M, et al. . 2018. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Molecular Cell 70:136–149. PubMed
Yokawa K, Kagenishi T, Baluška F. 2019. Anesthetics, anesthesia, and plants. Trends in Plant Science 24: 12–14. PubMed
Yokawa K, Kagenishi T, Pavlovič A, et al. . 2018. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Annals of Botany 122: 747–756. PubMed PMC
Zhou C, Liu J, Chen X-D. 2012. General anesthesia mediated by effects on ion channels. World Journal of Critical Care Medicine 1: 80–93. PubMed PMC
Žárský V. 2015. Signal transduction: GABA receptor found in plants. Nature Plants 1: article number 15115. PubMed
Touch, light, wounding: how anaesthetics affect plant sensing abilities
Recent ecophysiological, biochemical and evolutional insights into plant carnivory