Diethyl ether anesthesia induces transient cytosolic [Ca2+] increase, heat shock proteins, and heat stress tolerance of photosystem II in Arabidopsis

. 2022 ; 13 () : 995001. [epub] 20220912

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36172556

General volatile anesthetic diethyl ether blocks sensation and responsive behavior not only in animals but also in plants. Here, using a combination of RNA-seq and proteomic LC-MS/MS analyses, we investigated the effect of anesthetic diethyl ether on gene expression and downstream consequences in plant Arabidopsis thaliana. Differential expression analyses revealed reprogramming of gene expression under anesthesia: 6,168 genes were upregulated, 6,310 genes were downregulated, while 9,914 genes were not affected in comparison with control plants. On the protein level, out of 5,150 proteins identified, 393 were significantly upregulated and 227 were significantly downregulated. Among the highest significantly downregulated processes in etherized plants were chlorophyll/tetrapyrrole biosynthesis and photosynthesis. However, measurements of chlorophyll a fluorescence did not show inhibition of electron transport through photosystem II. The most significantly upregulated process was the response to heat stress (mainly heat shock proteins, HSPs). Using transgenic A. thaliana expressing APOAEQUORIN, we showed transient increase of cytoplasmic calcium level [Ca2+]cyt in response to diethyl ether application. In addition, cell membrane permeability for ions also increased under anesthesia. The plants pre-treated with diethyl ether, and thus with induced HSPs, had increased tolerance of photosystem II to subsequent heat stress through the process known as cross-tolerance or priming. All these data indicate that diethyl ether anesthesia may partially mimic heat stress in plants through the effect on plasma membrane.

Zobrazit více v PubMed

Allakhverdiev S. I., Kreslavski V. D., Klimov V. V., Los D. A., Carpentier R., Mohanty P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynth. Res. 98, 541–550. doi: 10.1007/s11120-008-9331-0, PMID: PubMed DOI

Böhm J., Scherzer S. (2021). Signaling and transport processes related to the carnivorous lifestyle of plants living on nutrient-poor soil. Plant Physiol. 187, 2017–2031. doi: 10.1093/plphys/kiab297, PMID: PubMed DOI PMC

Bowler C., Fluhr R. (2000). The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5, 241–246. doi: 10.1016/s1360-1385(00)01628-9, PMID: PubMed DOI

Cheng Z., Luan Y., Meng J., Sun J., Tao J., Zhao D. (2021). WRKY transcription factor response to high-temperature stress. Plants 10:2211. doi: 10.3390/plants10102211, PMID: PubMed DOI PMC

Coghlan M., Richards E., Shaik S., Rossi P., Vanama R. B., Ahmadi S., et al. . (2018). Inhalation anesthetics induce neuronal protein aggregation and use affect ER trafficking. Sci. Rep. 8:5275. doi: 10.1038/s41598-018-23335-0, PMID: PubMed DOI PMC

Collins A. C., Wehner J. M., Wilson W. R. (1993). Animal models for alcoholism: genetic strategies and neurochemical mechanisms. Biochem. Soc. Symp. 59, 173–191. PMID: PubMed

Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. doi: 10.1038/nbt.1511, PMID: PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. doi: 10.1021/pr101065j, PMID: PubMed DOI

De Luccia T. P. B. (2012). Mimosa pudica, Dionaea muscipula and anesthetics. Plant Signal. Behav. 7, 1163–1167. doi: 10.4161/psb.21000, PMID: PubMed DOI PMC

Demidchik V., Straltsova D., Medvedev S. S., Pozhvanov G. A., Sokolik A., Yurin V. (2014). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 65, 1259–1270. doi: 10.1093/jxb/eru004, PMID: PubMed DOI

Downs C. A., Coleman J. S., Heckathorn S. A. (1999). The chloroplast 22-ku heat-shock protein: a lumenal protein that associates with the oxygen evolving complex and protects photosystem II during heat stress. J. Plant Physiol. 155, 477–487. doi: 10.1016/S0176-1617(99)80042-X DOI

Driedonks N., Xu J., Peters J. L., Park S., Rieu I. (2015). Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front. Plant Sci. 6:999. doi: 10.3389/fpls.2015.00999, PMID: PubMed DOI PMC

Franks N. P. (2006). Molecular targets underlying general anesthesia. Br. J. Pharmacol. 147, S72–S81. doi: 10.1038/sj.bjp.0706441, PMID: PubMed DOI PMC

Franks N. P., Lieb W. R. (1984). Do general anesthetics act by competitive binding to specific receptors? Nature 310, 599–601. doi: 10.1038/310599a0, PMID: PubMed DOI

Guissé B., Srivastava A., Strasser R. J. (1995). The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Arch. Sci. Genev. 48, 147–160.

Guo H., Feng P., Chi W., Sun X., Xu X., Li Y., et al. . (2016). Plastid-nucleus communication involves calcium-modulated MAPK signalling. Nature Comm. 7:12173. doi: 10.1038/ncomms12173 PubMed DOI PMC

Horváth I., Glatz A., Varvasovszki V., Török Z., Páli T., Balogh G., et al. . (1998). Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc. Natl. Acad. Sci. U. S. A. 95, 3513–3518. doi: 10.1073/pnas.95.7.3513, PMID: PubMed DOI PMC

Ilík P., Špundová M., Šicner M., Melkovičová H., Kučerová Z., Krchňák P., et al. . (2018). Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating. New Phytol. 218, 1278–1287. doi: 10.1111/nph.15097, PMID: PubMed DOI

Jakšová J., Rác M., Bokor B., Petřík I., Novák O., Reichelt M., et al. . (2021). Anesthetic diethyl ether impairs systemic electrical and jasmonate signaling in Arabidopsis thaliana. Plant Physiol. Biochem. 169, 311–321. doi: 10.1016/j.plaphy.2021.11.019, PMID: PubMed DOI

Kelz M. B., Mashour G. A. (2019). The biology of general anesthesia from paramecium to primate. Curr. Biol. 29, R1199–R1210. doi: 10.1016/j.cub.2019.09.071, PMID: PubMed DOI PMC

Kiep V., Vadassery J., Lattke J., Maaß J.-P., Boland W., Peiter E., et al. . (2015). Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol. 207, 996–1004. doi: 10.1111/nph.13493 PubMed DOI

Kitahata H., Nozaki J., Kawahito S., Tomino T., Oshita S. (2008). Low-dose sevoflurane inhalation enhances late cardioprotection from anti-ulcer drug geranygeranylacetone. Anesth. Analg. 107, 755–761. doi: 10.1213/ane.0b013e31817f0e61, PMID: PubMed DOI

Kobayashi K., Masuda T. (2016). Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front. Plant Sci. 7:1811. doi: 10.3389/fpls.2016.01811, PMID: PubMed DOI PMC

Kruse E., Grimm B., Beator J., Kloppstech K. (1997). Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in green barley. Planta 202, 235–241. doi: 10.1007/s004250050124 DOI

Lazár D., Pospíšil P., Nauš J. (1997). Decrease of fluorescence intensity after the K step in chlorophyll a fluorescence induction is suppressed by electron acceptors and donors to photosystem 2. Photosynthetica 37, 255–265. doi: 10.1023/A:1007112222952 DOI

Lerner R. A. (1997). A hypothesis about the endogenous analogue of general anesthesia. Proc. Natl. Acad. Sci. U. S. A. 94, 13375–13377. doi: 10.1073/pnas.94.25.13375, PMID: PubMed DOI PMC

Matsumoto F., Obayashi T., Sasaki-Sekimoto Y., Ohta H., Takamiya K., Masuda T. (2004). Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol. 135, 2379–2391. doi: 10.1104/pp.104.042408, PMID: PubMed DOI PMC

Maxwell K., Johnson G. N. (2000). Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668. doi: 10.1093/jxb/51.345.659, PMID: PubMed DOI

McAinsh M. R., Pittman J. K. (2009). Shaping the calcium signature. New Phytol. 181, 275–294. doi: 10.1111/j.1469-8137.2008.02682.x PubMed DOI

Meyer H. (1899). Zur Theorie der Alkoholnarkose. Arch. Exp. Pathol. Pharmakol. 42, 109–118. doi: 10.1007/BF01834479 DOI

Milne A., Beamish T. (1999). Inhalational and local anesthetics reduce tactile and thermal responses in Mimosa pudica. Can. J. Anaesth. 46, 287–289. doi: 10.1007/BF03012612, PMID: PubMed DOI

Mohanty S., Grimm B., Tripathy B. C. (2006). Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224, 692–699. doi: 10.1007/s00425-006-0248-6, PMID: PubMed DOI

Morimoto R. I. (1998). Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796. doi: 10.1101/gad.12.24.3788, PMID: PubMed DOI

Mousavi S. A. R., Chauvin A., Pascaud F., Kellenberger S., Farmer E. E. (2013). Glutamate receptor-like genes mediate leaf-to-leaf wound signals. Nature 500, 422–426. doi: 10.1038/nature12478, PMID: PubMed DOI

Nair A., Bhukya D. P. N., Sunkar R., Chavali S., Allu A. D. (2022). Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. J. Exp. Bot. 73, 3355–3371. doi: 10.1093/jxb/erac089, PMID: PubMed DOI

Nakao H., Ogli K., Yokono S., Ono J., Miyatake A. (1998). The effect of volatile anesthetics on light-induced phosphorylation in spinach chloroplasts. Toxicol. Lett. 100-101, 135–138. doi: 10.1016/s0378-4274(98)00177-5, PMID: PubMed DOI

Overton C. E. (1901). Studien über die Narkose Zugleich ein Beitrag zur Allgemeinen Pharmakologie. Jena, Germany: Fischer Verlag.

Pagel P. S. (2008). Induction of heat shock protein 70 and preconditioning by sevoflurane: a potent protective interaction against myocardial ischemia-reperfusion injury. Anesth. Analg. 107, 742–745. doi: 10.1213/ane.0b013e31817f6d40, PMID: PubMed DOI

Park C.-J., Seo Y.-S. (2015). Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol. J. 31, 323–333. doi: 10.5423/PPJ.RW.08.2015.0150, PMID: PubMed DOI PMC

Pavel M. A., Petersen N., Wang H., Lerner R. A., Hansen S. B. (2020). Studies on the mechanism of general anesthesia. Proc. Natl. Acad. Sci. U. S. A. 117, 13757–13766. doi: 10.1073/pnas.2004259117, PMID: PubMed DOI PMC

Pavlovič A., Libiaková M., Bokor B., Jakšová J., Petřík I., Novák O., et al. . (2020). Anaesthesia with diethyl ether impairs jasmonate signaling in the carnivorous plant Venus flytrap (Dionaea muscipula). Ann. Bot. 125, 173–183. doi: 10.1093/aob/mcz177, PMID: PubMed DOI PMC

Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., et al. . (2019). G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198. doi: 10.1093/nar/gkz369, PMID: PubMed DOI PMC

Ritossa F. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18, 571–573. doi: 10.1007/BF02172188 DOI

Saidi Y., Finka A., Muriset M., Bromberg Z., Weiss Y. G., Maathuis F. J. M., et al. . (2009). The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21, 2829–2843. doi: 10.1105/tpc.108.065318, PMID: PubMed DOI PMC

Scarpeci T. E., Zanor M. I., Valle E. M. (2008). Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal. Behav. 3, 856–857. doi: 10.4161/psb.3.10.6021, PMID: PubMed DOI PMC

Schägger H. (2006). Tricine–SDS-PAGE. Nat. Protoc. 1, 16–22. doi: 10.1038/nprot.2006.4 PubMed DOI

Scherzer S., Huang S., Iosip A., Kreuzer I., Yokawa K., Al-Rasheid K. A. S., et al. . (2022). Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap. Sci. Rep. 12:2851. doi: 10.1038/s41598-022-06915-z, PMID: PubMed DOI PMC

Sergeev P., da Silva R., Lucchinetti E., Zaugg K., Pasch T., Schaub M. C., et al. . (2004). Trigger-dependent gene expression profiles in cardiac preconditioning. Evidence for distinct genetic programs in ischemic and anesthetic preconditioning. Anesthesiology 100, 474–488. doi: 10.1097/00000542-200403000-00005, PMID: PubMed DOI

Srivastava A., Guissé B., Greppin H., Strasser R. J. (1997). Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim. Biophys. Acta-Bioenerget. 1320, 95–106. doi: 10.1016/S0005-2728(97)00017-0 DOI

Tang P., Xu Y. (2002). Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: the implication of molecular mechanisms of general anesthesia. Proc. Natl. Acad. Sci. U. S. A. 99, 16035–16040. doi: 10.1073/pnas.252522299, PMID: PubMed DOI PMC

Tewari A. K., Tripathy B. C. (1998). Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol. 117, 851–858. doi: 10.1104/pp.117.3.851 PubMed DOI PMC

Toyota M., Spencer D., Sawai-Toyota S., Jiaqi W., Zhang T., Koo A. J., et al. . (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361, 1112–1115. doi: 10.1126/science.aat7744, PMID: PubMed DOI

Upton D. H., Popovic K., Fulton R., Kassiou M. (2020). Anesthetic-dependent changes in gene expression following acute and chronic exposure in the rodent brain. Sci. Rep. 10:9366. doi: 10.1038/s41598-020-66122-6, PMID: PubMed DOI PMC

Urban B. W., Bleckwenn M. (2002). Concepts and correlations relevant to general anaesthesia. Br. J. Anaesth. 89, 3–16. doi: 10.1093/bja/aef164, PMID: PubMed DOI

van Swinderen B., Saifee O., Shebester L., Roberson R., Nonet M. L., Crowder C. M. (1999). A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 96, 2479–2484. doi: 10.1073/pnas.96.5.2479, PMID: PubMed DOI PMC

Vigh L., Horváth I., Maresca B., Harwood J. L. (2007). Can the stress protein response be controlled by ‘membrane-lipid therapy’? Trends Biochem. Sci. 32, 357–363. doi: 10.1016/j.tibs.2007.06.009, PMID: PubMed DOI

Volkov R. A., Panchuk I. I., Mullineaux P. M., Schöffl F. (2006). Heat stress-induced H(2)O(2) is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61, 733–746. doi: 10.1007/s11103-006-0045-4, PMID: PubMed DOI

Wiśniewski J. R., Zougman A., Nagaraj N., Mann M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362. doi: 10.1038/nmeth.1322 PubMed DOI

Wu W., Berkowitz G. A. (1991). Lidocaine and ATPase inhibitor interaction with the chloroplast envelope. Plant Physiol. 97, 1551–1557. doi: 10.1104/pp.97.4.1551, PMID: PubMed DOI PMC

Yaronskaya E., Vershilovskaya I., Poers Y., Alawady A. E., Averina N., Grimm B. (2006). Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224, 700–709. doi: 10.1007/s00425-006-0249-5, PMID: PubMed DOI

Yokawa K., Kagenishi T., Baluška F. (2019). Anesthetics, anesthesia, and plants. Trends Plant Sci. 24, 12–14. doi: 10.1016/j.tplants.2018.10.006, PMID: PubMed DOI

Yokawa K., Kagenishi T., Pavlovič A., Gall S., Weiland M., Mancuso S., et al. . (2018). Anesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Ann. Bot. 122, 747–756. doi: 10.1093/aob/mcx155, PMID: PubMed DOI PMC

Yoshioka M., Uchida S., Mori H., Komayama K., Ohira S., Morita N., et al. . (2006). Quality control of photosystem II. Cleavage of reaction center D1 protein in spinach thylakoids by Fts H protease under moderate heat stress. J. Biol. Chem. 281, 21660–21669. doi: 10.1074/jbc.M602896200 PubMed DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.wm37pvmqq

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...