Effect of the General Anaesthetic Ketamine on Electrical and Ca2+ Signal Propagation in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-03593S
Czech Science Foundation
PubMed
38592882
PubMed Central
PMC10975207
DOI
10.3390/plants13060894
PII: plants13060894
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, anaesthetic, calcium, diethyl ether, jasmonates, ketamine, systemic response,
- Publikační typ
- časopisecké články MeSH
The systemic electrical signal propagation in plants (i.e., from leaf to leaf) is dependent on GLUTAMATE RECEPTOR-LIKE proteins (GLRs). The GLR receptors are the homologous proteins to the animal ionotropic glutamate receptors (iGluRs) which are ligand-gated non-selective cation channels that mediate neurotransmission in the animal's nervous system. In this study, we investigated the effect of the general anaesthetic ketamine, a well-known non-competitive channel blocker of human iGluRs, on systemic electrical signal propagation in Arabidopsis thaliana. We monitored the electrical signal propagation, intracellular calcium level [Ca2+]cyt and expression of jasmonate (JA)-responsive genes in response to heat wounding. Although ketamine affected the shape and the parameters of the electrical signals (amplitude and half-time, t1/2) mainly in systemic leaves, it was not able to block a systemic response. Increased [Ca2+]cyt and the expression of jasmonate-responsive genes were detected in local as well as in systemic leaves in response to heat wounding in ketamine-treated plants. This is in contrast with the effect of the volatile general anaesthetic diethyl ether which completely blocked the systemic response. This low potency of ketamine in plants is probably caused by the fact that the critical amino acid residues needed for ketamine binding in human iGluRs are not conserved in plants' GLRs.
Zobrazit více v PubMed
Koo A.J.K., Howe G.A. The wound hormone jasmonate. Phytochemistry. 2009;70:1571–1580. doi: 10.1016/j.phytochem.2009.07.018. PubMed DOI PMC
Wasternack C., Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 2013;111:1021–1058. doi: 10.1093/aob/mct067. PubMed DOI PMC
Schilmiller A.L., Howe G.A. Systemic signaling in the wound response. Curr. Opin. Plant Biol. 2005;8:369–377. doi: 10.1016/j.pbi.2005.05.008. PubMed DOI
Mousavi S.A.R., Chauvin A., Pascaud F., Kellenberger S., Farmer E.E. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature. 2013;500:422–426. doi: 10.1038/nature12478. PubMed DOI
Gilroy S., Suzuki N., Miller G., Choi W.-G., Toyota M., Devireddy A.R., Mittler R. A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 2014;19:623–630. doi: 10.1016/j.tplants.2014.06.013. PubMed DOI
Gilroy S., Białasek M., Suzuki N., Górecka M., Devireddy A.R., Karpinski S., Mittler R. ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants. Plant Physiol. 2016;171:1606–1615. doi: 10.1104/pp.16.00434. PubMed DOI PMC
Toyota M., Spencer D., Sawai-Toyota S., Jiaqi W., Zhang T. Glutamate triggers long-distance, calcium-based plant defense signaling. Science. 2018;361:1112–1115. doi: 10.1126/science.aat7744. PubMed DOI
Suda H., Toyota M. Integration of long-range signals in plants: A model for wound-induced Ca2+, electrical, ROS, and glutamate waves. Curr. Opin. Plant Biol. 2022;69:102270. doi: 10.1016/j.pbi.2022.102270. PubMed DOI
Wildon D.C., Thain J.F., Minchin P.E.H., Gubb I.R., Reilly A.J., Skipper Y.D., Doherty H.M., O’Donnell P.J., Bowles D.J. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature. 1992;360:62–65. doi: 10.1038/360062a0. DOI
Lam H.M., Chiu J., Hsieh M.H., Meisel L., Oliveira I.C., Shin M., Coruzzi G. Glutamate-receptor genes in plants. Nature. 1998;396:125–126. doi: 10.1038/24066. PubMed DOI
Price M.B., Jelesko J., Okumoto S. Glutamate receptor homologs in plants: Functions and evolutionary origins. Front. Plant Sci. 2012;3:235. doi: 10.3389/fpls.2012.00235. PubMed DOI PMC
Wudick M.M., Michard E., Nunes C.O., Feijó J.A. Comparing plant and animal glutamate receptors: Common traits but different fates? J. Exp. Bot. 2018;69:4151–4163. doi: 10.1093/jxb/ery153. PubMed DOI
Nguyen C.T., Kurenda A., Stolz S., Chételat A., Farmer E.E. Identification of cell populations necessary for leaf-to leaf electrical signaling in a wounded plant. Proc. Natl. Acad. Sci. USA. 2018;115:10178–10183. doi: 10.1073/pnas.1807049115. PubMed DOI PMC
Alfieri A., Doccula F.G., Pederzoli R., Grenzi M., Bonza M.C., Luoni L., Candeo A., Armada N.R., Barbiroli A., Valentini G., et al. The structural bases for agonist diversity in an Arabidopsis thaliana glutamate receptor-like channel. Proc. Natl. Acad. Sci. USA. 2020;117:752–760. doi: 10.1073/pnas.1905142117. PubMed DOI PMC
Shao Q., Gao Q., Lhamo D., Zhang H., Luan S. Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis. Sci. Signal. 2020;13:eaba1453. doi: 10.1126/scisignal.aba1453. PubMed DOI
Grenzi M., Bonza M.C., Alfieri A., Costa A. Structural insights into long-distance signal transduction pathways mediated by plant glutamate receptor-like channels. New Phytol. 2021;229:1261–1267. doi: 10.1111/nph.17034. PubMed DOI
Grenzi M., Bonza M.C., Costa A. Signaling by plant glutamate receptor-like channels: What else! Curr. Opin. Plant Biol. 2022;68:102253. doi: 10.1016/j.pbi.2022.102253. PubMed DOI
Moe-Lange J., Gappel N.M., Machado M., Wudick M.M., Sies C.S., Schott-Verdugo S.N., Bonus M., Mishra S., Hartwig T., Bezrutczyk M., et al. Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Sci. Adv. 2021;7:eabg4298. doi: 10.1126/sciadv.abg4298. PubMed DOI PMC
Bellandi A., Papp D., Breakspear A., Joyce J., Johnston M.G., de Keijzer J., Raven E.C., Ohtsu M., Vincent T.R., Miller A.J., et al. Diffusion and bulk flow of amino acids mediate calcium waves in plants. Sci. Adv. 2022;8:eabo6693. doi: 10.1126/sciadv.abo6693. PubMed DOI PMC
Grenzi M., Buratti S., Parmagnani A.S., Aziz I.A., Bernacka-Wojcik I., Resentini F., Šimura J., Doccula F.G., Alfieri A., Luoni L., et al. Long-distance turgor pressure changes induce local activation of plant glutamate receptor-like channels. Curr. Biol. 2023;33:1019–1035. doi: 10.1016/j.cub.2023.01.042. PubMed DOI
Jakšová J., Rác M., Bokor B., Petřík I., Novák O., Reichelt M., Mithöfer A., Pavlovič A. Anaesthetic diethyl ether impairs long-distance electrical and jasmonate signaling in Arabidopsis thaliana. Plant Physiol. Biochem. 2021;169:311–321. doi: 10.1016/j.plaphy.2021.11.019. PubMed DOI
Yokawa K., Kagenishi T., Pavlovič A., Gall S., Weiland M., Mancuso S., Baluška F. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Ann. Bot. 2018;122:747–756. doi: 10.1093/aob/mcx155. PubMed DOI PMC
Pavlovič A., Libiaková M., Bokor B., Jakšová J., Petřík I., Novák O., Baluška F. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula) Ann. Bot. 2020;125:173–183. doi: 10.1093/aob/mcz177. PubMed DOI PMC
Scherzer S., Huang S., Iosip A., Kreuzer I., Yokawa K., Al-Rasheid K.A.S., Heckmann M., Hedrich R. Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap. Sci. Rep. 2022;12:2851. doi: 10.1038/s41598-022-06915-z. PubMed DOI PMC
MacIver B.M., Tanelian D.L. Volatile anesthetics excite mammalian nociceptor afferents recorded in vitro. Anesthesiology. 1990;72:1022–1030. doi: 10.1097/00000542-199006000-00012. PubMed DOI
Meyer H. Zur theorie der Alkoholnarkose. Arch. Exp. Pathol. Phar. 1899;42:109–118. doi: 10.1007/BF01834479. DOI
Overton C.E. Studien über die Narkose Zugleich ein Beitrag zur Allgemeinen Pharmakologie. Fischer Verlag; Berlin, Germany: 1901.
Pavel M.A., Petersen N., Wang H., Lerner R.A., Hansen S.B. Studies on the mechanism of general anesthesia. Proc. Natl. Acad. Sci. USA. 2020;117:13757–13766. doi: 10.1073/pnas.2004259117. PubMed DOI PMC
Franks N.P., Lieb W.R. Do general anesthetics act by competitive binding to specific receptors? Nature. 1984;310:599–601. doi: 10.1038/310599a0. PubMed DOI
Franks N.P. Molecular targets underlying general anesthesia. Br. J. Pharmacol. 2006;147:S72–S81. doi: 10.1038/sj.bjp.0706441. PubMed DOI PMC
Crowder C.M. Does natural selection explain the universal response of metazoans to volatile anesthetics? Anesth. Analg. 2008;107:862–863. doi: 10.1213/ane.0b013e31817d866a. PubMed DOI
Eckenhoff R.G. Why can all of biology be anesthetized? Anesth. Analg. 2008;107:859–861. doi: 10.1213/ane.0b013e31817ee7ee. PubMed DOI
Franks N.P. General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 2008;9:370–386. doi: 10.1038/nrn2372. PubMed DOI
Zhang Y., Ye F., Zhang T., Lv S., Zhou L., Du D., Lin H., Guo F., Luo C., Zhu S. Structural basis of ketamine action on human NMDA receptors. Nature. 2021;596:301–305. doi: 10.1038/s41586-021-03769-9. PubMed DOI
Yu B., Wu Q., Li X., Zeng R., Min Q., Huang J. GLUTAMATE RECEPTOR-like gene OsGLR3.4 is required for plant growth and systemic wound signaling in rice (Oryza sativa) New Phytol. 2022;233:1238–1256. doi: 10.1111/nph.17859. PubMed DOI
Pavlovič A., Jakšová J., Kučerová Z., Špundová M., Rác M., Roudnický P., Mithöfer A. Diethyl ether anesthesia induces transient cytosolic [Ca2+] increase, heat shock proteins, and heat stress tolerance of photosystem II in Arabidopsis. Front. Plant Sci. 2022;13:995001. doi: 10.3389/fpls.2022.995001. PubMed DOI PMC
Kelz M.B., Mashour G.A. The biology of general anesthesia from paramecium to primate. Curr. Biol. 2019;29:R1199–R1210. doi: 10.1016/j.cub.2019.09.071. PubMed DOI PMC
Kumari A., Chételat A., Nguyen C.T., Farmer E.E. Arabidopsis H+-ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation. Proc. Natl. Acad. Sci. USA. 2019;116:20226–20231. doi: 10.1073/pnas.1907379116. PubMed DOI PMC
Marwaha J. Some mechanisms underlying actions of ketamine on electromechanical coupling in skeletal muscle. J. Neurosci. Res. 1980;5:43–50. doi: 10.1002/jnr.490050107. PubMed DOI
MacDonalds J.F., Bartlett M.C., Mody I., Pahapill P., Reynolds J.N., Salter M.W., Schneiderman J.H., Pennefather P.S. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. J. Physiol. 1991;432:483–508. doi: 10.1113/jphysiol.1991.sp018396. PubMed DOI PMC
Hatakeyama N., Yamazaki M., Shibuya N., Yamamura S., Momose Y. Effects of ketamine on voltage-dependent calcium currents and membrane potentials in single bullfrog atrial cells. J. Anesth. 2001;15:149–153. doi: 10.1007/s005400170017. PubMed DOI
Yin J., Fu B., Wang Y., Yu T. Effects of ketamine on voltage-gated sodium channels in the barrel cortex and the ventral posteromedial nucleus slices of rats. Neuroreport. 2019;30:1197–1204. doi: 10.1097/WNR.0000000000001344. PubMed DOI PMC
Zorumski C.F., Izumi Y., Mennerick S. Ketamine: NMDA receptors and beyond. J. Neurosci. 2016;36:11158–11164. doi: 10.1523/JNEUROSCI.1547-16.2016. PubMed DOI PMC
De Luccia T.P. Mimosa pudica, Dionaea muscipula and anesthetics. Plant Signal. Behav. 2012;7:1163–1167. doi: 10.4161/psb.21000. PubMed DOI PMC
Böhm J., Scherzer S. Signaling and transport processes related to the carnivorous lifestyle of plants living on nutrient-poor soil. Plant Physiol. 2021;187:2017–2031. doi: 10.1093/plphys/kiab297. PubMed DOI PMC
Iosip A.L., Böhm J., Scherzer S., Al-Rasheid K.A.S., Dreyer I., Schultz J., Becker D., Kreuzer I., Hedrich R. The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling. PLoS Biol. 2020;18:e3000964. doi: 10.1371/journal.pbio.3000964. PubMed DOI PMC
Hermanns H., Hollmann M.W., Stevens M.F., Lirk P., Brandenburger T., Piegeler T., Werdehausen R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: A narrative review. Brit. J. Anaesth. 2019;123:335–349. doi: 10.1016/j.bja.2019.06.014. PubMed DOI
Hedrich R. Ion channels in plants. Physiol Rev. 2012;92:1777–1811. doi: 10.1152/physrev.00038.2011. PubMed DOI
Milne A., Beamish T. Inhalational and local anesthetics reduce tactile and thermal responses in Mimosa pudica. Can. J. Anaesth. 1999;46:287–289. doi: 10.1007/BF03012612. PubMed DOI
Hagihara T., Mano H., Miura T., Hasebe M., Toyota M. Calcium-mediated rapid movements defend against herbivorous insects in Mimosa pudica. Nat. Commun. 2022;13:6412. doi: 10.1038/s41467-022-34106-x. PubMed DOI PMC
Pavlovič A., Kopečná M., Hloušková L., Koller J., Hřivňacký M., Ilík P., Bartoš J. Diethyl ether anaesthesia inhibits de-etiolation of barley seedlings by locking them in intermediate skoto-photomorphogenetic state. Physiol. Plantarum. 2024;176:e14144. doi: 10.1111/ppl.14144. DOI
Ilík P., Hlaváčková V., Krchňák P., Nauš J. A low-noise multi-channel device for the monitoring of systemic electrical signal propagation in plants. Biol. Plantarum. 2010;54:185–190. doi: 10.1007/s10535-010-0032-0. DOI
Kiep V., Vadassery J., Lattke J., Maaβ J.-P., Boland W., Peiter E., Mithöfer A. Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol. 2015;207:996–1004. doi: 10.1111/nph.13493. PubMed DOI
Chini A., Monte I., Zamarreño A.M., Hamberg M., Lassuer S., Reymond P., Weiss S., Stintzi A., Schaller A., Porzel A., et al. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat. Chem. Biol. 2018;14:171–178. doi: 10.1038/nchembio.2540. PubMed DOI
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:2003–2007. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Touch, light, wounding: how anaesthetics affect plant sensing abilities