Effect of the General Anaesthetic Ketamine on Electrical and Ca2+ Signal Propagation in Arabidopsis thaliana

. 2024 Mar 20 ; 13 (6) : . [epub] 20240320

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38592882

Grantová podpora
21-03593S Czech Science Foundation

The systemic electrical signal propagation in plants (i.e., from leaf to leaf) is dependent on GLUTAMATE RECEPTOR-LIKE proteins (GLRs). The GLR receptors are the homologous proteins to the animal ionotropic glutamate receptors (iGluRs) which are ligand-gated non-selective cation channels that mediate neurotransmission in the animal's nervous system. In this study, we investigated the effect of the general anaesthetic ketamine, a well-known non-competitive channel blocker of human iGluRs, on systemic electrical signal propagation in Arabidopsis thaliana. We monitored the electrical signal propagation, intracellular calcium level [Ca2+]cyt and expression of jasmonate (JA)-responsive genes in response to heat wounding. Although ketamine affected the shape and the parameters of the electrical signals (amplitude and half-time, t1/2) mainly in systemic leaves, it was not able to block a systemic response. Increased [Ca2+]cyt and the expression of jasmonate-responsive genes were detected in local as well as in systemic leaves in response to heat wounding in ketamine-treated plants. This is in contrast with the effect of the volatile general anaesthetic diethyl ether which completely blocked the systemic response. This low potency of ketamine in plants is probably caused by the fact that the critical amino acid residues needed for ketamine binding in human iGluRs are not conserved in plants' GLRs.

Zobrazit více v PubMed

Koo A.J.K., Howe G.A. The wound hormone jasmonate. Phytochemistry. 2009;70:1571–1580. doi: 10.1016/j.phytochem.2009.07.018. PubMed DOI PMC

Wasternack C., Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 2013;111:1021–1058. doi: 10.1093/aob/mct067. PubMed DOI PMC

Schilmiller A.L., Howe G.A. Systemic signaling in the wound response. Curr. Opin. Plant Biol. 2005;8:369–377. doi: 10.1016/j.pbi.2005.05.008. PubMed DOI

Mousavi S.A.R., Chauvin A., Pascaud F., Kellenberger S., Farmer E.E. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature. 2013;500:422–426. doi: 10.1038/nature12478. PubMed DOI

Gilroy S., Suzuki N., Miller G., Choi W.-G., Toyota M., Devireddy A.R., Mittler R. A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 2014;19:623–630. doi: 10.1016/j.tplants.2014.06.013. PubMed DOI

Gilroy S., Białasek M., Suzuki N., Górecka M., Devireddy A.R., Karpinski S., Mittler R. ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants. Plant Physiol. 2016;171:1606–1615. doi: 10.1104/pp.16.00434. PubMed DOI PMC

Toyota M., Spencer D., Sawai-Toyota S., Jiaqi W., Zhang T. Glutamate triggers long-distance, calcium-based plant defense signaling. Science. 2018;361:1112–1115. doi: 10.1126/science.aat7744. PubMed DOI

Suda H., Toyota M. Integration of long-range signals in plants: A model for wound-induced Ca2+, electrical, ROS, and glutamate waves. Curr. Opin. Plant Biol. 2022;69:102270. doi: 10.1016/j.pbi.2022.102270. PubMed DOI

Wildon D.C., Thain J.F., Minchin P.E.H., Gubb I.R., Reilly A.J., Skipper Y.D., Doherty H.M., O’Donnell P.J., Bowles D.J. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature. 1992;360:62–65. doi: 10.1038/360062a0. DOI

Lam H.M., Chiu J., Hsieh M.H., Meisel L., Oliveira I.C., Shin M., Coruzzi G. Glutamate-receptor genes in plants. Nature. 1998;396:125–126. doi: 10.1038/24066. PubMed DOI

Price M.B., Jelesko J., Okumoto S. Glutamate receptor homologs in plants: Functions and evolutionary origins. Front. Plant Sci. 2012;3:235. doi: 10.3389/fpls.2012.00235. PubMed DOI PMC

Wudick M.M., Michard E., Nunes C.O., Feijó J.A. Comparing plant and animal glutamate receptors: Common traits but different fates? J. Exp. Bot. 2018;69:4151–4163. doi: 10.1093/jxb/ery153. PubMed DOI

Nguyen C.T., Kurenda A., Stolz S., Chételat A., Farmer E.E. Identification of cell populations necessary for leaf-to leaf electrical signaling in a wounded plant. Proc. Natl. Acad. Sci. USA. 2018;115:10178–10183. doi: 10.1073/pnas.1807049115. PubMed DOI PMC

Alfieri A., Doccula F.G., Pederzoli R., Grenzi M., Bonza M.C., Luoni L., Candeo A., Armada N.R., Barbiroli A., Valentini G., et al. The structural bases for agonist diversity in an Arabidopsis thaliana glutamate receptor-like channel. Proc. Natl. Acad. Sci. USA. 2020;117:752–760. doi: 10.1073/pnas.1905142117. PubMed DOI PMC

Shao Q., Gao Q., Lhamo D., Zhang H., Luan S. Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis. Sci. Signal. 2020;13:eaba1453. doi: 10.1126/scisignal.aba1453. PubMed DOI

Grenzi M., Bonza M.C., Alfieri A., Costa A. Structural insights into long-distance signal transduction pathways mediated by plant glutamate receptor-like channels. New Phytol. 2021;229:1261–1267. doi: 10.1111/nph.17034. PubMed DOI

Grenzi M., Bonza M.C., Costa A. Signaling by plant glutamate receptor-like channels: What else! Curr. Opin. Plant Biol. 2022;68:102253. doi: 10.1016/j.pbi.2022.102253. PubMed DOI

Moe-Lange J., Gappel N.M., Machado M., Wudick M.M., Sies C.S., Schott-Verdugo S.N., Bonus M., Mishra S., Hartwig T., Bezrutczyk M., et al. Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. Sci. Adv. 2021;7:eabg4298. doi: 10.1126/sciadv.abg4298. PubMed DOI PMC

Bellandi A., Papp D., Breakspear A., Joyce J., Johnston M.G., de Keijzer J., Raven E.C., Ohtsu M., Vincent T.R., Miller A.J., et al. Diffusion and bulk flow of amino acids mediate calcium waves in plants. Sci. Adv. 2022;8:eabo6693. doi: 10.1126/sciadv.abo6693. PubMed DOI PMC

Grenzi M., Buratti S., Parmagnani A.S., Aziz I.A., Bernacka-Wojcik I., Resentini F., Šimura J., Doccula F.G., Alfieri A., Luoni L., et al. Long-distance turgor pressure changes induce local activation of plant glutamate receptor-like channels. Curr. Biol. 2023;33:1019–1035. doi: 10.1016/j.cub.2023.01.042. PubMed DOI

Jakšová J., Rác M., Bokor B., Petřík I., Novák O., Reichelt M., Mithöfer A., Pavlovič A. Anaesthetic diethyl ether impairs long-distance electrical and jasmonate signaling in Arabidopsis thaliana. Plant Physiol. Biochem. 2021;169:311–321. doi: 10.1016/j.plaphy.2021.11.019. PubMed DOI

Yokawa K., Kagenishi T., Pavlovič A., Gall S., Weiland M., Mancuso S., Baluška F. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Ann. Bot. 2018;122:747–756. doi: 10.1093/aob/mcx155. PubMed DOI PMC

Pavlovič A., Libiaková M., Bokor B., Jakšová J., Petřík I., Novák O., Baluška F. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula) Ann. Bot. 2020;125:173–183. doi: 10.1093/aob/mcz177. PubMed DOI PMC

Scherzer S., Huang S., Iosip A., Kreuzer I., Yokawa K., Al-Rasheid K.A.S., Heckmann M., Hedrich R. Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap. Sci. Rep. 2022;12:2851. doi: 10.1038/s41598-022-06915-z. PubMed DOI PMC

MacIver B.M., Tanelian D.L. Volatile anesthetics excite mammalian nociceptor afferents recorded in vitro. Anesthesiology. 1990;72:1022–1030. doi: 10.1097/00000542-199006000-00012. PubMed DOI

Meyer H. Zur theorie der Alkoholnarkose. Arch. Exp. Pathol. Phar. 1899;42:109–118. doi: 10.1007/BF01834479. DOI

Overton C.E. Studien über die Narkose Zugleich ein Beitrag zur Allgemeinen Pharmakologie. Fischer Verlag; Berlin, Germany: 1901.

Pavel M.A., Petersen N., Wang H., Lerner R.A., Hansen S.B. Studies on the mechanism of general anesthesia. Proc. Natl. Acad. Sci. USA. 2020;117:13757–13766. doi: 10.1073/pnas.2004259117. PubMed DOI PMC

Franks N.P., Lieb W.R. Do general anesthetics act by competitive binding to specific receptors? Nature. 1984;310:599–601. doi: 10.1038/310599a0. PubMed DOI

Franks N.P. Molecular targets underlying general anesthesia. Br. J. Pharmacol. 2006;147:S72–S81. doi: 10.1038/sj.bjp.0706441. PubMed DOI PMC

Crowder C.M. Does natural selection explain the universal response of metazoans to volatile anesthetics? Anesth. Analg. 2008;107:862–863. doi: 10.1213/ane.0b013e31817d866a. PubMed DOI

Eckenhoff R.G. Why can all of biology be anesthetized? Anesth. Analg. 2008;107:859–861. doi: 10.1213/ane.0b013e31817ee7ee. PubMed DOI

Franks N.P. General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 2008;9:370–386. doi: 10.1038/nrn2372. PubMed DOI

Zhang Y., Ye F., Zhang T., Lv S., Zhou L., Du D., Lin H., Guo F., Luo C., Zhu S. Structural basis of ketamine action on human NMDA receptors. Nature. 2021;596:301–305. doi: 10.1038/s41586-021-03769-9. PubMed DOI

Yu B., Wu Q., Li X., Zeng R., Min Q., Huang J. GLUTAMATE RECEPTOR-like gene OsGLR3.4 is required for plant growth and systemic wound signaling in rice (Oryza sativa) New Phytol. 2022;233:1238–1256. doi: 10.1111/nph.17859. PubMed DOI

Pavlovič A., Jakšová J., Kučerová Z., Špundová M., Rác M., Roudnický P., Mithöfer A. Diethyl ether anesthesia induces transient cytosolic [Ca2+] increase, heat shock proteins, and heat stress tolerance of photosystem II in Arabidopsis. Front. Plant Sci. 2022;13:995001. doi: 10.3389/fpls.2022.995001. PubMed DOI PMC

Kelz M.B., Mashour G.A. The biology of general anesthesia from paramecium to primate. Curr. Biol. 2019;29:R1199–R1210. doi: 10.1016/j.cub.2019.09.071. PubMed DOI PMC

Kumari A., Chételat A., Nguyen C.T., Farmer E.E. Arabidopsis H+-ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation. Proc. Natl. Acad. Sci. USA. 2019;116:20226–20231. doi: 10.1073/pnas.1907379116. PubMed DOI PMC

Marwaha J. Some mechanisms underlying actions of ketamine on electromechanical coupling in skeletal muscle. J. Neurosci. Res. 1980;5:43–50. doi: 10.1002/jnr.490050107. PubMed DOI

MacDonalds J.F., Bartlett M.C., Mody I., Pahapill P., Reynolds J.N., Salter M.W., Schneiderman J.H., Pennefather P.S. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. J. Physiol. 1991;432:483–508. doi: 10.1113/jphysiol.1991.sp018396. PubMed DOI PMC

Hatakeyama N., Yamazaki M., Shibuya N., Yamamura S., Momose Y. Effects of ketamine on voltage-dependent calcium currents and membrane potentials in single bullfrog atrial cells. J. Anesth. 2001;15:149–153. doi: 10.1007/s005400170017. PubMed DOI

Yin J., Fu B., Wang Y., Yu T. Effects of ketamine on voltage-gated sodium channels in the barrel cortex and the ventral posteromedial nucleus slices of rats. Neuroreport. 2019;30:1197–1204. doi: 10.1097/WNR.0000000000001344. PubMed DOI PMC

Zorumski C.F., Izumi Y., Mennerick S. Ketamine: NMDA receptors and beyond. J. Neurosci. 2016;36:11158–11164. doi: 10.1523/JNEUROSCI.1547-16.2016. PubMed DOI PMC

De Luccia T.P. Mimosa pudica, Dionaea muscipula and anesthetics. Plant Signal. Behav. 2012;7:1163–1167. doi: 10.4161/psb.21000. PubMed DOI PMC

Böhm J., Scherzer S. Signaling and transport processes related to the carnivorous lifestyle of plants living on nutrient-poor soil. Plant Physiol. 2021;187:2017–2031. doi: 10.1093/plphys/kiab297. PubMed DOI PMC

Iosip A.L., Böhm J., Scherzer S., Al-Rasheid K.A.S., Dreyer I., Schultz J., Becker D., Kreuzer I., Hedrich R. The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling. PLoS Biol. 2020;18:e3000964. doi: 10.1371/journal.pbio.3000964. PubMed DOI PMC

Hermanns H., Hollmann M.W., Stevens M.F., Lirk P., Brandenburger T., Piegeler T., Werdehausen R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: A narrative review. Brit. J. Anaesth. 2019;123:335–349. doi: 10.1016/j.bja.2019.06.014. PubMed DOI

Hedrich R. Ion channels in plants. Physiol Rev. 2012;92:1777–1811. doi: 10.1152/physrev.00038.2011. PubMed DOI

Milne A., Beamish T. Inhalational and local anesthetics reduce tactile and thermal responses in Mimosa pudica. Can. J. Anaesth. 1999;46:287–289. doi: 10.1007/BF03012612. PubMed DOI

Hagihara T., Mano H., Miura T., Hasebe M., Toyota M. Calcium-mediated rapid movements defend against herbivorous insects in Mimosa pudica. Nat. Commun. 2022;13:6412. doi: 10.1038/s41467-022-34106-x. PubMed DOI PMC

Pavlovič A., Kopečná M., Hloušková L., Koller J., Hřivňacký M., Ilík P., Bartoš J. Diethyl ether anaesthesia inhibits de-etiolation of barley seedlings by locking them in intermediate skoto-photomorphogenetic state. Physiol. Plantarum. 2024;176:e14144. doi: 10.1111/ppl.14144. DOI

Ilík P., Hlaváčková V., Krchňák P., Nauš J. A low-noise multi-channel device for the monitoring of systemic electrical signal propagation in plants. Biol. Plantarum. 2010;54:185–190. doi: 10.1007/s10535-010-0032-0. DOI

Kiep V., Vadassery J., Lattke J., Maaβ J.-P., Boland W., Peiter E., Mithöfer A. Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol. 2015;207:996–1004. doi: 10.1111/nph.13493. PubMed DOI

Chini A., Monte I., Zamarreño A.M., Hamberg M., Lassuer S., Reymond P., Weiss S., Stintzi A., Schaller A., Porzel A., et al. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat. Chem. Biol. 2018;14:171–178. doi: 10.1038/nchembio.2540. PubMed DOI

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:2003–2007. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Touch, light, wounding: how anaesthetics affect plant sensing abilities

. 2024 Nov 24 ; 43 (12) : 293. [epub] 20241124

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...