Touch, light, wounding: how anaesthetics affect plant sensing abilities

. 2024 Nov 24 ; 43 (12) : 293. [epub] 20241124

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39580775

Grantová podpora
21-03593S Grantová Agentura České Republiky

Odkazy

PubMed 39580775
PubMed Central PMC11586303
DOI 10.1007/s00299-024-03369-7
PII: 10.1007/s00299-024-03369-7
Knihovny.cz E-zdroje

Anaesthetics affect not only humans and animals but also plants. Plants exposed to certain anaesthetics lose their ability to respond adequately to various stimuli such as touch, injury or light. Available results indicate that anaesthetics modulate ion channel activities in plants, e.g. Ca2+ influx. The word anaesthesia means loss of sensation. Plants, as all living creatures, can also sense their environment and they are susceptible to anaesthesia. Although some anaesthetics are often known as drugs with well-defined target to their animal/human receptors, some other are promiscuous in their binding. Both have effects on plants. Application of general volatile anaesthetics (GVAs) inhibits plant responses to different stimuli but also induces strong cellular response. Of particular interest is the ability of GVAs inhibit long-distance electrical and Ca2+ signalling probably through inhibition of GLUTAMATE RECEPTOR-LIKE proteins (GLRs), the effect which is surprisingly very similar to inhibition of nerve impulse transmission in animals or human. However, GVAs act also as a stressor for plants and can induce their own Ca2+ signature, which strongly reprograms gene expression . Down-regulation of genes encoding enzymes of chlorophyll biosynthesis and pigment-protein complexes are responsible for inhibited de-etiolation and photomorphogenesis. Vesicle trafficking, germination, and circumnutation movement of climbing plants are also strongly inhibited. On the other hand, other cellular processes can be upregulated, for example, heat shock response and generation of reactive oxygen species (ROS). Upregulation of stress response by GVAs results in preconditioning/priming and can be helpful to withstand abiotic stresses in plants. Thus, anaesthetic drugs may become a useful tool for scientists studying plant responses to environmental stimuli.

Zobrazit více v PubMed

Adamatzky A, Gandia A (2022) Fungi anaesthesia. Sci Rep 12:340 PubMed DOI PMC

Allison AC, Nunn JF (1968) Effects of general anaesthetics on microtubules: a possible mechanism of anaesthesia. Lancet 2:1326–1329 PubMed DOI

Armarego-Marriott T, Sandoval-Ibañez O, Kowalewska Ł (2020) Beyond the darkness: recent lessons from etiolation and de-etiolation studies. J Exp Bot 71:1215–1225 PubMed DOI PMC

Baluška F, Mancuso S (2019) Actin cytoskeleton and action potentials: Forgotten connections. In: Sahi VP, Baluška F. (eds.)

Baluška F, Yokawa K (2021) Anaesthetics and plants: from sensory systems to cognition-based adaptive behaviour. Protoplasma 258:449–454 PubMed DOI PMC

Bellandi A, Papp D, Breakspear A, Joyce J, Johnston MG, de Keijzer J, Raven EC, Ohtsu M, Vincent TR, Miller AJ et al (2022) Diffusion and bulk flow of amino acids mediate calcium waves in plants. Sci Adv 8:eabo6693 PubMed DOI PMC

Bernard C (1878) Lectures on phenomena of life common to animals and plants. Ballliere, and Son, Paris

Chamowitz DA (2018) Plants are intelligent; now what? Nature Plants 4:622–623 PubMed DOI

Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60:43–56 PubMed DOI

Chini A, Fonseca S, Fernández G et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671 PubMed DOI

Darwin Ch (1875) Insectivorous plants. John Murray, London

Darwish E, Ghosh R, Ontiveros-Cisneros A, Tran HC, Petersson M, De Milde L, Broda M, Goossens A, Van Moerkercke A, Khan K, Van Aken O (2022) Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3- and JA-dependent pathways. Sci Adv 8(20):eabm2091 PubMed DOI PMC

De Luccia TP (2012) PubMed DOI PMC

Draghun A, Mallatt JM, Robinson DG (2021) Anesthetics and plants: no pain, no brain, and therefore no consciousness. Protoplasma 258:239–248 PubMed DOI PMC

Eckenhoff (2008) Why can all of biology be anesthetized? Anesth Analg 107:859–861 PubMed DOI

Emerson DJ, Weiser BP, Psonis J, Liao Z, Taratula O, Fiamengo A, Wang X, Sugasawa K, Smith AB 3rd, Eckenhoff RG, Dmochowski IJ (2013) Direct modulation of microtubule stability contributes to anthracene general anesthesia. J Am Chem Soc 135:5389–5398 PubMed DOI PMC

Falk MJ, Kayser E-B, Morgan PG, Sedensky MM (2006) Mitochondrial complex I function modulates volatile anesthetic sensitivity in C. elegans. Curr Biol 16:1641–1645 PubMed DOI PMC

Fammartino A, Verdaguer B, Fournier J, Tamietti G, Carbonne F, Esquerré-Tugayé M-T, Cardinale F (2010) Coordinated transcriptional regulation of the divinyl ether biosynthetic genes in tobacco by signal molecules related to defense. Plant Physiol Biochem 48:225–231 PubMed DOI

Farmer EE, Gao Y-Q, Lenzoni G, Wolfender J-L, Wu Q (2020) Wound- and mechanostimulated electrical signals control hormone responses. New Phytol 227:1037–1050 PubMed DOI

Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350 PubMed DOI

Franks NP (2006) Molecular targets underlying general anesthesia. Br J Pharmacol 147:S72–S81 PubMed DOI PMC

Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386 PubMed DOI

Franks NP, Lieb WR (1984) Do general anesthetics act by competitive binding to specific receptors? Nature 310:599–601 PubMed DOI

Gao Y-Q, Jimenez-Sandoval P, Tiwari S, Stolz S, Wang J, Glauser G, Santiago J, Farmer EE (2023) Ricca’s factors as mobile proteinaceous effectors of electrical signalling. Cell 186:1337–1351 PubMed DOI PMC

Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signalling. Trends Plant Sci 19:623–630 PubMed DOI

Grémiaux A, Yokawa K, Mancuso S, Baluška F (2014) Plant anesthesia supports similarities between animals and plants. Plant Signall Behav 9:e27886 PubMed DOI PMC

Grenzi M, Buratti S, Parmagnani AS et al (2023) Long-distance turgor pressure changes induce local activation of plant glutamate receptor-like channels. Curr Biol 33:1019–1035 PubMed DOI

Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811 PubMed DOI

Hermanns H, Hollmann MW, Stevens MF, Lirk P, Brandenburger T, Piegeler T, Werdehausen R (2019) Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. Br J Anaesth 123:335–349 PubMed DOI

Hřivňacký M., Rác M, Vrobel O, Tarkowski P, Pavlovič A (2024) Diethyl ether anaesthesia does not block but partially mimics touch response in the PubMed

Jakšová J, Rác M, Bokor B, Petřík I, Novák O, Reichelt M, Mithöfer A, Pavlovič A (2021) Anaesthetic diethyl ether impairs long-distance electrical and jasmonate signaling in PubMed DOI

Kanervo E, Singh M, Suorsa M, Paakkarinen V, Aro E, Battchikova N, Aro E-M (2008) Expression of protein complexes and individual proteins upon transition of etioplasts to chloroplasts in pea (Pisum sativum). Plant Cell Physiol 49:396–410 PubMed DOI

Kanzawa N, Hoshino Y, Chiba M, Hoshino D, Kobayashi H, Kamasawa N, Kishi Y, Osumi M, Sameshima M, Tsuchiya T (2006) Change in the actin cytoskeleton during seismonastic movement of PubMed DOI

Kelz MB, Mashour GA (2019) The biology of general anesthesia from paramecium to primate. Curr Biol 29:R1199–R1210 PubMed DOI PMC

Kimberlin AN, Holtsclaw RE, Zhang T, Mulaudzi T, Koo AJ (2022) On the initiation of jasmonate biosynthesis in wounded leaves. Plant Physiol 189:1925–1942 PubMed DOI PMC

Lam H-M, Chiu J, Hsieh M-H, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126 PubMed DOI

Lerner RA (1997) A hypothesis about the endogenous analogue of general anesthesia. Proc Natl Acad Sci U S A 94:13375–13377 PubMed DOI PMC

Li M, Wang F, Li S, Yu G, Wang L, Li Q, Zhu X, Li Z, Yuan L, Liu P (2020) Importers drive leaf-to-leaf jasmonic acid transmission in wound-induced systemic immunity. Mol Plant 13:1485–1498 PubMed DOI

Lin K-C, Sun P-C, Lin P-L (2011) Production of reactive oxygen species and induction of signalling pathways for the ACO gene expressions in tomato plants triggered by the volatile organic compound ether. Plant Cell Rep 30:599–611 PubMed DOI

Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310–316 PubMed DOI

Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L (2021) Debunking a myth: plant consciousness. Protoplasma 258:459–476 PubMed DOI PMC

Matsumura M, Nomoto M, Itaya T, Aratani Y, Iwamoto M, Matsuura T, Hayashi Y, Mori T, Skelly MJ, Yamamoto YY et al (2022) Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana. Nat Commun 13:1216 PubMed DOI PMC

Meyer H (1899) Zur Theorie der Alkoholnarkose. Arch Exp Pathol Pharmakol 42:109–118 DOI

Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shualev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signalling in response to diverse stimuli. Sci Signal 2:45 PubMed DOI

Milne A, Beamish T (1999) Inhalational and local anesthetics reduce tactile and thermal responses in Mimosa pudica. Can J Anaesth 46:287–289 PubMed DOI

Möglich A, Yang X, Ayers RA, Moffat K (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:21–47 PubMed DOI

Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500:422–426 PubMed DOI

Nakao H, Ogli K, Yokono S, Ono J, Miyatake A (1998) The effect of volatile anesthetics on light-induced phosphorylation in spinach chloroplasts. Toxicol Lett 100–101:135–138 PubMed DOI

Overton CE (1901) Studien über die narkose zugleich ein beitrag zur allgemeinen pharmakologie. Fischer Verlag, Jena, Germany

Pantazopoulou CK, Buti S, Nguyen CT, Oskam L, Weits DA, Farmer EE, Kajala K, Pierik R (2023) Mechanodetection of neighbor plants elicits adaptive leaf movements through Ca2+ dynamics. Nat Commun 14(1):1–12 PubMed DOI PMC

Pavel MA, Petersen N, Wang H, Lerner RA, Hansen SB (2020) Studies on the mechanism of general anesthesia. Proc Natl Acad Sci U S A 117:13757–13766 PubMed DOI PMC

Pavlovič A (2022) How the sensory system of carnivorous plants has evolved. Plant Commun 3:1–3 PubMed DOI PMC

Pavlovič A, Libiaková M, Bokor B, Jakšová J, Petřík I, Novák O et al (2020) Anaesthesia with diethyl ether impairs jasmonate signaling in the carnivorous plant Venus flytrap ( PubMed DOI PMC

Pavlovič A, Jakšová J, Kučerová Z, Špundová M, Rác M, Roudnický P, Mithöfer A (2022) Diethyl ether anesthesia induces transient cytosolic [Ca PubMed DOI PMC

Pavlovič A, Kopečná M, Hloušková L, Koller J, Hřivňacký M, Ilík P, Bartoš J (2024a) Diethyl ether anaesthesia inhibits de-etiolation of barley seedlings by locking them in intermediate skoto photomorphogenetic state. Physiol Plant 176e:14144 DOI

Pavlovič A, Ševčíková L, Hřivňacký M, Rác M (2024b) Effect of the general anaesthetic ketamine on electrical and Ca PubMed DOI PMC

Ricca U (1916) Soluzione d’un problema di fisiologia: la propagazione di stimolo nella Mimosa. Nuovo g Bot Ital 23:51–170

Rinaldi A (2014) Reawakening anaesthesia research. EMBO Rep 15:1113–1118 PubMed DOI PMC

Rodger MJ, Staves MP (2024) Mechanosensing and anesthesia of single intermodal cells of Chara. Plant Signal Behav 19:e2339574 PubMed DOI PMC

Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJM et al (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843 PubMed DOI PMC

Saltveit ME (1993) Effect of high-pressure gas atmospheres and anaesthetics on chilling injury of plants. J Exp Bot 44:1361–1368 DOI

Scherzer S, Böhm J, Huang S, Iosip AL, Kreuzer I, Becker D, Heckmann M, Al-Rasheid KAS, Dreyer I, Hedrich R (2022a) A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves. Curr Biol 32:4255–4263 PubMed DOI

Scherzer S, Huang S, Iosip A, Kreuzer I, Yokawa K, Al-Rasheid KAS et al (2022b) Ether anesthetics prevents touch-induced trigger hair calcium-electrical signals excite the Venus flytrap. Sci Rep 12:2851 PubMed DOI PMC

Sergeev P, da Silva R, Lucchinetti E, Zaugg K, Pasch T, Schaub MC, Zaugg M (2004) Trigger-dependent gene expression profiles in cardiac preconditioning: evidence for distinct genetic programs in ischemic and anesthetic preconditioning. Anesthesiology 100:474–488 PubMed DOI

Shao Q, Gao Q, Lhamo D, Zhang H, Luan S (2020) Two glutamate- and pH-regulated Ca PubMed DOI

Sheard LB, Tan X, Mao H et al (2010) Jasmonate perception by inositol-phosphate potentiated COI1–JAZ co-receptor. Nature 468:400–405 PubMed DOI PMC

Stolarz M, Król E, Dziubinska H (2010) Glutamatergic elements in an excitability and circumnutation mechanism. Plant Signal Behav 5:1108–1111 PubMed DOI PMC

Suda H, Mano H, Toyota M, Fukushima K, Mimura T, Tsutsui I, Hedrich R, Tamada Y, Hasebe M (2020) Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nat Plants 6:1219–1224 PubMed DOI

Suzuki N, Miller G, Salazar C et al (2013) Temporal–spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25:3553–3569 PubMed DOI PMC

Sylvain-Bonfanti L, Arbelet-Bonnin D, Filaine F, Lalanne C, Renault A, Meimoun P, Laurenti P, Grésillion E, Bouteau F (2024) Toxic and signalling effects of the anesthetic lidocaine on rice cultured cells. Plant Signaling and Behavior: in press PubMed PMC

Taiz L, Alkon D, Draguhn A, Murphy A, Blatt M, Hawes C, Thiel G, Robinson DG (2019) Plants neither possess nor require consciousness. Trends Plant Sci 24:677–687 PubMed DOI

Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665 PubMed DOI

Tominaga M, Ito K (2015) The molecular mechanism and physiological role of cytoplasmic streaming. Current Opinion in Plant Physiology 27:104–110 PubMed DOI

Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, Howe GA, Gilroy S (2018) Glutamate triggers long-distance, calcium-based plant defence signalling. Science 361:1112–1115 PubMed DOI

Tseng Y-T, Lin K-C (2016) Effects of volatile organic compound ether on cell responses and gene expressions in Arabidopsis. Bot Stud 57:1 PubMed DOI PMC

Urban BW, Bleckwenn M (2002) Concepts and correlations relevant to general anaesthesia. Br J Anaesth 89:3–16 PubMed DOI

Van Moerkercke A, Duncan O, Zander M, Šimura J, Broda M, Bossche RV, Lewsey MG, Lama S, Singh KB, Ljung K, Ecker JR, Goossens A, Millar AH, Van Aken O (2019) A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proc Natl Acad Sci U S A 116:23345–23356 PubMed DOI PMC

van Snideren B, Kottler B (2014) Explaining general anesthesia: a two-step hypothesis linking sleep circuits and the synaptic release machinery. BioEssays 36:372–381 PubMed DOI

van Swinderen B, Saifee O, Shebester L, Roberson R, Nonet ML, Crowder CM (1999) A neomorphic syntaxin mutation blocks volatile-anesthetic action in PubMed DOI PMC

Volkov A, Forde-Tuckett V, Volkova MI, Markin VS (2014) Morphing structures of the PubMed DOI PMC

Woll KA, Guzik-Lendrum S, Bensel BM, Bhanu NV, Dailey WP, Garcia BA, Gilbert SP, Eckenhoff RG (2018) An allosteric propofol-binding site in kinesin disrupts kinesin-mediated processive movement on microtubules. J Biol Chem 293:11283–11295 PubMed DOI PMC

Yokawa K, Kagenishi T, Pavlovič A, Gall S, Weiland M, Mancuso S, Baluška F (2018) Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Ann Bot 122:747–756 PubMed PMC

Yokawa K, Kagenishi T, Baluška F (2019) Anesthetics, Anesthesia, and Plants. Trends Plant Sci 24:12–14 PubMed DOI

Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC (2003) Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 91:551–565 PubMed DOI

Zhang Y, Ye F, Zhang T, Lv S, Zhou L, Du D, Lin H, Guo F, Luo C, Zhu S (2021) Structural basis of ketamine action on human NMDA receptors. Nature 596:301–305 PubMed DOI

Zorumski CF, Izumi Y, Mennerick S (2016) Ketamine: NMDA receptors and beyond. J Neurosci 36:11158–11164 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...