True pattern-reversal LED stimulator and its comparison to LCD and CRT displays: visual evoked potential study
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
NU22-06-00039
Ministerstvo Zdravotnictví Ceské Republiky
NU22-06-00039
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38378903
PubMed Central
PMC10879535
DOI
10.1038/s41598-024-54776-5
PII: 10.1038/s41598-024-54776-5
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
A rapid checkerboard pattern change is used to elicit pattern-reversal visual evoked potentials (PR VEPs). CRT or LCD monitors do not allow immediate reversal of the entire pattern. The study aimed to construct a new stimulator whose characteristics approximate an instantaneous reversal and verify whether the improvement is reflected in PR VEPs. A new stimulator using a matrix of 12 × 48 independent white square LEDs was designed and compared with LCDs and CRTs. The effect on the PR VEP peak times and amplitudes of N70, P100, and P140 waves was evaluated in ten subjects. The LED stimulator showed significantly better performance in the rate of change of illuminance, change of pattern, luminance settling and stability. The PR VEP amplitudes of N75, P100, and N140 did not show significant differences. The sum of interpeak amplitudes was significantly larger for the LCD than for the other monitors. The peak times of the waves evoked by the LED were shorter than those evoked by the LCD and CRT for the N75 wave and a check size of 30´. LED stimulators are a better alternative to CRTs for PR VEPs than current LCDs. LEDs also seem to be better than CRTs, but further research is necessary to obtain significant results.
See more in PubMed
Evoked Potentials in Clinical Testing (Livingstone, Edinburgh, 1982).
Creel, D. J. Visually evoked potentials. in Handbook of Clinical Neurology vol. 160 501–522 (Elsevier, 2019). PubMed
Odom JV, et al. ISCEV standard for clinical visual evoked potentials: (2016 update) Doc. Ophthalmol. 2016;133:1–9. doi: 10.1007/s10633-016-9553-y. PubMed DOI
Odom JV, et al. ISCEV standard for clinical visual evoked potentials (2009 update) Doc. Ophthalmol. 2010;120:111–119. doi: 10.1007/s10633-009-9195-4. PubMed DOI
Zhang G-L, et al. A consumer-grade LCD monitor for precise visual stimulation. Behav. Res. 2018;50:1496–1502. doi: 10.3758/s13428-018-1018-7. PubMed DOI
Nagy BV, et al. Comparison of pattern VEP results acquired using CRT and TFT stimulators in the clinical practice. Doc. Ophthalmol. 2011;122:157–162. doi: 10.1007/s10633-011-9270-5. PubMed DOI
Ura M, Matsuo M, Yamazaki H, Morita H. Effect of biological factors on latency of pattern-reversal visual evoked potentials associated with cathode ray tubes and liquid crystal display monitors in normal young subjects. Doc. Ophthalmol. 2021 doi: 10.1007/s10633-021-09833-z. PubMed DOI
Cooper EA, Jiang H, Vildavski V, Farrell JE, Norcia AM. Assessment of OLED displays for vision research. J. Vis. 2013;13:16–16. doi: 10.1167/13.12.16. PubMed DOI PMC
Baumgarten S, et al. Fullfield and extrafoveal visual evoked potentials in healthy eyes: Reference data for a curved OLED display. Doc. Ophthalmol. 2022;145:247–262. doi: 10.1007/s10633-022-09897-5. PubMed DOI PMC
Matsumoto CS, et al. Pattern visual evoked potentials elicited by organic electroluminescence screen. BioMed Res. Int. 2014;2014:1–6. doi: 10.1155/2014/606951. PubMed DOI PMC
Marmoy OR, Thompson DA. Assessment of digital light processing (DLP) projector stimulators for visual electrophysiology. Doc. Ophthalmol. 2023;146:151–163. doi: 10.1007/s10633-022-09917-4. PubMed DOI PMC
Husain AM, Hayes S, Young M, Shah D. Visual evoked potentials with CRT and LCD monitors: When newer is not better. Neurology. 2009;72:162–164. doi: 10.1212/01.wnl.0000339041.29147.5f. PubMed DOI
Kaltwasser C, Horn FK, Kremers J, Juenemann A. A comparison of the suitability of cathode ray tube (CRT) and liquid crystal display (LCD) monitors as visual stimulators in mfERG diagnostics. Doc. Ophthalmol. 2009;118:179–189. doi: 10.1007/s10633-008-9152-7. PubMed DOI
Matsumoto CS, et al. Liquid crystal display screens as stimulators for visually evoked potentials: Flash effect due to delay in luminance changes. Doc. Ophthalmol. 2013;127:103–112. doi: 10.1007/s10633-013-9387-9. PubMed DOI
Link B, Rühl S, Peters A, Jünemann A, Horn FK. Pattern reversal ERG and VEP—Comparison of stimulation by LED, monitor and a Maxwellian-view system. Doc. Ophthalmol. 2006;112:1–11. doi: 10.1007/s10633-005-5865-z. PubMed DOI
Rohr M, Wagner A. How monitor characteristics affect human perception in visual computer experiments: CRT vs. LCD monitors in millisecond precise timing research. Sci. Rep. 2020;10:6962. doi: 10.1038/s41598-020-63853-4. PubMed DOI PMC
Straßer T, Leinberger DT, Hillerkuss D, Zrenner E, Zobor D. Comparison of CRT and LCD monitors for objective estimation of visual acuity using the sweep VEP. Doc. Ophthalmol. 2022;145:133–145. doi: 10.1007/s10633-022-09883-x. PubMed DOI PMC
Cheng C-Y, Yen M-Y, Lin H-Y, Hsia W-W, Hsu W-M. Association of ocular dominance and anisometropic myopia. Investig. Ophthalmol. Vis. Sci. 2004;45:2856–2860. doi: 10.1167/iovs.03-0878. PubMed DOI
McCulloch DL, et al. ISCEV guidelines for calibration and verification of stimuli and recording instruments (2023 update) Doc. Ophthalmol. 2023;146:199–210. doi: 10.1007/s10633-023-09932-z. PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. R-Foundation for Statistical Computing (2023).
Alboukadel, K. rstatix: Pipe-Friendly Framework for Basic Statistical Tests (2023).
Vishay Semiconductors. BPW21R datasheet, Doc. No. 81519 (2011).
Diodes Incorporated. 74HC595 Datasheet (2018).
Ghodrati M, Morris AP, Price NSC. The (un)suitability of modern liquid crystal displays (LCDs) for vision research. Front. Psychol. 2015;6:303. doi: 10.3389/fpsyg.2015.00303. PubMed DOI PMC
Wang P. An LCD monitor with sufficiently precise timing for research in vision. Front. Hum. Neurosci. 2011;5:85. doi: 10.3389/fnhum.2011.00085. PubMed DOI PMC
Epstein CM. True checkerboard pattern reversal with light-emitting diodes. Electroencephalogr. Clin. Neurophysiol. 1979;47:611–613. doi: 10.1016/0013-4694(79)90263-3. PubMed DOI
Evans BT, Binnie CD, Lloyd DSL. A simple visual pattern stimulator. Electroencephalogr. Clin. Neurophysiol. 1974;37:403–406. doi: 10.1016/0013-4694(74)90116-3. PubMed DOI
Nilsson BY. Visual evoked responses in multiple sclerosis: comparison of two methods for pattern reversal. J. Neurol. Neurosurg. Psychiatry. 1978;41:499–504. doi: 10.1136/jnnp.41.6.499. PubMed DOI PMC
Stockard JJ, Hughes JF, Sharbrough FW. Visually evoked potentials to electronic pattern reversal: Latency variations with gender, age, and technical factors. Am. J. EEG Technol. 1979;19:171–204. doi: 10.1080/00029238.1979.11079986. DOI
Anderson T, Sidén Å. Comparison of visual evoked potentials elicited by light-emitting diodes and TV monitor stimulation in patients with multiple sclerosis and potentially related conditions. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 1994;92:473–479. doi: 10.1016/0168-5597(94)90130-9. PubMed DOI
Bridges D, Pitiot A, MacAskill MR, Peirce JW. The timing mega-study: Comparing a range of experiment generators, both lab-based and online. PeerJ. 2020;8:e9414. doi: 10.7717/peerj.9414. PubMed DOI PMC