How the diversity in digestion in carnivorous plants may have evolved
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40433787
PubMed Central
PMC12371184
DOI
10.1111/nph.70229
Knihovny.cz E-zdroje
- Klíčová slova
- Venus flytrap, carnivorous plants, digestive enzymes, jasmonic acid, pitcher plant,
- MeSH
- biologická evoluce * MeSH
- cyklopentany metabolismus MeSH
- fylogeneze MeSH
- masožravé rostliny * fyziologie enzymologie genetika MeSH
- oxylipiny metabolismus MeSH
- trávení * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cyklopentany MeSH
- jasmonic acid MeSH Prohlížeč
- oxylipiny MeSH
Carnivorous plants secrete digestive enzymes for prey degradation. Although carnivorous plants have a polyphyletic origin and evolved several times independently, they surprisingly co-opted similar digestive enzymes during convergent evolution. However, despite having similar digestive enzymes, the mode of their regulation strongly differs across different phylogenetic lineages. But what factors are responsible for such diversity in their digestion? By combining phylogenetic relationships of digestive fluid proteins and biochemical data, the analyses showed that phylogeny seems to be a significant factor determining the regulation of digestion, but environment (water vs terrestrial) and type of trap do not affect regulation. The oldest carnivorous plant lineage, Caryophyllales, co-opted phytohormone jasmonic acid (JA) for regulation of digestive enzyme activity. However, the remaining orders of carnivorous plants do not accumulate JA in response to prey capture, and their digestive enzyme activity is not responsive to exogenous JA application. Instead, they use different modes of regulation, for example, development/senescence, osmotically induced and constitutive. These different modes of regulation can be explained by co-option, albeit of similar genes but different paralogs with different cis regulatory elements that have been fine-tuned during evolution.
Zobrazit více v PubMed
Adamec L, Matušíková I, Pavlovič A. 2021. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. Annals of Botany 128: 241–259. PubMed PMC
Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T. 2021. Organ‐specific expression and epigenetic traits of genes encoding digestive enzymes in the lance‐leaf sundew ( PubMed PMC
Athauda SB, Matsumoto K, Rajapakshe S, Kuribayashi M, Kojima M, Kubomura‐Yoshida N, Iwamatsu A, Shibata C, Inoue H, Takahashi K. 2004. Enzymic and structural characterization of nepenthesin, a unique member of a novel subfamily of aspartic proteinases. Biochemical Journal 381: 295–306. PubMed PMC
Bemm F, Becker D, Larisch C, Kreuzer I, Escalante‐Perez M, Schulze WX, Ankenbrand M, Van de Weyer A‐L, Krol E, Al‐Rasheid KA PubMed PMC
Buch F, Kaman WE, Bikker FJ, Yilamujiang A, Mithöfer A. 2015. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous PubMed PMC
Cameron KM, Wurdack KJ, Jobson RW. 2002. Molecular evidence for the common origin of snap‐traps among carnivorous plants. American Journal of Botany 89: 1503–1509. PubMed
Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García‐Casado G, López‐Vidriero I, Lozano FM, Ponce MR PubMed
Chini A, Monte I, Zamarreño AM, García‐Mina JM, Solano R. 2023. Evolution of the jasmonate ligands and their biosynthetic pathways. New Phytologist 238: 2236–2246. PubMed
Coronado‐Martín A, Martin‐Vásquez C, Jáquez M, Bahaji A, Atarés A. 2024. Micropropagation and genetic transformation of
Darwish E, Ghosh R, Ontiveros‐Cisneros A, Tran HC, Petersson M, De Milde L, Broda M, Goossens A, Van Moerkercke A, Khan K PubMed PMC
Dávila‐Lara A, Rahman‐Soad A, Reichelt M, Mithöfer A. 2021. Carnivorous PubMed PMC
Ding M, Zhou Y, Becker D, Yang S, Krischke M, Scherzer S, Yu‐Strzelczyk J, Mueller MJ, Hedrich R, Nagel G PubMed PMC
Doxey AC, Yaish MWF, Moffatt BA, Griffith M, McConkey BJ. 2007. Functional divergence in the PubMed
Doyle EA, Lane AM, Sides JM, Mudgett MB, Monroe JD. 2007. An alpha‐amylase (At4g25000) in PubMed
Eilenberg H, Pnini‐Cohen S, Schuster S, Movtchan A, Zilberstein A. 2006. Isolation and characterization of chitinase genes from pitchers of the carnivorous plant PubMed
Escalante‐Pérez M, Krol E, Stange A, Geiger D, Al‐Rasheid KAS, Hause B, Neher E, Hedrich R. 2011. A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proceedings of the National Academy of Sciences, USA 108: 15492–15497. PubMed PMC
Figueiredo L, Santos RB, Figueiredo A. 2021. Defense and offense strategies: the role of aspartic proteases in plant–pathogen interactions. Biology 10: 75. PubMed PMC
Fleischmann A, Schlauer J, Smith SA, Givnish TJ. 2018. Evolution of carnivory in angiosperms. In: Ellison AM, Adamec L, eds. Carnivorous plants: physiology, ecology, and evolution. Oxford, UK: Oxford University Press, 23–41.
Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R. 2009. (+)‐7‐iso‐jasmonoyl‐L‐isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology 5: 344–350. PubMed
Frazier CK. 2000. The enduring controversies concerning the process of protein digestion in
Fukushima K, Fang X, Alvarez‐Ponce D, Cai H, Carretero‐Paulet L, Chen C, Chang T‐H, Farr KM, Fujita T, Hiwatashi Y PubMed
Gallie DR, Chang SC. 1997. Signal transduction in the carnivorous plant PubMed PMC
Goh H‐H, Baharin A, Salleh FIM, Ravee R, Wan Zakaria WNA, Noor NM. 2020. Transcriptome‐wide shift from photosynthesis and energy metabolism upon endogenous fluid protein depletion in young PubMed PMC
Häffner E, Konietzki S, Diederichsen E. 2015. Keeping control: the role of senescence and development in plant pathogenesis and defense. Plants 4: 449–488. PubMed PMC
Hatano N, Hamada T. 2008. Proteome analysis of pitcher fluid of the carnivorous plant PubMed
Hatano N, Hamada T. 2012. Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant PubMed
Hedrich R, Gilliham M. 2025. Light‐activated channelrhodopsins: a revolutionary toolkit for the remote control of plant signaling. New Phytologist 245: 982–988. PubMed
Heslop‐Harrison Y. 1975. Enzyme release in carnivorous plants. Frontiers in Biology 43: 525–578. PubMed
Heslop‐Harrison Y, Heslop‐Harrison J. 1980. Chloride ion movement and enzyme secretion from the digestive glands of
Heslop‐Harrison Y, Knox RB. 1971. A cytochemical study of the leaf gland enzymes of insectivorous plants of the genus Pinguicula. Planta 96: 183–211. PubMed
Jakšová J, Libiaková M, Bokor B, Petřík I, Novák O, Pavlovič A. 2020. Taste for protein: chemical signal from prey stimulates enzyme secretion through jasmonate signalling in the carnivorous plant Venus flytrap. Plant Physiology and Biochemistry 146: 90–97. PubMed
Jakšová J, Novák O, Adamec L, Pavlovič A. 2021. Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (Aldrovanda, Utricularia). Plant Physiology and Biochemistry 166: 459–465. PubMed
Jentsch J. 1972. Isolation of the protease Nepthacin. FEBS Letters 21: 273–276. PubMed
Jílková T. 2023. Under water: signalling in submerged carnivorous plants. Bachelor thesis, Palacký University in Olomouc, Czech Republic, Pp. 40.
Juniper BE, Robins RJ, Joel DM. 1989. The carnivorous plants. London, UK: Academic Press.
Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F. 2004. The DNA‐binding protease, CND41, and the degradation of ribulose‐1,5‐bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220: 97–104. PubMed
Kimberlin AN, Holtsclaw RE, Zhang T, Mulaudzi T, Koo AJ. 2022. On the initiation of jasmonate biosynthesis in wounded leaves. Plant Physiology 189: 1925–1942. PubMed PMC
Kocáb O, Jakšová J, Novák O, Petřík I, Lenobel R, Chamrád I, Pavlovič A. 2020. Jasmonate‐independent regulation of digestive enzyme activity in the carnivorous butterwort PubMed PMC
Koo AJK, Howe GA. 2009. The wound hormone jasmonate. Phytochemistry 70: 1571–1580. PubMed PMC
Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A. 2017. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant PubMed
La Porta CAM, Lionetti MC, Bonfanti S, Milan S, Ferrario C, Rayneau‐Kirkhope D, Beretta M, Hanifpour M, Fascio U, Ascagni M PubMed PMC
Lan T, Renner T, Ibarra‐Laclette E, Farr KM, Chang T‐H, Cervantes‐Pérez SA, Zheng C, Sankoff D, Tang H, Purbojati RW PubMed PMC
Lee H‐J, Park J‐S, Shin SY, Kim S‐G, Lee G, Kim H‐S, Jeon JH, Cho HS. 2020. Submergence deactivates wound‐induced plant defence against herbivores. Communications Biology 3: 651. PubMed PMC
Lee L, Zhang Y, Ozar B, Sensen CW, Schriemer DC. 2016. Carnivorous nutrition in pitcher plants ( PubMed
Libantová J, Frátriková M, Jopcík M, Bauer M, Rajninec M. 2021. In silico characterization of β‐1,3‐glucanase promoter from
Libiaková M, Floková K, Novák O, Slováková L, Pavlovič A. 2014. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap ( PubMed PMC
Lin Q, Ané C, Givnish TJ, Graham SW. 2021. A new carnivorous plant lineage ( PubMed PMC
Loon LC, Rep M, Pieterse CMJ. 2006. Significance of inducible defence‐related proteins in infected plants. Annual Review of Phytopathology 44: 135–162. PubMed
Matsumura M, Nomoto M, Itaya T, Aratani Y, Iwamoto M, Matsuura T, Hayashi Y, Mori T, Skelly MJ, Yamamoto YY PubMed PMC
Matušíková I, Salaj T, Moravčíková J, Mlynárová L, Nap J‐P, Libantová J. 2005. Tentacles of in vitro‐grown round‐leaf sundew ( PubMed
Michalko J, Renner T, Mészáros P, Socha P, Moravčíková J, Blehová A, Libantová J, Polóniová Z, Matušíková I. 2017. Molecular characterization and evolution of carnivorous sundew ( PubMed
Miguel S, Nisse E, Biteau F, Rottloff S, Mignard B, Gontier E, Hehn A, Bourgaud F. 2019. Assessing carnivorous plants for the production of recombinant proteins. Frontiers in Plant Science 10: 793. PubMed PMC
Mikitová V, Jopčík M, Rajninec M, Libantová J. 2025. Complex transcription regulation of acidic chitinase suggests fine‐tuning of digestive processes in PubMed PMC
Mithöfer A. 2011. Carnivorous pitcher plants: insights in an old topic. Phytochemistry 72: 1678–1682. PubMed
Nishimura E, Jumyo S, Arai N, Kanna K, Kume M, Nishikawa J, Tanase J, Ohyama T. 2014. Structural and functional characteristics of S‐like ribonucleases from carnivorous plants. Planta 240: 147–159. PubMed
Nishimura E, Kawahara M, Kodaira R, Kume M, Arai N, Nishikawa J, Ohyama T. 2013. S‐like ribonuclease gene expression in carnivorous plants. Planta 238: 955–967. PubMed
Oropeza‐Aburto A, Cervantes‐Pérez SA, Albert VA, Herrera‐Estrella L. 2020. PubMed PMC
Palfalvi G, Hackl T, Terhoeven N, Shibata TF, Nishiyama T, Ankenbrand M, Becker D, Förster F, Freund M, Iosip A PubMed PMC
Paniw M, Gil‐Cabeza E, Ojeda F. 2017. Plant carnivory beyond bogs: reliance on prey feeding in PubMed PMC
Pavlovič A. 2022. Photosynthesis in carnivorous plants: from genes to gas exchange of green hunters. Critical Reviews in Plant Sciences 41: 305–320.
Pavlovič A, Jakšová J, Novák O. 2017. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap ( PubMed
Pavlovič A, Jílková T, Chamrád I, Lenobel R, Vrobel O, Tarkowski P. 2025. The carnivorous rainbow plant PubMed PMC
Pavlovič A, Koller J, Vrobel O, Chamrád I, Lenobel R, Tarkowski P. 2024. Is the co‐option of jasmonate signalling for botanical carnivory universal trait for all carnivorous plants? Journal of Experimental Botany 75: 334–349. PubMed PMC
Pavlovič A, Mithöfer A. 2019. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. Journal of Experimental Botany 70: 3379–3389. PubMed
Pavlovič A, Saganová M. 2015. A novel insight into the cost–benefit model for the evolution of botanical carnivory. Annals of Botany 115: 1075–1092. PubMed PMC
Procko C, Chory J. 2024. Carnivorous plant evolution: is a killer defense always the best option? Journal of Experimental Botany 75: 9–12. PubMed PMC
Procko C, Radin I, Hou C, Richardson RA, Haswell ES, Chory J. 2022. Dynamic calcium signals mediate the feeding response of the carnivorous sundew plant. Proceedings of the National Academy of Sciences, USA 119: e2206433119. PubMed PMC
Procko C, Wong WM, Patel J, Mousavi SAR, Dabi T, Duque M, Baird L, Chalasani SH, Chory J. 2023. Mutational analysis of mechanosensitive ion channels in the carnivorous Venus flytrap plant. Current Biology 33: 3257–3264. PubMed PMC
Rea PA, Joel DM, Juniper BE. 1983. Secretion and redistribution of chloride in the digestive glands of Dionaea muscipula Ellis (Venus flytrap) upon secretion stimulation. New Phytologist 94: 359–366.
Renner T, Specht CD. 2012. Molecular and functional evolution of class I chitinases for plant carnivory in the Caryophyllales. Molecular Biology and Evolution 29: 2971–2985. PubMed
Renner T, Specht CD. 2013. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. Current Opinion in Plant Biology 16: 436–442. PubMed PMC
Rentsch JD, Blanco SR, Leebens‐Mack JH. 2024. Comparative transcriptomics of Venus flytrap ( PubMed PMC
Rotloff S, Stieber R, Maischak H, Turini FG, Heubl G, Mithöfer A. 2011. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, PubMed PMC
Saul F, Scharmann M, Wakatake T, Rajaraman S, Marques A, Freund M, Bringmann G, Channon L, Becker D, Carroll E PubMed
Sheard LB, Tan X, Mao H, Withers J, Ben‐Nissan G, Hinds TR, Kobayashi Y, Hsu F‐F, Sharon M, Browse J PubMed PMC
Shigeto J, Tsutsumi Y. 2016. Diverse functions and reactions of class III peroxidases. New Phytologist 209: 1395–1402. PubMed
Simões I, Faro C. 2004. Structure and function of plant aspartic proteinases. European Journal of Biochemistry 271: 2067–2075. PubMed
Sirová D, Adamec L, Vrba J. 2003. Enzymatic activities in traps of four aquatic species of the carnivorous genus PubMed
Soares A, Carlton SMR, Simões I. 2019. Atypical and nucellin‐like aspartic proteases: emerging players in plant developmental processes and stress responses. Journal of Experimental Botany 70: 2059–2076. PubMed
Stanley D, Farnden KJF, Macrae EA. 2005. Plant α‐amylases: functions and roles in carbohydrate metabolism. Biologia – Section Cellular and Molecular Biology 16: 65–71.
Steckelberg R, Luttge U, Weigh J. 1967. Reingung der proteinase aus Nepenthes‐Kannensaft (purification of the proteinase from the nepenthes pitcher secretion). Planta 76: 238–241. PubMed
Suda H, Mano H, Toyota M, Fukushima K, Mimura T, Tsutsui I, Hedrich R, Tamada Y, Hasebe M. 2020. Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants 6: 1219–1224. PubMed
Sun C, Wei J, Gu XY, Wu ML, Li M, Liu YX, An NK, Wu KM, Wu SS, Wu JQ PubMed PMC
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661–665. PubMed
Thorogood CJ, Bauer U, Hiscock SJ. 2018. Convergent and divergent evolution in carnivorous pitcher plant traps. New Phytologist 217: 1035–1041. PubMed
Tökes ZA, Woon WC, Chambers SM. 1974. Digestive enzymes secreted by the carnivorous plant PubMed
True JR, Carroll SB. 2002. Gene co‐option in physiological and morphological evolution. Annual Review of Cell and Developmental Biology 18: 53–80. PubMed
Wan Zakaria WNA, Aizat WM, Goh HH, Mohd Noor N. 2019. Protein replenishment in pitcher fluids of Nepenthes × ventrata revealed by quantitative proteomics (SWATH‐MS) informed by transcriptomics. Journal of Plant Research 132: 681–694. PubMed
Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review. Annals of Botany 111: 1021–1058. PubMed PMC
Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C. 2004. An extracellular aspartic protease functions in Arabidopsis disease resistence signaling. EMBO Journal 23: 980–988. PubMed PMC
Yilamujiang A, Reichelt M, Mithöfer A. 2016. Slow food: insect prey and chitin induce phytohormone accumulation and gene expression in carnivorous PubMed PMC
Yu X, Feng T. 2025. The multifaceted roles of plant aspartic proteases. Journal of Experimental Botany. doi: 10.1093/jxb/eraf147. PubMed DOI