A Generalized Regression Neural Network Model for Predicting the Curing Characteristics of Carbon Black-Filled Rubber Blends

. 2022 Feb 09 ; 14 (4) : . [epub] 20220209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35215566

In this study, a new generalized regression neural network model for predicting the curing characteristics of rubber blends with different contents of carbon black filler cured at various temperatures is proposed for the first time The carbon black contents in the rubber blend and cure temperature were used as input parameters, while the minimum and maximum elastic torque, scorch time, and optimal cure time, obtained from the analysis of 11 rheological cure curves registered at 10 various temperatures, were considered as output parameters of the model. A special pre-processing procedure of the experimental input and target data and the training algorithm is described. Less than 55% of the experimental data were used to significantly reduce the total number of input and target data points needed for training the model. Satisfactory agreement between the predicted and experimental data, with a maximum error in the prediction not exceeding 5%, was found. It is concluded that the generalized regression neural network is a powerful tool for intelligently modelling the curing process of rubber blends even in the case of a small dataset, and it can find a wide range of practical applications in the rubber industry.

Zobrazit více v PubMed

Vayyaprontavida Kaliyathan A., Varghese K.M., Nair A.S., Thomas S. Rubber–rubber blends: A critical review. Prog. Rubber Plast. Recycl. Technol. 2020;36:196–242. doi: 10.1177/1477760619895002. DOI

Nakanishi Y., Mita K., Yamamoto K., Ichino K., Takenaka M. Effects of mixing process on spatial distribution and coexistence of sulfur and zinc in vulcanized EPDM rubber. Polymer. 2021;218:123486. doi: 10.1016/j.polymer.2021.123486. DOI

Kruželák J., Kvasničáková A., Hudec I. Peroxide curing systems applied for cross-linking of rubber compounds based on SBR. Adv. Ind. Eng. Polym. Res. 2020;3:120–128. doi: 10.1016/j.aiepr.2020.05.001. DOI

Hansupalak N., Srisuk S., Wiroonpochit P., Chisti Y. Sulfur-Free Prevulcanization of Natural Rubber Latex by Ultraviolet Irradiation. Ind. Eng. Chem. Res. 2016;55:3974–3981. doi: 10.1021/acs.iecr.6b00076. DOI

Haque M.E., Makuuchi K., Mitomo H., Yoshii F., Ikeda K. New Trend in Radiation Vulcanization of Natural Rubber Latex with a Low Energy Electron Beam. Polym. J. 2005;37:333–339. doi: 10.1295/polymj.37.333. DOI

Kopal I., Vršková J., Bakošová A., Harničárová M., Labaj I., Ondrušová D., Valíček J., Krmela J. Modelling the Stiffness-Temperature Dependence of Resin-Rubber Blends Cured by High-Energy Electron Beam Radiation Using Global Search Genetic Algorithm. Polymers. 2020;12:2652. doi: 10.3390/polym12112652. PubMed DOI PMC

Martin D., Ighigeanu D., Mateescu E., Craciun G., Ighigeanu A. Vulcanization of rubber mixtures by simultaneous electron beam and microwave irradiation. Radiat. Phys. Chem. 2002;65:63–65. doi: 10.1016/S0969-806X(01)00680-6. DOI

Mutar M. A study in vulcanization of neoprene rubber (wrt) by polymethylol resin (resol) J. Al-Nahrain Univ. Sci. 2010;13:1–6. doi: 10.22401/JNUS.13.3.01. DOI

Karpeles R., Grossi A.G. EPDM Rubber Technology. In: Bhowmick A.K., Stephens H.L., editors. Handbook of Elastomers. 2nd ed. Marcel Decker, Inc.; New York, NY, USA: 2001. pp. 845–876.

Hopmann C.H., Schmitz M. Plastic Industry 4.0. Carl Hanser Verlag GmbH & Co.; München, Germany: 2020. Data Acquisition and Process Monitoring as Enabler for Industry 4.0; pp. 11–73.

Chang B.P.P., Gupta A., Muthuraj R., Mekonnen T. Bioresourced fillers for rubber composite sustainability: Current development and future opportunities. Green Chem. 2021;23:5337–5378. doi: 10.1039/D1GC01115D. DOI

Yasin S., Hussain M., Zheng Q., Song Y. Large amplitude oscillatory rheology of silica and cellulose nanocrystals filled natural rubber compounds. J. Colloid Interface Sci. 2021;588:602–610. doi: 10.1016/j.jcis.2020.10.094. PubMed DOI

Labaj I., Skalková P., Dubec A., Janík R., Papučová I., Ondrušová D. Study of properties of elastomer blends based on natural rubber and chitosan; Proceedings of the 24th International Conference on Composite Structures; Porto, Portugal. 14–18 June 2021.

Dick J.S. Rubber Technology—Compounding and Testing for Performance. 2nd ed. Hanser Publishers; Munich, Germany: 2009.

Abdelsalam A.A., Araby S., El-Sabbagh S.H., Abdelmoneim A., Hassan M.A. Effect of carbon black loading on mechanical and rheological properties of natural rubber/styrene-butadiene rubber/nitrile butadiene rubber blends. J. Thermoplast. Compos. Mater. 2021;34:490–507. doi: 10.1177/0892705719844556. DOI

Hossain M. Ph.D. Thesis. Der Technischen Fakultät der Universitat Erlangen-Nurnberg; Erlangen, Germany: 2010. Modelling and Computation of Polymer Curing.

Devi K.G., Rath M., Linh N.T.D. Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches. 1st ed. CRC Press; Boca Raton, FL, USA: 2021.

ArulRaj K., Karthikeyan M., Narmatha D. A View of Artificial Neural Network Models in Different Application Areas. E3S Web Conf. 2021;287:03001. doi: 10.1051/e3sconf/202128703001. DOI

Karaağaç B., İnal M., Deniz V. Artificial neural network approach for predicting optimum cure time of rubber compounds. Mater. Des. 2009;30:1685–1690.

Karaağaç B., İnal M., Deniz V. Predicting optimum cure time of rubber compounds by means of ANFIS. Mater. Des. 2012;35:833–838. doi: 10.1016/j.matdes.2011.03.062. DOI

Lubura J.D., Kojić P., Pavličević J., Ikonić B., Omorjan R., Bera O. Prediction of rubber vulcanization using an artificial neural network. Hem. Ind. 2021;75:277–283. doi: 10.2298/HEMIND210511026L. DOI

Du K.L., Swamy M.N.S. Neural Networks and Statistical Learning. Springer Science & Business Media; London, UK: 2013.

Rao M.A., Srinivas J. Neural Networks: Algorithms and Applications. 1st ed. Alpha Science International; Oxford, UK: 2003.

Paliwal M., Kumar U.A. Neural networks and statistical techniques: A review of applications. Expert Syst. Appl. 2009;36:2–17. doi: 10.1016/j.eswa.2007.10.005. DOI

Gambella C., Ghaddar B., Naoum-Sawaya J. Optimization problems for machine learning: A survey. Eur. J. Oper. Res. 2021;290:807–828. doi: 10.1016/j.ejor.2020.08.045. DOI

Hagan M.T., Demuth H.B., Beale M.H., De Jesús O. Neural Network Design. 2nd ed. Martin Hagan; Oklahoma, OK, USA: 2014.

Liu X., Tian S., Tao F., Yu W. A review of artificial neural networks in the constitutive modeling of composite materials. Compos. B. Eng. 2021;224:109152. doi: 10.1016/j.compositesb.2021.109152. DOI

Kopal I., Harničárová H., Valíček J., Kušnerová M. Modelling the temperature dependence of dynamic mechanical properties and visco-elastic behavior of thermoplastic polyurethane using artificial neural network. Polymers. 2017;9:519. doi: 10.3390/polym9100519. PubMed DOI PMC

Kopal I., Labaj I., Harničárová M., Valíček J., Hrubý D. Prediction of the tensile response of carbon black filled rubber blends by artificial neural network. Polymers. 2018;10:644. doi: 10.3390/polym10060644. PubMed DOI PMC

Kopal I., Harničárová M., Valíček J., Krmela J., Lukáč O. Radial basis function neural network-based modeling of the dynamic thermo-mechanical response and damping behavior of thermoplastic elastomer systems. Polymers. 2019;11:1074. doi: 10.3390/polym11061074. PubMed DOI PMC

Dreyfus G. Neural Networks Methodology and Applications. Springer; Berlin/Heidelberg, Germany: 2005.

Al-Mahasneh A.J., Anavatti S., Garratt M., Pratama M. Digital Systems, Asadpour, V., Ed. Intech Open; London, UK: 2018. Applications of General Regression Neural Networks in Dynamic Systems.

Farokhi F. Deconvoluting kernel density estimation and regression for locally differentially private data. Sci. Rep. 2020;10:21361. doi: 10.1038/s41598-020-78323-0. PubMed DOI PMC

Park J., Kun I. Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer International Publishing; Cham, Switzerland: 2018.

Pernot P., Savin A. Probabilistic performance estimators for computational chemistry methods: Systematic improvement probability and ranking probability matrix. I. Theory. J. Chem. Phys. 2020;152:164108. doi: 10.1063/5.0006202. PubMed DOI

O’Neill B. Elementary Differential Geometry. 2nd ed. Elsevier Academic Press; San Diego, CA, USA: 2006.

Wen H., Yan T., Liu Z., Chen D. Integrated neural network model with pre-RBF kernels. Sci. Prog. 2021;104:00368504211026111. doi: 10.1177/00368504211026111. PubMed DOI PMC

Specht D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991;2:568–576. doi: 10.1109/72.97934. PubMed DOI

LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI

Sun X., Liu J., Zhu K., Hu J., Jiang X., Liu Y. Generalized regression neural network association with terahertz spectroscopy for quantitative analysis of benzoic acid additive in wheat flour. R. Soc. Open Sci. 2019;6:190485. doi: 10.1098/rsos.190485. PubMed DOI PMC

Sharkawy A.N. Principle of neural network and its main types. J. Adv. Appl. Comput. Math. 2020;7:8–19. doi: 10.15377/2409-5761.2020.07.2. DOI

Rajasekaran S., Pai G.V. Neural Networks, Fuzzy Logic and Genetic Algorithms. 1st ed. Prentice Hall of India; New Delhi, India: 2004.

Huang Y.C., Liao H.S. Building prediction model for a machine tool with genetic algorithm optimization on a general regression neural network. J. Intell. Fuzzy Syst. 2020;38:2347–2357. doi: 10.3233/JIFS-191264. DOI

Al-Nesrawy S.H., Al-Maamori M.H., Japor H. Effect of temperature on rheological properties of sbr compounds reinforced by some industrial scraps as a filler. Int. J. Chem. Sci. 2016;14:1285–1295.

Arayapranee W., Rempel G.L. Effects of polarity on the filler-rubber interaction and properties of silica filled grafted natural rubber composites. J. Polym. 2013;2013:279529. doi: 10.1155/2013/279529. DOI

Chalid M., Husnil Y.A., Puspitasari S., Cifriadi A. Experimental and Modelling Study of the Effect of Adding Starch-Modified Natural Rubber Hybrid to the Vulcanization of Sorghum Fibers-Filled Natural Rubber. Polymers. 2020;12:3017. doi: 10.3390/polym12123017. PubMed DOI PMC

Sattayanurak S., Sahakaro K., Kaewsakul W., Dierkes W.K., Reuvekamp L.A., Blume A., Noordermeer J.W. Synergistic effect by high specific surface area carbon black as secondary filler in silica reinforced natural rubber tire tread compounds. Polym. Test. 2020;81:106173. doi: 10.1016/j.polymertesting.2019.106173. DOI

Ghosh J., Ghorai S., Jalan A.K., Roy M., De D. Manifestation of Accelerator Type and Vulcanization System on the Properties of Silica-reinforced SBR/devulcanize SBR blend Vulcanizates. Adv. Polym. Technol. 2018;37:2636–2650. doi: 10.1002/adv.21939. DOI

Hussain M., Yasin S., Akram M.A., Xu H., Song Y., Zheng Q. Influence of Ionic Liquids on Structure and Rheological Behaviors of Silica-Filled Butadiene Rubber. Ind. Eng. Chem. Res. 2019;58:18205–18212. doi: 10.1021/acs.iecr.9b03494. DOI

Yasin S., Hussain M., Zheng Q., Song Y. Effects of ionic liquid on cellulosic nanofiller filled natural rubber bionanocomposites. J. Colloid Interface Sci. 2021;591:409–417. doi: 10.1016/j.jcis.2021.02.029. PubMed DOI

Shanks R.A., Kong I. General Purpose Elastomers: Structure, Chemistry, Physics and Performance. In: Visakh P., Thomas S., Chandra A., Mathew A., editors. Advances in Elastomers I. Advanced Structured Materials. Volume 11. Springer; Berlin/Heidelberg, Germany: 2013. pp. 11–45.

Kurian T., George K.E., Francis D.J. Effect of vulcanization temperature on the cure characteristics and vulcanizate properties of natural rubber and styrene-butadiene rubber. Angew. Makromolek. Chem. 1988;162:123–134. doi: 10.1002/apmc.1988.051620108. DOI

Ramesan M.T. The effects of filler content on cure and mechanical properties of dichlorocarbene modified styrene butadiene rubber/carbon black composites. J. Polym. Res. 2005;11:333–340. doi: 10.1007/s10965-005-6571-y. DOI

Joseph A.M., George B., Madhusoodanan K.N., Alex R. Cure characteristics of devulcanized rubber: The issue of low scorch. Rubber Chem. Technol. 2017;90:536–549. doi: 10.5254/rct.17.83737. DOI

Sadequl A.M., Ishiaku U.S., Ismail H., Poh B.T. The effect of accelerator/sulfur ratio on the scorch time of epoxidized natural rubber. Eur. Polym. J. 1998;34:51–57. doi: 10.1016/S0014-3057(97)00067-0. DOI

Khimi S.R., Pickering K.L. A new method to predict optimum cure time of rubber compound using dynamic mechanical analysis. J. Appl. Polym. Sci. 2014;131 doi: 10.1002/app.40008. DOI

Maciejewska M., Siwek M. The Influence of Curing Systems on the Cure Characteristics and Physical Properties of Styrene–Butadiene Elastomer. Materials. 2020;13:5329. doi: 10.3390/ma13235329. PubMed DOI PMC

Ploskas N., Samaras N. GPU Programming in MATLAB. Morgan Kaufmann; Cambridge, UK: 2016.

de Bragança Pereira B., Rao C.R., de Oliveira F.B. Statistical Learning Using Neural Networks: A Guide for Statisticians and Data Scientists with Python. CRC Press; Boca Raton, FL, USA: 2020.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Intelligent Modelling of the Real Dynamic Viscosity of Rubber Blends Using Parallel Computing

. 2023 Sep 02 ; 15 (17) : . [epub] 20230902

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...