Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30966678
PubMed Central
PMC6403873
DOI
10.3390/polym10060644
PII: polym10060644
Knihovny.cz E-zdroje
- Klíčová slova
- artificial neural network, carbon black filled rubber blends, mechanical properties and characteristics, stress-strain curves, tensile tests of polymers,
- Publikační typ
- časopisecké články MeSH
The precise experimental estimation of mechanical properties of rubber blends can be a very costly and time-consuming process. The present work explores the possibilities of increasing its efficiency by using artificial neural networks to study the mechanical behavior of these widely used materials. A multilayer feed-forward back-propagation artificial neural network model, with a strain and the carbon black content as input parameters and stress as an output parameter, has been developed to predict the uniaxial tensile response of vulcanized natural rubber blends with different contents of carbon black in the form of engineering stress-strain curves. A novel procedure has been created for the simulation of the optimized artificial neural network model with input datasets generated by a regression model of an experimental dependence of tensile strain-at-break on the carbon black content in the investigated blends. Errors of the prediction of experimental stress-strain curves, as well as of tensile strain-at-break, tensile stress-at-break and M100 tensile modulus were estimated for all simulated stress-strain curves. The present study demonstrated that the performance of a developed neural network model to predict the stress-strain curves of rubber blends with different contents of carbon black is also exceptionally high in the case of a network that had never learned the input data, which makes it a suitable tool for extensive use in practice.
Zobrazit více v PubMed
Krmela J. Tire Casings and Their Material Characteristics for Computational Modelling. 1st ed. Printing House the Managers of Quality and Production Association; Czestochowa, Poland: 2017.
Ward I.M., Sweeney J. Mechanical Properties of Solid Polymers. 3rd ed. Wiley; Chichester, UK: 2013.
Drobny G.J. Handbook of Thermoplastic Elastomers. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2014.
Pandian J.J., Govindan T. Comparative Studies on the Mechanical Properties of Natural Rubber and Natural Rubber Carbon Black Composites. IJETCSE. 2015;13:48–52.
Vineetkumat J. Carbon Black Filler Reinforcement of Elastomers. Queen Mary University of London; London, UK: 2008.
Rothert H., Kaliske M. Constitutive approach to rate-independent properties of filled elastomers. Int. J. Solids Struct. 1998;35:2057–2071.
Kucherskii A.M. Hysteresis losses in carbon-black-filled rubbers under small and large elongations. Polym. Test. 2005;24:733–738. doi: 10.1016/j.polymertesting.2005.04.005. DOI
Tomita Y., Azuma K., Naito M. Strain-rate-dependent deformation behavior of carbon-black-filled rubber under monotonic and cyclic straining. Int. J. Mech. Sci. 2008;340:856–868. doi: 10.1016/j.ijmecsci.2007.09.010. DOI
Xiang K.L., Xiang P.Y., Wu Y.P. Prediction of the fatigue life of natural rubber composites by artificial neural network approaches. Mater. Des. 2014;57:180–185. doi: 10.1016/j.matdes.2013.12.044. DOI
Kamal M.M., Clarke J., Ahmad M.A. Comparison of properties of natural rubber compounds with various fillers. J. Rubber Res. 2009;12:27–44.
Jha V., Hon A.A., Thomas A.G, Busfield T.J. Modelling of the effect of on the stiffness of rubbers. J. Appl. Polym. Sci. 2007;107:2572–2577. doi: 10.1002/app.27324. DOI
Gil-Negrete N., Alonso A. Constitutive Models for Rubber VIII. CRC Press; Boca Raton, FL, USA: 2013.
Boyce M.C., Arruda E.M. Constitutive models of rubber elasticity: A review. Rubber Chem. Technol. 2000;73:504–523. doi: 10.5254/1.3547602. DOI
El Kadi H. Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks—A review. Compos. Struct. 2006;73:1–23. doi: 10.1016/j.compstruct.2005.01.020. DOI
Lion A. A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation. Contin. Mech. Thermdyn. 1996;8:153–169. doi: 10.1007/BF01181853. DOI
Bergstorm J.S., Boyce M.C. Constitutive modelling of the large strain time dependemt behaviour of elastomers. J. Mech. Phys. Solids. 1998;46:931–954. doi: 10.1016/S0022-5096(97)00075-6. DOI
Guo Z., Sluys L.J. Constitutive modelling of hyperelastic rubber-like materials. Heron. 2008;43:109–132.
Zéhil G.P., Gavin H.P. Unified constitutive modeling of rubber-like materials under diverse loading conditions. Int. J. Eng. Sci. 2016;62:90–105. doi: 10.1016/j.ijengsci.2012.09.002. DOI
Ali A., Hosseini M., Sahari B.B. A Review of Constitutive Models for Rubber-Like Materials. Am. J. Eng. Appl. Sci. 2010;3:232–239. doi: 10.3844/ajeassp.2010.232.239. DOI
Dargazany R., Itskov M. A network evolution model for the anisotropic mullins effect in carbon black filled rubbers. Int. J. Solids Struct. 2009;46:2967–2977. doi: 10.1016/j.ijsolstr.2009.03.022. DOI
Liang G., Chandrashekhara K. Neural network based constitutive model for elastomeric foams. Eng. Struct. 2008;39:2002–2011. doi: 10.1016/j.engstruct.2007.12.021. DOI
Fausett N. Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Prentice Hall; Upper Saddle River, NJ, USA: 1993.
Aliev R., Bonfig K., Aliew F. Soft Computing. Verlag Technic; Berlin, Germany: 2000.
Shanmuganathan S., Samarasinghe S. Artificial Neural Network Modelling. Springer; Berlin, Germany: 2016.
David J., Sally L. Advances in Computer Science, Intelligent System and Environment. Springer; Berlin, Germany: 2011.
Du K.L., Swamy M.N.S. Neural Networks and Statistical Learning. Springer; New York, NY, USA: 2013.
Auer P., Burgsteiner H., Maass W.A. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Netw. 2008;21:786–795. doi: 10.1016/j.neunet.2007.12.036. PubMed DOI
Kotsiantis S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica. 2007;31:249–268.
Hagan M.T., Menhaj M. Training feed-forward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994;5:989–999. doi: 10.1109/72.329697. PubMed DOI
Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. MIT Press; Cambridge, MA, USA: 2012.
Zhang Z., Friedrich K. Artificial neural networks applied to polymer composites: A review. Compos. Sci. Technol. 2003;63:2029–2044. doi: 10.1016/S0266-3538(03)00106-4. DOI
Freeman J.A., Skapura D.M. Neural Networks: Algorithms, Applications, and Programming Techniques. Addison-Wesley; Reading, MA, USA: 1991.
Lagaros N.D., Papadrakikis M. Learning improvement of neural networks used in structural optimization. Adv. Eng. Softw. 2004;35:9–25. doi: 10.1016/S0965-9978(03)00112-1. DOI
Rutkowski L. New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing. Studies in Fuzziness and Soft Computing. 1st ed. Volume 143. Springer; Berlin/Heidelberg, Germany: 2004. Generalized regression neural networks in time-varying environment; pp. 73–134.
Demirhan E., Kandemirli F., Kandemirli M., Kovalishyn V. Investigation of the physical and rheological properties of SBR-1712 rubber compounds by neural network approaches. Mater. Des. 2007;28:1737–1741. doi: 10.1016/j.matdes.2006.02.005. DOI
Kopal I., Harničárová M., Valíček J., Kušnerová M. Modelling the temperature dependence of dynamic mechanical properties and visco-elastic behavior of thermoplastic polyurethane using artificial neural network. Polymers. 2017;9:519. doi: 10.3390/polym9100519. PubMed DOI PMC
Fernandez-Martinez R., Hernandez R., Ibarretxe J., Jimbert P., Iturrondobeitia M., Guraya-Díez T. Modeling of the Mechanical Properties of Carbon Black Reinforced Rubber Blends by Machine Learning Techniques. Appl. Mech. Mater. 2014;627:97–100. doi: 10.4028/www.scientific.net/AMM.627.97. DOI
Wang B., Ma J.H., Wu J.P. Application of artificial neural network in prediction of abrasion of rubber composites. Mater. Des. 2013;49:802–807. doi: 10.1016/j.matdes.2013.01.047. DOI
Ružiak I., Koštial P., Jančíková Z., Gajtanska M., Krišťák Ľ., Kopal I., Polakovič P. Artificial Neural Networks Prediction of Rubber Mechanical Properties in Aged and Nonaged State. In: Öchsner A., Altenbach H., editors. Improved Performance of Materials. Volume 72. Springer; Berlin, Germany: 2018. pp. 27–35.
Karaağaç B., Inal M., Deniz V. Artificial neural network approach for predicting optimum cure time of rubber compounds. Mater. Des. 2009;30:1685–1690. doi: 10.1016/j.matdes.2008.07.010. DOI
Yang X., Behroozi M., Olatunbosun O.A. A Neural Network Approach to Predicting Car Tyre Micro-Scale and Macro-Scale Behaviour. J. Intell. Learn. Syst. Appl. 2014;6:11–20. doi: 10.4236/jilsa.2014.61002. DOI
Trebar M., Susteric Z., Lotric U. Predicting mechanical properties of elastomers with neural networks. Polymer. 2007;48:5340–5347. doi: 10.1016/j.polymer.2007.07.030. DOI
Zhang Z., Klein P., Friedrich K. Dynamic mechanical properties of PTFE based short carbon fibre reinforced composites: Experiment and artificial neural network prediction. Compos. Sci. Technol. 2002;62:1001–1009. doi: 10.1016/S0266-3538(02)00036-2. DOI
Nematollahi M., Jalali-Arani A., Golzar K. Organoclay maleated natural rubber nanocomposite. Prediction of abrasion and mechanical properties by artificial neural network and adaptive neuro-fuzzy inference. Appl. Clay Sci. 2014;97–98:187–199. doi: 10.1016/j.clay.2014.05.027. DOI
Beale M.H., Hagan M.T., Demuth H.B. Neural Network Toolbox™ User’s Guide. The MathWorks, Inc.; Natick, MA, USA: 2017.
Bowden G.J., Maier H.R., Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resour. Res. 2002;38:2-1–2-11. doi: 10.1029/2001WR000266. DOI
Bennett Ch., Stewart R.A., Beal C.D. ANN-based residential water end-use demand forecasting model. Expert Syst. Appl. 2013;40:1014–1023. doi: 10.1016/j.eswa.2012.08.012. DOI
Wackerly D.D., Mendenhall W., Scheaffer L.R. Mathematical Statistics with Applications. 7th ed. Thomson Brooks/Cole; Belmont, CA, USA: 2008.
Zhang T., Yu B. Boosting with Early Stopping: Convergence and Consistency. Ann. Stat. 2005;33:1538–1579. doi: 10.1214/009053605000000255. DOI
Sifaoui A., Abdelkrim A., Benrejeb M. On the Use of Neural Network as a Universal Approximator. Int. J. Sci. Tech. Control Comput. Eng. 2008;2:386–399.
Croeze A., Pittman L., Reynolds W. Nonlinear Least-Squares Problems with the Gauss-Newton and Levenberg-Marquardt Methods. University of Mississippi; Oxford, UK: 2012.
Menczel D.J., Prime B.R. Thermal Analysis of Polymers. John Wiley; Hoboken, NJ, USA: 2009.
Simon L. An Introduction to Multivariable Mathematics. Morgan & Claypool; St. Louis, CA, USA: 2008.
Shi F., Wang X.C., Yu L., Li Y. MATLAB 30 Case Analysis of MATLAB Neural Network. Beijing University Press; Beijing, China: 2009.
Ward I.M., Sweeney J. An Introduction to the Mechanical Properties of Solid Polymers. 2nd ed. Wiley; Chichester, UK: 2004.
Paliwal M., Kumar U.A. Neural networks and statistical techniques: A review of applications. Expert Syst. Appl. 2009;36:2–17. doi: 10.1016/j.eswa.2007.10.005. DOI
Bessa M.A., Bostanabad R., Liu Z., Hu A., Apley D.W., Brinson C., Chen W., Liu W.K. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 2017;320:633–667. doi: 10.1016/j.cma.2017.03.037. DOI
Basem F.J., Mourada A.I., Alnaqbia A.H. Prediction of the Mechanical Properties of PE/PP Blends Using Artificial Neural Networks. Procedia Eng. 2011;10:2713–2718.
Zhang Y., Ge S., Tang B., Koga T., Rafailovich M., Sokolov J., Peiffer D.G., Li Z., Dias A.J., McElrath K.O., et al. Effect of carbon black and silica fillers in elastomer blends. Macromolecules. 2001;34:7056–7065. doi: 10.1021/ma010183p. DOI
Le B.A., Yvonnet J., He Q.C. Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Meth. Eng. 2015;104:1061–1084. doi: 10.1002/nme.4953. DOI