Limited sex differences in plastic responses suggest evolutionary conservatism of thermal reaction norms: A meta-analysis in insects
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36579171
PubMed Central
PMC9783480
DOI
10.1002/evl3.299
PII: EVL3299
Knihovny.cz E-zdroje
- Klíčová slova
- Body size, development rate, evolutionary constraint, growth rate, sexual bimaturism, sexual size dimorphism, thermal sensitivity, thermal trait,
- Publikační typ
- časopisecké články MeSH
Temperature has a profound effect on the growth and development of ectothermic animals. However, the extent to which ecologically driven selection pressures can adjust thermal plastic responses in growth schedules is not well understood. Comparing temperature-induced plastic responses between sexes provides a promising but underexploited approach to evaluating the evolvability of thermal reaction norms: males and females share largely the same genes and immature environments but typically experience different ecological selection pressures. We proceed from the idea that substantial sex differences in plastic responses could be interpreted as resulting from sex-specific life-history optimization, whereas similarity among the sexes should rather be seen as evidence of an essential role of physiological constraints. In this study, we performed a meta-analysis of sex-specific thermal responses in insect development times, using data on 161 species with comprehensive phylogenetic and ecological coverage. As a reference for judging the magnitude of sex specificity in thermal plasticity, we compared the magnitude of sex differences in plastic responses to temperature with those in response to diet. We show that sex-specific responses of development times to temperature variation are broadly similar. We also found no strong evidence for sex specificity in thermal responses to depend on the magnitude or direction of sex differences in development time. Sex differences in temperature-induced plastic responses were systematically less pronounced than sex differences in responses induced by variations in larval diet. Our results point to the existence of substantial constraints on the evolvability of thermal reaction norms in insects as the most likely explanation. If confirmed, the low evolvability of thermal response is an essential aspect to consider in predicting evolutionary responses to climate warming.
Zobrazit více v PubMed
Abdelrahman, I. 1974. Growth, development and innate capacity for increase in Aphytis chrysomphali Mercet and A. melinus DeBach, parasites of California red scale, Aonidiella aurantii (Mask.), in relation to temperature. Aust. J. Zool. 22:213–230.
Ahmadi, K. , Sengonca C., and Blaeser P. 2007. Effect of two different temperatures on the biology of predatory flower bug Orius similis Zheng (Heteroptera: Anthocoridae) with two different aphid species as prey. Turk. J. Entomol. 31:253–268.
Ahn, J. J. , Choi K. S., and Koh S. 2019. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54:63–74.
Alcalay, Y. , Puzhevsky D., Tsurim I., Scharf I., and Ovadia O. 2018. Interactive and sex‐specific life‐history responses of Culex pipiens mosquito larvae to multiple environmental factors. J. Zool. 306:268–278.
Allsopp, P. G. 1977. Biology and capacity for increase of Monistria discrepans (Walker) (Orthoptera: Pyrgomorphidae) in the laboratory. J. Aust. Ent. Soc. 16:207–213.
Allsopp, P. G. , Cowie B. A., and Franzmann B. A. 1983. Development of immature stages of the lucerne leafroller Merophyas divulsana (Walker) (Lepidoptera: Tortricidae) under constant temperatures and on several larval diets. J. Aust. Ent. Soc. 22:287–291.
Amano, K. 1983. Studies on the intraspecific competition in dung‐breeding flies I. Effects of larval density on yellow dung fly, Scatophaga stercoraria L. (Diptera: Scatophagidae). Jpn J. Sanit. Zool. 34:165–175.
Amin, O. M. , Jun L., Shangjun L., Yumei Z., and Liannzhi S. 1993. Development and longevity of Nosopsyllus laeviceps kuzenkovi (Siphonaptera) from Inner Mongolia under laboratory conditions. J. Parasitol. 79:193–197. PubMed
Amoudi, M. A. 1993. Effect of temperature on the developmental stages of Wohlfahrtia nuba (Diptera: Sarcophagidae). J. Egypt. Soc. Parasitol. 23:697–705. PubMed
Arakawa, R. , and Namura Y. 2002. Effects of temperature on development of three Trissolcus spp. (Hymenoptera: Scelionidae), egg parasitoids of the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Entomol. Sci. 5:215–218.
Armbruster, P. , and Conn J. E. 2006. Geographic variation of larval growth in North American Aedes albopictus (Diptera: Culicidae). Ann. Entomol. Soc. Am. 99:1234–1243.
Atwal, A. S. 1955. Influence of temperature, photoperiod, and food on the speed of development, longevity, fecundity, and other qualities of the diamond‐back moth Plutella maculipennis (Curtis) (Lepidoptera: Tineidae). Aust. J. Zool. 3:185–221.
Barbosa, P. , Waldvogel M., Martinat P., and Douglass L. W. 1983. Developmental and reproductive performance of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), on selected hosts common to mid‐Atlantic and southern forests. Environ. Entomol. 12:1858–1862.
Barbosa, P. , Martinat P., and Waldvogel M. 1986. Development, fecundity and survival of the herbivore Lymantria dispar and the number of plant species in its diet. Ecol. Entomol. 11:1–6.
Bari, M. N. , Jahan M., and Islam K. S. 2015. Effects of temperature on the life table parameters of Trichogramma zahiri (Hymenoptera: Trichogrammatidae), an egg parasitoid of Dicladispa armigera (Chrysomelidae: Coleoptera). Environ. Entomol. 44:368–378. PubMed
Barker, J. E. , Poppy G. M., and Payne C. C. 2006. Suitability of Arabidopsis thaliana as a model for host plant–Plutella xylostella–Cotesia plutellae interactions. Entomol. Exp. Appl. 122:17–26.
Barzegar, S. , Zamani A. A., Abbasi S., Shooshtari R. V., and Farsani N. S. 2016. Temperature‐dependent development modeling of the phorid fly Megaselia halterata (Wood) (Diptera: Phoridae). Neotrop. Entomol. 45:507–517. PubMed
Bauerfeind, S. S. , and Fischer K. 2005. Effects of food stress and density in different life stages on reproduction in a butterfly. Oikos. 111:514–524.
Bauerfeind, S. S. , and Fischer K. 2009. Effects of larval starvation and adult diet‐derived amino acids on reproduction in a fruit‐feeding butterfly. Entomol. Exp. Appl. 130:229–237.
Bavaresco, A. , Garcia M. S., Grützmacher A. D., and Ringenberg J. F. R. 2002. Biology and thermal requirements of Spodoptera cosmioides (Walk.) (Lepidoptera: Noctuidae). Neotrop. Entomol. 31:49–54.
Bazzocchi, G. G. , Lanzoni A., Burgio G., and Fiacconi M. R. 2003. Effects of temperature and host on the pre‐imaginal development of the parasitoid Diglyphus isaea (Hymenoptera: Eulophidae). Biological Control. 26:74–82.
Bell, H. A. , Marris G. C., Smethurst F., and Edwards J. P. 2003. The effect of host stage and temperature on selected developmental parameters of the solitary endoparasitoid Meteorus gyrator (Thun.) (Hym., Braconidae). J. Appl. Entomol. 127:332–339.
Berner, D. , Blanckenhorn W. U., and Körner C. 2005. Grasshoppers cope with low host plant quality by compensatory feeding and food selection: N limitation challenged. Oikos. 111:525–533.
Bezerra, C. E. S. , Tavares P. K. A., Nogueira C. H. F., Macedo L. P. M., and Araujo E. L. 2012. Biology and thermal requirements of Chrysoperla genanigra (Neuroptera: Chrysopidae) reared on Sitotroga cerealella (Lepidoptera: Gelechiidae) eggs. Biol. Control. 60:113–118.
Blanckenhorn, W. U. , and Henseler C. 2005. Temperature‐dependent ovariole and testis maturation in the yellow dung fly. Entomol. Exp. Appl. 116:159–165.
Blanckenhorn, W. U. 1997. Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea . Oecologia. 109:342–352. PubMed
Blanckenhorn, W. U. 1997. Effects of temperature on growth, development and diapause in the yellow dung fly ‐ against all the rules? Oecologia. 111:318–324. PubMed
Blanckenhorn, W. U. , and Heyland A. 2004. The quantitative genetics of two life history trade‐offs in the yellow dung fly in abundant and limited food environments. Evol. Ecol. 18:385–402.
Bommireddy, P. L. , Parajulee M. N., and Porter D. O. 2004. Influence of constant temperatures on life history of immature Lygus elisus (Hemiptera: Miridae). Environ. Entomol. 33:1549–1553.
Bonte, J. , Vangansbeke D., Maes S., Bonte M., Conlong D., and De Clercq P. 2012. Moisture source and diet affect development and reproduction of Orius thripoborus and Orius naivashae, two predatory anthocorids from southern Africa. J. Insect Sci. 12:1. PubMed PMC
Bonte, J. , De Ro M., Conlong D., and De Clercq P. 2012. Thermal biology of the predatory bugs Orius thripoborus and O. naivashae (Hemiptera: Anthocoridae). Environ. Entomol. 41:989–996.
Brakefield, P. M. , and Mazzotta V. 1995. Matching field and laboratory environments: effects of neglecting daily temperature variation on insect reaction norms. J. Evol. Biol. 8:559–573.
Buei, K. , Park S. H., and Yamugi H. 1978. Bionomics of three species of fleshflies, Boettcherisca peregrina, Parasarcophaga similis and P. crassipalpis, with reference to the effects of temperature on the development and fecundity. Jpn. J. Sanit. Zool. 29:125–132.
Burke, S. , Pullin A. S., Wilson R. J., and Thomas C. D. 2005. Selection for discontinuous life‐history traits along a continuous thermal gradient in the butterfly Aricia agestis. Ecol. Entomol. 30:613–619.
Cave, R. D. , Sciacchetano C., and Diaz R. 2009. Temperature‐dependent development of the cycad aulacaspis scale, Aulacaspis yasumatsui (Hemiptera: Diaspididae). Fla. Entomol. 92:578–581.
Charles, J. G. , Kean J. M., and Chhagan A. 2006. Developmental parameters and voltinism of the painted apple moth, Teia anartoides Walker (Lepidoptera: Lymantriidae) in New Zealand. N. Z. Entomol. 29:27–36.
Chen, C. , Xia Q. ‐ W., Xiao H. ‐ J., Xiao L., and Xue F. ‐ S. 2014. A comparison of the life‐history traits between diapause and direct development individuals in the cotton bollworm, Helicoverpa armigera . J. Insect Sci. 14:19. PubMed PMC
Chong, J. ‐ H. , Oetting R. D., and van Iersel M. W. 2003. Temperature effects on the development, survival, and reproduction of the Madeira mealybug, Phenacoccus madeirensis Green (Hemiptera: Pseudococcidae), on Chrysanthemum. Ann. Entomol. Soc. Am. 96:539–543.
Chong, J. ‐ H. , Roda A. L., and Mannion C. M. 2008. Life history of the mealybug, Maconellicoccus hirsutus (Hemiptera: Pseudococcidae), at constant temperatures. Environ. Entomol. 37:323–332. PubMed
Combs, R. L. , and Valerio J. R. 1980. Biology of the fall armyworm on four varieties of bermudagrass when held at constant temperatures. Environ. Entomol. 9:393–396.
Silva, C. A. D. 2004. Efeitos da temperatura no desenvolvimento, fecundidade e longevidade de Gargaphia torresi Lima (Hemiptera, Tingidae). Rev. Bras. Entomol. 48:547–552.
De Block, M. , and Stoks R. 2003. Adaptive sex‐specific life history plasticity to temperature and photoperiod in a damselfly. J. Evol. Biol. 16:986–995. PubMed
Del Pino, M. , Cabello T., and Hernandez‐Suarez E. 2020. Age‐stage, two‐sex life table of Chrysodeixis chalcites (Lepidoptera: Noctuidae) at constant temperatures on semi‐synthetic diet. Environ. Entomol. 49:777–788. PubMed
Diamond, S. E. , and Kingsolver J. G. 2010. Environmental dependence of thermal reaction norms: host plant quality can reverse the temperature‐size rule. Am. Nat. 175:1–10. PubMed
Doganlar, O. 2008. Temperature‐dependent development and degree‐day model of European leaf roller, Archips rosanus . J. Plant Prot. Res. 48:63–72.
Farjana, T. , Tuno N., and Higa Y. 2012. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus . Med. Vet. Entomol. 26:210–217. PubMed
Farsani, N. S. , Zamani A. A., Abbasi S., and Kheradmand K. 2013. Effect of temperature and button mushroom varieties on life history of Lycoriella auripila (Diptera: Sciaridae). J. Econ. Entomol. 106:115–123. PubMed
Ferreira de Almeida, M. A. , Pires do Prado A., and Geden C. J. 2002. Influence of temperature on development time and longevity of Tachinaephagus zealandicus (Hymenoptera: Encyrtidae), and effects of nutrition and emergence order on longevity. Environ. Entomol. 31:375–380.
Fischer, K. , and Fiedler K. 2000. Sex‐related differences in reaction norms in the butterfly Lycaena tityrus (Lepidoptera: Lycaenidae). Oikos. 90:372–380.
Fischer, K. , and Fiedler K. 2000. Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia. 124:235–241. PubMed
Fischer, K. , and Fiedler K. 2001. Dimorphic growth patterns and sex‐specific reaction norms in the butterfly Lycaena hippothoe sumadiensis . J. Evol. Biol. 14:210–218.
Fischer, K. , and Fiedler K. 2002. Reaction norms for age and size at maturity in response to temperature: a test of the compound interest hypothesis. Evol. Ecol. 16:333–349.
Fischer, K. , Brakefield P. M., and Zwaan B. J. 2003. Plasticity in butterfly egg size: why larger offspring at lower temperatures? Ecology. 84:3138–3147.
Folgarait, P. J. , Chirino M. G., Wilson Patrock R. J., and Gilbert L. E. 2005. Development of Pseudacteon obtusus (Diptera: Phoridae) on Solenopsis invicta and Solenopsis richteri fire ants (Hymenoptera: Formicidae). Environ. Entomol. 34:308–316. PubMed
Forsberg, J. , and Wiklund C. 1988. Protandry in the green‐veined white butterfly, Pieris napi L. (Lepidoptera; Pieridae). Funct. Ecol. 2:81–88.
Francis, A. W. , Kairo M. T. K., and Roda A. L. 2012. Developmental and reproductive biology of Planococcus minor (Hemiptera: Pseudococcidae) under constant temperatures. Fla. Entomol. 95:297–303.
Frouz, J. , Ali A., and Lobinske R. J. 2002. Influence of temperature on developmental rate, wing length, and larval head capsule size of pestiferous midge Chironomus crassicaudatus (Diptera: Chironomidae). J. Econ. Entomol. 95:699–705. PubMed
Fukuda, T. , Wakamura S., Arakaki N., and Yamagishi K. 2007. Parasitism, development and adult longevity of the egg parasitoid Telenomus nawai (Hymenoptera: Scelionidae) on the eggs of Spodoptera litura (Lepidoptera: Noctuidae). Bull. Entomol. Res, 97:185–190. PubMed
Gautam, S. G. , Opit G. P., and Giles K. L. 2010. Population growth and development of the psocid Liposcelis rufa (Psocoptera: Liposcelididae) at constant temperatures and relative humidities. J. Econ. Entomol. 103:1920–1928. PubMed
Gautam, S. G. , Opit G. P., and Shakya K. 2016. Population growth and development of the psocid Liposcelis fusciceps (Psocoptera: Liposcelididae) at constant temperatures and relative humidities. Environ. Entomol. 45:237–244. PubMed
Geden, C. J. , Ferreira de Almeida M. A., and Pires do Prado A. 2003. Effects of Nosema disease on fitness of the parasitoid Tachinaephagus zealandicus (Hymenoptera: Encyrtidae). Environ. Entomol. 32:1139–1145.
Gillespie, D. R. , and McGregor R. R. 2000. The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecol. Entomol. 25:380–386.
Gillespie, D. R. , Sanchez J. A. S., and McGregor R. R. 2004. Cumulative temperature requirements and development thresholds in two populations of Dicyphus hesperus (Hemiptera: Miridae). Can. Entomol. 136:675–683.
Golizadeh, A. , and Zalucki M. P. 2012. Estimating temperature‐dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). Insect Science. 19:609–620.
Gomi, T. 2006. Sexual difference in the effect of temperature on the larval development in Hyphantria cunea (Drury) (Lepidoptera: Arctiidae). Appl. Entomol. Zool. 41:303–307.
Gotoh, T. , Koyama M., Hagino Y., and Doke K. 2011. Effect of leaf toughness and temperature on development in the lilac pyralid, Palpita nigropunctalis (Bremer) (Lepidoptera: Crambidae). J. Asia Pac. Entomol. 14:173–178.
Graeve, I. 2008. Degree days and phenological synchrony in Western tussock moth and coast live oak. Master's thesis, San Jose State University, San Jose, CA.
Greenberg, S. M. , Setamou M., Sappington T. W., Liu T. ‐ X., Coleman R. J., and Armostrong J. S. 2005. Temperature‐dependent development and reproduction of the boll weevil (Coleoptera: Curculionidae). Insect Science. 12:449–459.
Guzman, L. I. , and Frake A. M. 2007. Temperature affects Aethina tumida (Coleoptera: Nitidulidae) development. J. Apic. Res. 46:88–93.
Hamilton, J. G. , and Zalucki M. P. 1991. Effect of temperature on development rate, survival and fecundity of cotton tipworm, Croidosema plebejana Zeller (Lepidoptera: Tortricidae). Aust. J. Zool. 39:191–200.
Hamilton, J. G. , and Zalucki M. P. 1993. Interactions between a specialist herbivore, Crocidosema plebejana, and its host plants Malva parviflora and cotton, Gossypium hirsutum: larval performance. Entomol. Exp. Appl. 66:199–205.
Harries, F. H. , and Douglass J. R. 1948. Bionomic studies on the beet leafhopper. Ecol. Monogr. 18:45–79.
He, X. , Wang Q., and Carpenter A. 2003. Thermal requirements for the development and reproduction of Nysius huttoni White (Heteroptera: Lygaeidae). J. Econ. Entomol. 96:1119–1125. PubMed
Hill, J. K. , and Gatehouse A. G. 1992. Effects of temperature and photoperiod on development and pre‐reproductive period of the silver Y moth Autographa gamma (Lepidoptera: Noctuidae). Bull. Entomol. Res. 82:335–341.
Hoang, L. K. , and Takasu K. 2005. Helicoverpa armigera as an alternative host of the larval parasitoid Microplitis croceipes (Hymenoptera: Braconidae). Appl. Entomol. Zool. 40:679–686.
Hoddle, M. S. 2002. Developmental and reproductive biology of Scirtothrips perseae (Thysanoptera: Thripidae): a new avocado pest in California. Bull. Entomol. Res. 92:279–285. PubMed
Horgan, F. G. , Quiring D. T., Lagnaoui A., and Pelletier Y. 2012. Life histories and fitness of two tuber moth species feeding on native Andean potatoes. Neotrop. Entomol. 41:333–340. PubMed
Horgan, F. G. , Quiring D. T., Lagnaoui A., Salas A. R., and Pelletier Y. 2007. Periderm‐ and cortex‐based resistance to tuber‐feeding Phthorimaea operculella in two wild potato species. Entomol. Exp. Appl. 125:249–258.
Hou, Y. , and Weng Z. 2010. Temperature‐dependent development and life table parameters of Octodonta nipae (Coleoptera: Chrysomelidae). Environ. Entomol. 39:1676–1684. PubMed
Huang, X. ‐ L. , Xiao L., he H. ‐ M., and Xue F. ‐ S. 2018. Effect of rearing conditions on the correlation between larval development time and pupal weight of the rice stem borer, Chilo suppressalis . Ecol. E. 8:12694–12701. PubMed PMC
Ichiki, R. , and Nakamura S. 2007. Oviposition and immature development of the parasitoid fly Compsilura concinnata (Meigen) (Diptera: Tachinidae). Jpn. Agric. Res. Q. 41:227–232.
Ichiki, R. , Takasu K., and Shima H. 2003. Effects of temperature on immature development of the parasitic fly Bessa parallela (Meigen) (Diptera: Tachinidae). App. Entomol. Zool. 38:435–439.
Iltis, C. , Louapre P., Pecharova K., Thiery D., Zito S., Bois B., et al. 2019. Are life‐history traits equally affected by global warming? A case study combining a multi‐trait approach with fine‐grain climate modeling. J. Insect Physiol. 117:103916. PubMed
Ishijima, C. , Sato Y., and Ohtaishi M. 2008. Effect of temperature and host on the development, sex ratio, emergence rate and body size of Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae), an egg parasitoid of the tea tortrix. Appl. Entomol. Zool. 52:193–200.
Jang, T. , Rho M. S., Koh S. ‐ H., and Lee K. P. 2015. Host–plant quality alters herbivore responses to temperature: a case study using the generalist Hyphantria cunea . Entomol. Exp. Appl. 154:120–130.
Johnson, T. , and Giliomee J. H. 2011. Development of the oleander mealybug, Paracoccus burnerae (Brain) (Hemiptera: Pseudococcidae), on citrus at five temperatures. Afr. Entomol. 19:641–649.
Jones, J. M. , and Stephen F. M. 1994. Effect of temperature on development of hymenopterous parasitoids of Dendroctonus frontalis (Coleoptera: Scolytidae). Environ. Entomol. 23:457–463.
Joseph, G. , and Kelsey R. G. 1994. Acceptability and suitability of douglas‐fir as a secondary host for gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol. 23:396–405.
Kalaitzaki, A. P. , Lykouressis D. P., Perdikis D. C., and Alexandrakis V. Z. 2007. Effect of temperature on development and survival of the parasitoid Pnigalio pectinicornis (Hymenoptera: Eulophidae) reared on Phyllocnistis citrella (Lepidoptera: Gracillariidae). Environ. Entomol. 36:497–505. PubMed
Karamaouna, F. , and Copland M. J. W. 2000. Host suitability, quality and host size preference of Leptomastix epona and Pseudaphycus flavidulus, two endoparasitoids of the mealybug Pseudococcus viburni, and host size effect on parasitoid sex ratio and clutch size. Entomol. Exp. Appl. 96:149–158.
Karamaouna, F. , and Copland M. J. 2009. Fitness and life history parameters of Leptomastix epona and Pseudaphycus flavidulus, two parasitoids of the obscure mealybug Pseudococcus viburni . BioControl. 54:65–76.
Karolewski, P. , Grzebyta J., Oleksyn J., and Gietrych M. J. 2007. Temperature affects performance of Lymantria dispar larvae feeding on leaves of Quercus robur . Dendrobiology. 58:43–49.
Kemmochi, T. , Fujimori S., and Saito T. 2016. The leafminer Liriomyza trifolii (Diptera: Agromyzidae) encapsulates its koinobiont parasitoid Halticoptera circulus (Hymenoptera: Pteromalidae): implications for biological control. Bull. Entomol. Res. 106:322–327. PubMed
Khan, M. , Gregg P., and Mensah R. 2009. Effect of temperature on the biology of Creontiades dilutus (Stål) (Heteroptera: Miridae). Aust. J. Entomol. 48:210–216.
Kingsolver, J. G. , Ragland G. J., and Diamond S. E. 2009. Evolution in a constant environment: thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta . Evolution; Internation Journal of Organic Evolution. 63:537–541. PubMed
Kitajima, H. , Sakata H., Kunitomo S., and Kawashima Y. 2016. Effects of temperature on the development of Diomea cremata (Lepidoptera, Noctuidae). Jpn. J. Appl. Entomol. Zool. 60:205–209.
Kivan, M. , and Kilic N. 2006. Age‐specific fecundity and life table of Trissolcus semistriatus, an egg parasitoid of the sunn pest Eurygaster integriceps . Entomol. Sci. 9:39–46.
Kivelä, S. M. , Välimäki P., and Mäenpää M. I. 2012. Genetic and phenotypic variation in juvenile development in relation to temperature and developmental pathway in a geometrid moth. J. Evol. Biol. 25:881–891. PubMed
Krasnov, B. R. , Khoklova I. S., Fielden L. J., and Burdelova N. V. 2001. Development rates of two Xenopsylla flea species in relation to air temperature and humidity. Med. Veter. Entomol. 15:249–258. PubMed
Kruse, J. J. , and Raffa K. F. 1997. Effects of selected midwestern larval host plants on performance by two strains of the gypsy moth (Lepidoptera: Lymantriidae) parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Environ. Entomol. 26:1155–1166.
Lance, D. R. , Elkinton J. S., and Schwalbe C. P. 1986. Feeding rhythms of gypsy moth larvae: effect of food quality during outbreaks. Ecology. 67:1650–1654.
Larios, G. L. B. , Ohno K., and Fukuhara F. 2007. Effects of photoperiod and temperature on preimaginal development and summer diapause of Chrysocharis pubicornis (Zetterstedt) (Hymenoptera: Eulophidae), a pupal parasitoid of leafminers (Diptera: Agromyzidae). Appl. Entomol. Zool. 42:189–197.
Lauziere, I. , Setamou M., Legaspi J., and Jones W. 2002. Effect of temperature on the life cycle of Lydella jalisco (Diptera: Tachinidae), a Parasitoid of Eoreuma loftini (Lepidoptera: Pyralidae). Environ. Entomol. 31:432–437.
Lazarević, J. , Perić‐Mataruga V., Stojković B., and Tucić N. 2002. Adaptation of the gypsy moth to an unsuitable host plant. Entomol. Exp. Appl. 102:75–86.
Legaspi, J. C. , and Legaspi B. C. 2005. Life table analysis for Podisus maculiventris immatures and female adults under four constant temperatures. Environ. Entomol. 34:990–998.
Legaspi, J. C. , Legaspi B. C., Simmons A. M., and Soumare M. 2008. Life table analysis for immatures and female adults of the predatory beetle, Delphastus catalinae, feeding on whiteflies under three constant temperatures. J. Insect Sci. 8 7. PubMed PMC
Lehtovaara, V. J. , Roininen H., and Valtonen A. 2018. Optimal temperature for rearing the edible Ruspolia differens (Orthoptera: Tettigoniidae). J. Econ. Entomol. 111:2652–2659. PubMed
Lindroth, R. L. , Klein K. A., Hemming J. D. C., and Feuker A. M. 1997. Variation in temperature and dietary nitrogen affect performance of the gypsy moth (Lymantria dispar L.). Physiol. Entomol. 22:55–64.
Liu, Y. H. , and Tsai J. H. 2002. Effect of temperature on development, survivorship, and fecundity of Lysiphlebia mirzai (Hymenoptera: Aphidiidae), a parasitoid of Toxoptera citricida (Homoptera: Aphididae). Environ. Entomol. 31:418–424.
Liu, J. ‐ F. , Liu M., Yang M. ‐ F., Kontodimas D. C., Yu X. ‐ F., and Lian Q. ‐ X. 2014. Temperature‐dependent development of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae) on Platycarya strobilacea . J. Asia Pac. Entomol. 17:803–810.
Lopatina, E. B. , and Gusev I. A. 2019. A novel form of phenotypic plasticity of the thermal reaction norms for development in the bug Graphosoma lineatum (L.) (Heteroptera, Pentatomidae). Entomol. Rev. 99:417–436.
Luo, S. , Zhang F., and Wu K. 2015. Effect of temperature on the reproductive biology of Peristenus spretus (Hymenoptera: Braconidae), a biological control agent of the plant bug Apolygus lucorum (Hemiptera: Miridae). Biocontrol Sci. Technol. 25:1410–1425.
Lysyk, T. J. 2001. Relationships between temperature and life history parameters of Muscidifurax raptorellus (Hymenoptera: Pteromalidae). Environ. Entomol. 30:982–992.
Lyytinen, A. , Lindström L., and Mappes J. 2008. Genetic variation in growth and development time under two selection regimes in Leptinotarsa decemlineata . Entomol. Exp. Appl. 127:157–167.
Mafi, S. , and Ohbayashi N. 2010. Biology of Chrysocharis pentheus, an endoparasitoid wasp of the citrus leafminer Phyllocnistis citrella Stainton. J. Agric. Sci. Technol. 12:145–154.
Mahdian, K. , Kerckhove J., Tirry L., and De Clercq P. 2006. Effects of diet on development and reproduction of the predatory pentatomids Picromerus bidens and Podisus maculiventris . BioControl. 51:725–739.
Mahmood, A. R. , Liu S. S., Shi Z. H., Song X. H., and Zalucki M. P. 2003. Lack of intraspecific biological variation between two geographical populations of Oomyzus sokolowskii (Hymenoptera: Eulophidae), a gregarious larval–pupal parasitioid of Plutella xylostella (Lepidoptera: Plutellidae). Bull. Entomol. Res. 93:169–177. PubMed
Malekmohammadi, A. , Shishehbor P., and Kocheili F. 2012. Influence of constant temperatures on development, reproduction and life table parameters of Encarsia inaron (Hymenoptera: Aphelinidae) parasitizing Neomaskellia andropogonis (Hemiptera: Aleyrodidae). Crop Protection. 34:1–5.
Mao, H. , and Kunimi Y. 1990. Effects of temperature and photoperiod on development of the oriental tea tortrix Homona magnanima Diakonoff (Lepidoptera: Tortricidae). Jpn. J. Appl. Entomol. Zool. 34:127–130.
Mawela, K. V. , Kfir R., and Krüger K. 2013. Effect of temperature and host species on parasitism, development time and sex ratio of the egg parasitoid Trichogrammatoidea lutea Girault (Hymenoptera: Trichogrammatidae). Biological Control. 64:211–216.
McDonald, R. S. , and Borden J. H. 1995. Protandry in Delia antiqua (Diptera: Anthomyiidae). Ann. Entomol. Soc. Am. 88:756–763.
Milonas, P. G. , and Savopoulou‐Soultani M. 2000. Development, survivorship, and reproduction of Adoxophyes orana (Lepidoptera: Tortricidae) at constant temperaturesAnn. Entomol. Soc. Am. 93:96–102.
Milosavljevic, I. , McCalla K. A., Ratkowsky D. A., and Hoddle M. S. 2019. Effects of constant and fluctuating temperatures on development rates and longevity of Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). J. Econ. Entomol. 112:1062–1072. PubMed
Mirhosseini, M. A. , Fathipour Y., Soufbaf M., and Reddy G. V. P. 2018. Thermal requirements and development response to constant temperatures by Nesidiocoris tenuis (Hemiptera: Miridae), and implications for biological control. Environ. Entomol. 47:467–476. PubMed
Mo, J. , Glover M., Munro S., and Beattie A. C. 2006. Development of Epiphyas postvittana (Lepidoptera: Tortricidae) on leaves and fruit of orange trees. J. Econ. Entomol. 99:1321–1326. PubMed
Morales‐Ramos, J. A. , and Rojas M. G. 2017. Temperature‐dependent biological and demographic parameters of Coleomegilla maculata (Coleoptera: Coccinellidae). J. Insect Sci. 17:55. PubMed PMC
Myers, H. M. , Tomberlin J. K., Lambert B. D., and Kattes D. 2008. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 37:11–15. PubMed
Nabeta, F. H. , Nakai M., and Kunimi Y. 2005. Effects of temperature and photoperiod on the development and reproduction of Adoxophyes honmai (Lepidoptera: Tortricidae). Appl. Entomol. Zool. 40:231–238.
Nieuwenhove, G. A. , Frias E. A., and Virla E. G. 2016. Effects of temperature on the development, performance and fitness of the corn leafhopper Dalbulus maidis (DeLong) (Hemiptera: Cicadellidae): implications on its distribution under climate change. Agric. For. Entomol. 18:1–10.
Noor‐ul‐Ane, M. , and Jung C. 2020. Temperature‐dependent development and survival of small hive beetle, Aethina tumida (Coleoptera: Nitidulidae). J. Apic. Res. 59:807–816.
Ohta, I. 2001. Effect of temperature on development of Orius strigicollis (Heteroptera: Anthocoridae) fed on Frankliniella occidentalis (Thysanoptera: Thripidae). Appl. Entomol. Zool. 36:483–488.
Okada, K. , and Miyatake T. 2007. Librodor japonicus (Coleoptera: Nitidulidae) life history, effect of temperature on development, and seasonal abundance. Appl. Entomol. Zool. 42:411–417.
Ottenheim, M. M. , Volmer A. D., and Holloway G. J. 1996. The genetics of phenotypic plasticity in adult abdominal colour pattern of Eristalis arbustorum (Diptera: Syrphidae). Heredity. 77:493–499.
Pakyari, H. , Fathipour Y., and Enkegaard A. 2011. Estimating development and temperature thresholds of Scolothrips longicornis (Thysanoptera: Thripidae) on eggs of two‐spotted spider mite using linear and nonlinear models. J. Pest Sci. 84:153–163.
Pandey, S. , and Singh R. 1999. Host size induced variation in progeny sex ratio of an aphid parasitoid Lysiphlebia mirzai . Entomol. Exp. Appl. 90:61–67.
Panizzi, A. R. 1992. Performance of Piezodorus guildinii on four species of Indigofera legumes. Entomol. Exp. Appl. 63:221–228.
Pappas, M. L. , Karagiorgou E., Papaioannou G., Koveos D. S., and Broufas G. D. 2013. Developmental temperature responses of Chrysoperla agilis (Neuroptera: Chrysopidae), a member of the European carnea cryptic species group. Biological Control. 64:291–298.
Prasad, Y. G. , Prabhakar M., Sreedevi G., Ramachandra Rao G., and Venkateswarlu B. 2012. Effect of temperature on development, survival and reproduction of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Crop Protection. 39:81–88.
Reed, D. A. , Ganjisaffar F., Palumbo J. C., and Perring T. M. 2017. Effects of temperatures on immature development and survival of the invasive stink bug Bagrada hilaris (Hemiptera: Pentatomidae). J. Econ. Entomol. 110:2497–2503. PubMed
Rizvi, S. Z. M. , Raman A., Wheatley W. M., and Cook G. 2016. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae). Insect Science. 23:313–325. PubMed
Rohde, K. , Dreier E., and Hochkirch A. 2015. Sex‐specific phenotypic plasticity in response to the trade‐off between developmental time and body size supports the dimorphic niche hypothesis. Biol. J. Linn. Soc. 115:48–57.
Sakashita, T. , Nakasuji F., and Fujisaki K. 1997. Effects of temperature and photoperiod on nymphal development of the stink bug, Pyrrhocoris sibiricus Kuschakewitsch (Heteroptera: Pyrrhocoridae). Appl. Entomol. Zool. 32:153–157.
Sarfraz, M. , Dosdall L. M., and Keddie B. A. 2007. Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 100:215–224. PubMed
Sarfraz, M. , Dosdall L. M., and Keddie B. A. 2010. Performance of the specialist herbivore Plutella xylostella (Lepidoptera: Plutellidae) on Brassicaceae and non‐Brassicaceae species. Can. Entomol. 142:24–35.
Schoeller, E. N. , and Redak R. A. 2018. Temperature‐dependent development and survival of giant whitefly Aleurodicus dugesii (Hemiptera: Aleyrodidae) under constant temperatures. Environ. Entomol. 47:1586–1595. PubMed
Shimoji, Y. 2011. Effect of temperature on the development of the West Indian sweet potato weevil, Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) on an artificial diet. Appl. Entomol. Zool. 46:1–54.
Singh, P. , van Bergen E., Brattström O., Osbaldeston D., Brakefield P. M., and Oostra V. 2020. Complex multi‑trait responses to multivariate environmental cues in a seasonal butterfly. Evol. Ecol. 34:713–734.
Sithole, R. , Löhr B., and Tagwireyi P. 2017. The influence of temperature on life history traits of Diadegma mollipla (Hymenoptera: Ichneumonidae), an African parasitoid of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BioControl. 62:603–612.
Skovgard, H. , and Nachman G. 2016. Temperature‐ and age‐dependent survival, development, and oviposition rates of the pupal parasitoid Spalangia cameroni (Hymenoptera: Pteromalidae). Environ. Entomol. 45:1063–1075. PubMed
Smith, A. M. 1984. Larval instar determination and temperature‐development studies of immature stages of the common armyworm, Mythimna convecta (Walker) (Lepidoptera: Noctuidae). J. Aust. Entomol. Soc. 23:91–97.
Steigenga, M. J. , and Fischer K. 2009. Fitness consequences of variation in developmental temperature in a butterfly. Journal of Thermal Biology. 34:244–249.
Stenseng, L. , Skovgard H., and Holter P. 2003. Life table studies of the pupal parasitoid Urolepis rufipes (Hymenoptera: Pteromalidae) on the house fly Musca domestica (Diptera: Muscidae) in Denmark. Environ. Entomol. 32:717–725.
Stevens, M. M. 1998. Development and survival of Chironomus tepperi Skuse (Diptera: Chironomidae) at a range of constant temperatures. Aquat. Insects. 20:181–188.
Stoyenoff, J. L. , Witter J. A., Montgomery M. E., and Chilcote C. A. 1994. Effects of host switching on gypsy moth (Lymantria dispar (L.)) under field conditions. Oecologia. 97:143–157. PubMed
Strom, B. L. , and Hain F. P. 1996. Host choice of late instar gypsy moths (Lepidoptera: Lymantriidae) between loblolly pine and sweetgum. Environ. Entomol. 25:603–610.
Syme, P. D. 1972. The influence of constant temperatures on the non‐diapause development of Hyssopus thymus (Hymenoptera: Eulophidae). Can. Entomol. 104:113–120.
Tang, J. ‐ J. , He H. ‐ M., Geng T., Fu S., and Xue F. ‐ S. 2016. Life history responses of the cabbage beetle Colaphellus bowringi to temperature change. Entomol. Res. 46:337–344.
Terada, K. , Matsumura K., and Miyatake T. 2019. Effects of temperature during successive generations on life‑history traits in a seed beetle Callosobruchus chinensis (Chrysomelidae: Coleoptera). Appl. Entomol. Zool. 54:459–464.
Teulon, D. A. J. , and Penman D. R. 1991. Effects of temperature and diet on oviposition rate and development time of the New Zealand flower thrips, Thrips obscuratus . Entomol. Exp. Appl. 60:143–155.
Thiery, D. , and Moreau J. 2005. Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia. 143:548–557. PubMed
Thompson, L. M. , Faske T. M., Banahene N., Grim D., Agosta S. J., Parry D., et al. 2017. Variation in growth and developmental responses to supraoptimal temperatures near latitudinal range limits of gypsy moth Lymantria dispar (L.), an expanding invasive species. Physiol. Entomol. 42:181–190.
Tian, S. , Gu T., Chen C., Zhao X., Liu P., and Hao D. 2020. The effects of temperature and host size on the development of Brachymeria lasus parasitising Hyphantria cunea . J. For. Res. 32:401–407.
Tochen, S. , Dalton D. T., Wiman N., Hamm C., Shearer P. W., and Walton V. M. 2014. Temperature‐related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43:501–510. PubMed
Togashi, K. , and Kodani J. 1990. Effect of temperature on the development of Ivela auripes (Butler) (Lepidoptera: Lymantriidae). J. Jpn. For. Soc. 72:316–320.
Tokuda, M. , and Matsumura M. 2005. Effect of temperature on the development and reproduction of the maize orange leafhopper Cicadulina bipunctata (Melichar) (Homoptera: Cicadellidae). Appl. Entomol. Zool. 40:213–220.
Tomberlin, J. K. , Adler P. H., and Myers H. M. 2009. Development of the black soldier fly (Diptera: Stratiomyidae) in relation to temperature. Environ. Entomol. 38:930–934. PubMed
Toyoshima, S. , Arai T., and Yaginuma K. 2010. Effect of constant temperatures on the development of peach fruit moth, Carposina sasakii (Lepidoptera: Carposinidae). Bull. Natl. Inst. Fruit Tree Sci. 10:1–8.
Traore, L. , Pilon J. ‐ G., Fournier F., and Boivin G. 2006. Adaptation of the developmental process of Anaphes victus (Hymenoptera: Mymaridae) to local climatic conditions across North America. Ann. Entomol. Soc. Am. 99:1121–1126.
Tsukada, M. , Asai M., and Higuchi H. 2005. Developmental period and adult size of Haptoncus ocularis (Coleoptera: Nitidulidae) at four temperature conditions. Appl. Entomol. Zool. 40:489–495.
Tsukada, M. , Tanaka D., and Higuchi H. 2008. Thermal requirement for development of Carpophilus marginellus (Coleoptera: Nitidulidae), a potential pollinator of cherimoya and atemoya trees (Magnoliales: Annonaceae). Appl. Entomol. Zool. 43:281–285.
Ugine, T. A. , Sanderson J. P., and Wraight S. P. 2007. Developmental times and life tables for shore flies, Scatella tenuicosta (Diptera: Ephydridae), at three temperatures. Environ. Entomol. 36:989–997. PubMed
Ullah, M. S. , and Lim U. T. 2015. Life history characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in constant and fluctuating temperatures. J. Econ. Entomol. 108:1000–1009. PubMed
Urbaneja, A. , Hinarejos R., Llacer E., Garrido A., and Jacas J. ‐ A. 2002. Effect of temperature on life history of Cirrospilus vittatus (Hymenoptera: Eulophidae), an ectoparasitoid of Phyllocnistis citrella (Lepidoptera: Gracillariidae). J. Econ. Entomol. 95:250–255. PubMed
Uyi, O. O. , Zachariades C., Hill M. P., and McConnachie A. J. 2016. Temperature‐dependent performance and potential distribution of Pareuchaetes insulata, a biological control agent of Chromolaena odorata in South Africa. BioControl. 61:815–825.
Varikou, K. , Tsitsipis I., Alexandrakis V., and Hoddle M. 2009. Effect of temperature on the development and longevity of Pezothrips kellyanus (Thysanoptera: Thripidae). Ann. Entomol. Soc. Am. 102:835–841.
Walker, P. W. 2011. Biology and development of Chaetophthalmus dorsalis (Malloch) (Diptera: Tachinidae) parasitising Helicoverpa armigera (Hübner) and H. punctigera Wallengren (Lepidoptera: Noctuidae) larvae in the laboratory. Aust. J. Entomol. 50:309–318.
Wanderley, M. J. A. , and Ramalho F. S. 1999. Effects of the temperature on the development of Supputius cincticeps (Stäl) (Heteroptera: Pentatomidae) fed on Musca domestica L. larvae. An. Soc. Ent. Bras. 28:121–129.
Wang, X. G. , and Messing R. H. 2004. Fitness consequences of body‐size‐dependent host species selection in a generalist ectoparasitoid. Biological Control. 31:227–236.
Wang, L. , Shi P., Chen C., and Xue F. 2013. Effect of temperature on the development of Laodelphax striatellus (Homoptera: Delphacidae). J. Econ. Entomol. 106:107–114. PubMed
Wang, X. ‐ G. , Serrato M. A., Son Y., Walton V. M., Hogg B. N., and Daane K. M. 2018. Thermal performance of two indigenous pupal parasitoids attacking the invasive Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 47:764–772. PubMed
Weathersbee, A. A. , McKenzie C. L., and Tang Y. Q. 2004. Host plant and temperature effects on Lysiphlebus testaceipes (Hymenoptera: Aphidiidae), a native parasitoid of the exotic brown citrus aphid (Homoptera: Aphididae). Ann. Entomol. Soc. Am. 97:476–480. PubMed
Weaver, D. K. , and Throne J. E. 1994. Life history data for Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) in farm‐stored corn and the importance of suboptimal environmental conditions in insect population modelling for bulk commodities. Pp. 599–604 in Proceedings of the 6th International Working Conference on Stored‐Product Protection.
Willott, S. J. , and Hassall M. 1998. Life‐history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change. Funct. Ecol. 12:232–241.
Woodson, W. D. , and Jackson J. J. 1996. Developmental rate as a function of temperature in northern corn rootworm (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 89:226–230.
Xia, Q. ‐ W. , Chen C., Tang J. ‐ J., He H. ‐ M., and Xue F. ‐ S. 2019. A reverse temperature‐size rule associated with a negative relationship between larval development time and pupal weight in a tropical population of Ostrinia furnacalis . Physiol. Entomol. 44:209–214.
Xiao, L. , He H. ‐ M., Huang L. ‐ L., Geng T., Fu S., and Xue F. ‐ S. 2016. Variation of life‐history traits of the Asian corn borer, Ostrinia furnacalis in relation to temperature and geographical latitude. Ecol. E. 6:5129–5143. PubMed PMC
Yasuda, H. , and Dixon A. F. G. 2002. Sexual size dimorphism in the two spot ladybird beetle Adalia bipunctata: developmental mechanism and its consequences for mating. Ecol. Entomol. 27:493–498.
Yi, S. ‐ J. , Hopkins R. J., Chen X. ‐ Y., Chen Z. ‐ M., Wang X., and Huang G. ‐ H. 2020. Effects of temperature on the development and fecundity of Microplitis similis (Hymenoptera: Braconidae), a parasitoid of Spodoptera litura (Lepidoptera: Noctuidae). Physiol. Entomol. 45:95–102.
Zamani, A. A. , Talebi A., Fathipour Y., and Baniameri V. 2007. Effect of temperature on life history of Aphidius colemani and Aphidius matricariae (Hymenoptera: Braconidae), two parasitoids of Aphis gossypii and Myzus persicae (Homoptera: Aphididae). Environ. Entomol. 36:263–271. PubMed
Zerbino, M. S. , Altier N. A., and Panizzi A. R. 2013. Effect of photoperiod and temperature on nymphal development and adult reproduction of Piezodorus guildinii (Heteroptera: Pentatomidae). Fla. Entomol. 96:572–582.
Zhang, S. ‐ C. , Zhu F., Zheng X. ‐ L., Lei C. ‐ L., and Zhou X. ‐ M. 2012. Survival and developmental characteristics of the predatory bug Orius similis (Hemiptera: Anthocoridae) fed on Tetranychus cinnabarinus (Acari: Tetranychidae) at three constant temperatures. Eur. J. Entomol. 109:503–508.
Altermatt, F. 2010. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B Biol. Sci. 277:1281–1287. PubMed PMC
Angilletta, M. J. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford Univ. Press, Oxford, U.K.
Angilletta, M. J. , and Dunham A. E.. 2003. The temperature‐size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162:332–342. PubMed
Angilletta, M. J. , Niewiarowski P. H., and Navas C.. 2002. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27:249–268.
Angilletta, M. J. , Steury T. D., and Sears M. W.. 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life‐history puzzle. Integr. Comp. Biol. 44:498–509. PubMed
Arcus, V. L. , Prentice E. J., Hobbs J. K., Mulholland A. J., Van der Kamp M. W., Pudney C. R., et al. 2016. On the temperature dependence of enzyme‐catalyzed rates. Biochemistry. 55:1681–1688. PubMed
Atkinson, D. 1994. Temperature and organism size – a biological law for ectotherms? Adv. Ecol. Res. 25:1–58.
Back, J. A. , and King R. S. 2013. Sex and size matter: ontogenetic patterns of nutrient content of aquatic insects. Freshw. Sci. 32:837–848.
Badyaev, A. V. 2002. Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol. Evol. 17:369–378.
Bennett, J. M. , Sunday J., Calosi J., Villalobos F., Martinez B., Molina‐Venegas R., et al. 2021. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12:1198. PubMed PMC
Blanckenhorn, W. U. 2000. The evolution of body size: what keeps organisms small? Q. Rev. Biol. 75:385–407. PubMed
Blanckenhorn, W. U. , Dixon A. F. G., Fairbairn D. J., Foellmer M. W., Gibert P., van der Linde K., et al. 2007. Proximate causes of Rensch's rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am. Nat. 169:245–257. PubMed
Blanckenhorn, W. U. , Berger D., Rohner P. T., Schäfer M. A., Akashi H., and Walters R. J. 2021. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature‐size‐rule. J.ThermaBiology. 100:103069. PubMed
Bodensteiner, B. L. , Agudelo‐Cantero G. A., Arietta A. Z. A., Gunderson A. R., Muñoz M. M., Refsnider J. M., et al. 2020. Thermal adaptation revisited: how conserved are thermal traits of reptiles and amphibians? J. Exp. Zool. A. 335:173–194. PubMed
Breed, G. A. , Stichter S., and Crone E. E. 2013. Climate‐driven changes in northeastern US butterfly communities. Nat. Clim. Change. 3:142–145.
Catullo, R. A. , Llewelyn J., Phillips B. L., and Moritz C. C. 2019. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29:R996–R1007. PubMed
Charnov, E. L. 1982. The theory of sex allocation. Princeton Univ. Press, Princeton, NJ. PubMed
Chazot, N. , Condamine F. L., Dudas G., Peña C., Kodandaramaiah U., Matos‐Maraví P., et al. 2021. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush‐footed butterflies. Nat. Commun. 12:5717. PubMed PMC
Chelini, M. ‐ C. , Delong J. P., and Hebets E. A. 2019. Ecophysiological determinants of sexual size dimorphism: integrating growth trajectories, environmental conditions, and metabolic rates. Oecologia. 191:61–71. PubMed
Chown, S. L. , Hoffmann A. A., Kristensen T. N., Angilletta M. J., Stenseth N. C., and Pertoldi C. 2010. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43:3–15.
Cossins, A. R. , and Bowler K. 1987. Temperature biology of animals. Chapman and Hall, Lond.
Crowley, S. R. 1985. Thermal sensitivity of sprint‐running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia. 66:219–225. PubMed
Davidowitz, G. , and Nijhout H. F. 2004. The physiological basis of reaction norms: the interaction among growth rate, the duration of growth and body size. Integr. Comp. Biol. 44:443–449. PubMed
Davidowitz, G. , D'Amico L. J., and Nijhout H. F. 2004. The effects of environmental variation on a mechanism that controls insect body size. Evol. Ecol. Res. 6:49–62.
Day, T. , and Rowe L. 2002. Developmental thresholds and the evolution of reaction norms for age and size at life‐history transitions. Am. Nat. 159:338–350. PubMed
Dmitriew, C. M. 2011. The evolution of growth trajectories: what limits growth rate? Biol. Rev. 86:97–116. PubMed
Fairbairn, D. J. 1997. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Syst. 28:659–687.
Fischer, K. , and Fiedler K. 2002. Life‐history plasticity in the butterfly Lycaena hippothoe: local adaptations and trade‐offs. Biol. J. Linn. Soc. 75:173–185.
Fischer, K. , Kölzow N., Höltje H., and Karl I. 2011. Assay conditions in laboratory experiments: is the use of rather than fluctuating temperatures justified when investigating temperature‐induced plasticity? Oecologia. 166:23–33. PubMed
Forster, J. , Hirst A. G., and Woodward G. 2011. Growth and development rates have different thermal responses. Am. Nat. 178:668–678. PubMed
Forster, J. , and Hirst A. G. 2012. The temperature‐size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26:483–492.
Forster, J. , Hirst A. G., and Atkinson D. 2012. Warming‐induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci USA, 109:19310–19314. PubMed PMC
Ghalambor, C. K. , McKay J. K., Carroll S. P., and Reznick D. N. 2007. Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21:394–407.
Ghosh, S. M. , Testa N. D., and Shingleton A. W. 2013. Temperature‐size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster . Proc. R. Soc. B Biol. Sci. 280:20130174. PubMed PMC
Gotthard, K. , and Nylin S. 1995. Adaptive plasticity and plasticity as an adaptation: a selective review of plasticity in animal morphology and life‐history. Oikos. 74:3–17.
Hertz, P. E. , Huey R. B., and Nevo E. 1983. Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution; Internation Journal of Organic Evolution. 37:1075–1084. PubMed
Hirst, A. G. , Horne C. R., and Atkinson D. 2015. Equal temperature‐size responses of the sexes are widespread within arthropod species. Proc. R. Soc. B Biol. Sci. 282:20152475. PubMed PMC
Hochachka, P. W. , and Somero G. N. 2002. Biochemical adaptation: mechanism and process in physiological evolution. Oxford Univ. Press, Oxford, U.K.
Hoffmann, A. A. , and Sgro C. M. 2011. Climate change and evolutionary adaptation. Nature. 470:479–485. PubMed
Hoffmann, A. A. , Chown S. L., and Clusella‐Trullas S. 2013. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27:934–949.
Honek, A. 1993. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos. 66:483–492.
Horne, C. R. , Hirst A. G., and Atkinson D. 2015. Temperature‐size responses match latitudinal‐size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol. Lett. 18:327–335. PubMed
Horne, C. R. , Hirst A. G., and Atkinson D. 2017. Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proc. R. Soc. B Biol. Sci. 284:20170238. PubMed PMC
James, F. C. 1970. Geographic size variation in birds and its relationship to climate. Ecology. 51:365–390.
Jarosik, V. , Honek A., Magarey R. D., and Skuhrovec J. 2011. Developmental database for phenology models: related insect and mite species have similar thermal requirements. J. Econ. Entomol. 104:1870–1876. PubMed
Kause, A. , Saloniemi I., Haukioja E., and Hanhimäki S. 1999. How to become large quickly: quantitative genetics of growth and foraging in a flush feeding lepidopteran larva. J. Evol. Biol. 12:471–482.
Kingsolver, J. G. , Massie K. R., Ragland G. J., and Smith M. H. 2007. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature–size rule. J. Evol. Biol. 20:892–900. PubMed
Kingsolver, J. G. , and Huey R. B. 2008. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10:251–268.
Klepsatel, P. , Gáliková M., De Maio N., Huber C. D., Schlötterer C., and Flatt T. 2013. Variation in thermal performance and reaction norms among populations of Drosophila melanogaster . Evolution; Internation Journal of Organic Evolution. 67:3573–3587. PubMed
Koricheva, J. , Gurevitch J., and Mengersen K., eds. 2013. Handbook of meta‐analysis in ecology and evolution. Princeton Univ. Press, Princeton, NJ.
Kulma, M. , Kourimská L., Plachý V., Božik M., Adámková A., and Vrabec V. 2019. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem, 272:267–272. PubMed
Kutcherov, D. 2016. Thermal reaction norms can surmount evolutionary constraints: comparative evidence across leaf beetle species. Ecol. Evol. 6:4670–4683. PubMed PMC
Lailvaux, S. P. 2007. Interactive effects of sex and temperature on locomotion in reptiles. Integr. Comp. Biol. 47:189–199. PubMed
Logan, M. L. , Minnaar I. A., Keegan K. M., and Clusella‐Trullas S. 2020. The evolutionary potential of an insect invader under climate change. Evolution; Internation Journal of Organic Evolution. 74:132–144. PubMed
Lovich, J. E. , and Gibbons J. W. 1992. A review of techniques for quantifying sexual size dimorphism. Growth, Development, and Aging. 56:269–281. PubMed
Marshall, K. E. , Gotthard K., and Williams C. M. 2020. Evolutionary impacts of winter climate change on insects. Curr. Opin. Insect Sci. 41:54–62. PubMed
Meister, H. , Hämäläinen H. R., Valdma D., Martverk M., and Tammaru T. 2018. How to become larger: ontogenetic basis of among‐population size differences in a moth. Entomol. Exp. Appl. 166:4–16.
Michonneau, F. , Brown J. W., and Winter D. J. 2016. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7:1476–1481.
Moghadam, N. N. , Sidhu K., Summanen P. A. M., Ketola T., and Kronholm I. 2020. Quantitative genetics of temperature performance curves of Neurospora crassa . Evolution; Internation Journal of Organic Evolution. 74:1772–1787. PubMed
Molleman, F. , Javoiš J., Esperk T., Teder T., Davis R. B., and Tammaru T. 2011. Sexual differences in weight loss upon eclosion are related to life history strategy in Lepidoptera. J. Insect Physiol. 57:712–722. PubMed
Nakagawa, S. , Noble D. W. A., Senior A. M., and Lagisz M. 2017. Meta‐evaluation of meta‐analysis: ten appraisal questions for biologists. BMC Biology. 15:18. PubMed PMC
OpenTree , Cranston, K. A. , Redelings B., Sanchez Reyes L. L., Allman J., McTavish E. J., et al. 2022. Open tree of life taxonomy. Version 3.3. Zenodo. 10.5281/zenodo.3937750. DOI
Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Syst. 37:637–669.
Parmesan, C. , Ryrholm N., Stefanescu C., Hill J. K., Thomas C. D., Descimon H., et al. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature. 399:579–583.
Pigliucci, M. 2001. Phenotypic plasticity: beyond nature and nurture. Johns Hopkins Univ. Press, Baltimore, MD.
Pottier, P. , Burke S., Drobniak S. M., Lagisz M., and Nakagawa S. 2021. Sexual (in)equality? A meta‐analysis of sex differences in thermal acclimation capacity across ectotherms. Funct. Ecol. 35:2663–2678.
R Core Team 2020. R: a language and environment for statistical computing. Version 3.6.3. R Foundation for Statistical Computing, Vienna.
Ratte, H. T. 1984. Temperature and insect development. Pp 33–66 in Hoffmann, K.H. , ed. Environmental physiology and biochemistry of insects. Springer, Berlin.
Rohner, P. T. , and Blanckenhorn W. U. 2018. A comparative study of the role of sex‐specific condition dependence in the evolution of sexually dimorphic traits. Am. Nat. 192:E202–E215. PubMed
Rohner, P. T. , Teder T., Esperk T., Lüpold S., and Blanckenhorn W. 2018. The evolution of male‐biased sexual size dimorphism is associated with increased body size plasticity in males. Funct. Ecol. 32:581–591.
Seebacher, F. , White C. R., and Franklin C. E. 2015. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change. 5:61–66.
Sgro, C. M. , Terblanche J. S., and Hoffmann A. A. 2016. What can plasticity contribute to insect responses to climate change? Annu. Rev. Entomol. 61:433–451. PubMed
Stearns, S. C. 1992. The evolution of life histories. Oxford Univ. Press, Lond.
Stillwell, R. C. , and Fox C. W. 2007. Environmental effects on sexual size dimorphism of a seed‐feeding beetle. Oecologia. 153:273–280. PubMed
Stillwell, R. C. , and Davidowitz G. 2010. Sex differences in phenotypic plasticity of a mechanism that controls body size: implications for sexual size dimorphism. Proc. R. Soc. B Biol. Sci. 277:3819–3826. PubMed PMC
Stillwell, R. C. , Blanckenhorn W. U., Teder T., Davidowitz G., and Fox C. W. 2010. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annu. Rev. Entomol. 55:227–245. PubMed PMC
Svensson, E. I. , Gomez‐Llano M., and Waller J. T. 2020. Selection on phenotypic plasticity favors thermal canalization. Proc. Natl. Acad. Sci. USA. 117:29767–29774. PubMed PMC
Tammaru, T. , Esperk T., and Castellanos I. 2002. No evidence for costs of being large in females of Orgyia spp. (Lepidoptera, Lymantriidae): larger is always better. Oecologia. 133:430–438. PubMed
Tammaru, T. , Nylin S., Ruohomäki K., and Gotthard K. 2004. Compensatory responses in lepidopteran larvae: a test of growth rate maximisation. Oikos. 107:352–362.
Tammaru, T. , Esperk T., Ivanov V., and Teder T. 2010. Proximate sources of sexual size dimorphism in insects: locating constraints on larval growth schedules. Evol. Ecol. 24:161–175.
Teder, T. 2014. Sexual size dimorphism requires a corresponding sex difference in development time: a meta‐analysis in insects. Funct. Ecol. 28:479–486.
Teder, T. 2020. Phenological responses to climate warming in temperate moths and butterflies: species traits predict future changes in voltinism. Oikos. 129:1051–1060.
Teder, T. , and Tammaru T. 2005. Sexual size dimorphism within species increases with body size in insects. Oikos. 108:321–334.
Teder, T. , Tammaru T., and Esperk T. 2008. Dependence of phenotypic variance in body size on environmental quality. Am. Nat. 172:223–232. PubMed
Teder, T. , Vellau H., and Tammaru T. 2014. Age and size at maturity: a quantitative review of diet‐induced reaction norms in insects. Evolution; Internation Journal of Organic Evolution. 68:3217–3228. PubMed
Teder, T. , Kaasik A., Taits K., and Tammaru T. 2021. Why do males emerge before females? Sexual size dimorphism drives sexual bimaturism in insects. Biol. Rev. 96:2461–2475. PubMed
Thornhill, R. , and Alcock J. 1983. The evolution of insect mating systems. Harvard Univ. Press, Cambridge, MA.
Tiitsaar, A. , Valdma D., Õunap E., Remm J., Teder T., and Tammaru T. 2019. Distribution of butterflies (Lepidoptera: Papilionoidea) in Estonia: results of a systematic mapping project reveal long‐term trends. Ann. Zool. Fenn. 56:147–185.
van Damme, R. , Bauwens D., and Verheyen R. F. 1990. Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara . Oikos. 57:61–67.
van der Have, T. M. , and Jong G. 1996. Adult size in ectotherms: temperature effects on growth and differentiation. J. Theor. Biol. 183:329–340.
Verberk, W. C. E. P. , Atkinson D., Hoefnagel K. N., Hirst A. G., Horne C. R., and Siepel H. 2021. Shrinking body sizes in response to warming: explanations for the temperature size–rule with special emphasis on the role of oxygen. Biol. Rev. 96:247–268. PubMed PMC
Viechtbauer, W. 2010. Conducting meta‐analyses in R with the metafor package. J. Stat. Softw. 36:1–48.
Weaving, H. , Terblanche J. S., Pottier P., and English S. 2022. Meta‐analysis reveals weak but pervasive plasticity in insect thermal limits. Nat. Commun. 13:5292. PubMed PMC
Wiklund, C. , and Fagerström T. 1977. Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies. Oecologia. 31:153–158. PubMed
Zeuss, D. , Brunzel S., and Brandl R. 2017. Environmental drivers of voltinism and body size in insect assemblages across. Europe. Global Ecol. Biogeogr. 26:154–165.
Zuo, W. , Moses M. E., West G. B., Hou C., and Brown J. H. 2012. A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc. R. Soc. B Biol. Sci. 279:1840–1846. PubMed PMC
Dryad
10.5061/dryad.djh9w0w3q