Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
34588433
PubMed Central
PMC8481491
DOI
10.1038/s41467-021-25906-8
PII: 10.1038/s41467-021-25906-8
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- časoprostorová analýza MeSH
- extinkce biologická MeSH
- fylogeneze MeSH
- hmyzí geny MeSH
- motýli fyziologie MeSH
- rozšíření zvířat * MeSH
- tropické klima * MeSH
- vznik druhů (genetika) MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The global increase in species richness toward the tropics across continents and taxonomic groups, referred to as the latitudinal diversity gradient, stimulated the formulation of many hypotheses to explain the underlying mechanisms of this pattern. We evaluate several of these hypotheses to explain spatial diversity patterns in a butterfly family, the Nymphalidae, by assessing the contributions of speciation, extinction, and dispersal, and also the extent to which these processes differ among regions at the same latitude. We generate a time-calibrated phylogeny containing 2,866 nymphalid species (~45% of extant diversity). Neither speciation nor extinction rate variations consistently explain the latitudinal diversity gradient among regions because temporal diversification dynamics differ greatly across longitude. The Neotropical diversity results from low extinction rates, not high speciation rates, and biotic interchanges with other regions are rare. Southeast Asia is also characterized by a low speciation rate but, unlike the Neotropics, is the main source of dispersal events through time. Our results suggest that global climate change throughout the Cenozoic, combined with tropical niche conservatism, played a major role in generating the modern latitudinal diversity gradient of nymphalid butterflies.
Australian Museum 6 College Street Sydney NSW 2010 Australia
City College of New York and Graduate Center CUNY New York NY USA
Cummington Street Department of Biology Boston University Boston MA 02215 USA
Departamento de Química y Biología Universidad del Norte Barranquilla Colombia
Department of Biological Sciences University of New Orleans New Orleans LA USA
Department of Ecology Swedish University of Agricultural Sciences Ulls väg 16 75651 Uppsala Sweden
Department of Life Sciences Natural History Museum London SW7 5BD UK
Department of Zoology Stockholm University 10691 Stockholm Sweden
Department of Zoology University of Cambridge Downing St Cambridge CB2 3EJ UK
Durrell Institute of Conservation and Ecology University of Kent Canterbury CT2 7NR UK
Gothenburg Global Biodiversity Centre Gothenburg Sweden
Institut de Biologia Evolutiva Barcelona Spain
ISYEB CNRS MNHN Sorbonne Université EPHE Université des Antilles 57 rue Cuvier Paris 75005 France
Museo de Historia Natural Universidad Nacional Mayor de San Marcos Lima Peru
National Museum of Natural History Manila Philippines
Nature Education Centre Jagiellonian University ul Gronostajowa 5 30 387 Kraków Poland
Smithsonian Tropical Research Institute Gamboa Panama
Systematic Biology Group Department of Biology Lund University Lund Sweden
Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center Seattle WA USA
Zobrazit více v PubMed
Mittelbach GG, et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 2007;10:315–331. doi: 10.1111/j.1461-0248.2007.01020.x. PubMed DOI
Mannion PD, Upchurch P, Benson RBJ, Goswami A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 2014;29:42–50. doi: 10.1016/j.tree.2013.09.012. PubMed DOI
Kinlock NL, et al. Explaining global variation in the latitudinal diversity gradient: meta‐analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 2018;27:125–141. doi: 10.1111/geb.12665. DOI
Wiens JJ, Graham CH, Moen DS, Smith SA, Reeder TW. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am. Nat. 2006;168:579–596. doi: 10.1086/507882. PubMed DOI
Wiens JJ, Sukumaran J, Pyron RA, Brown RM. Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae) Evolution. 2009;63:1217–1231. doi: 10.1111/j.1558-5646.2009.00610.x. PubMed DOI
Jansson R, Rodríguez-Castañeda G, Harding LE. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses: phylogenies and the latitudinal diversity gradient. Evolution. 2013;67:1741–1755. doi: 10.1111/evo.12089. PubMed DOI
Economo EP, Narula N, Friedman NR, Weiser MD, Guénard B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 2018;9:1778. doi: 10.1038/s41467-018-04218-4. PubMed DOI PMC
Stephens PR, Wiens JJ. Explaining species richness from continents to communities: the time‐for‐speciation effect in Emydid turtles. Am. Nat. 2003;161:112–128. doi: 10.1086/345091. PubMed DOI
Wiens JJ, Donoghue MJ. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 2004;19:639–644. doi: 10.1016/j.tree.2004.09.011. PubMed DOI
Morley, R. J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In Tropical Rainforest Responses to Climatic Change 1–31 (Springer Berlin Heidelberg, 2007). 10.1007/978-3-540-48842-2_1.
Jablonski D, Roy K, Valentine JW. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science. 2006;314:102–106. doi: 10.1126/science.1130880. PubMed DOI
Condamine FL, Sperling FAH, Wahlberg N, Rasplus J-Y, Kergoat GJ. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity: phylogeny and latitudinal diversity gradient. Ecol. Lett. 2012;15:267–277. doi: 10.1111/j.1461-0248.2011.01737.x. PubMed DOI
Rolland J, Condamine FL, Beeravolu CR, Jiguet F, Morlon H. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora: dispersal and the latitudinal gradient of Carnivora. Glob. Ecol. Biogeogr. 2015;24:1059–1071. doi: 10.1111/geb.12354. DOI
Fischer AG. Latitudinal variations in organic diversity. Evolution. 1960;14:64. doi: 10.1111/j.1558-5646.1960.tb03057.x. DOI
Rolland J, Condamine FL, Jiguet F, Morlon H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 2014;12:e1001775. doi: 10.1371/journal.pbio.1001775. PubMed DOI PMC
Rosenzweig, M. L. Species diversity in space and time. (Cambridge University Press, 1995). 10.1017/CBO9780511623387.
Allen AP, Gillooly JF, Savage VM, Brown JH. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. 2006;103:9130–9135. doi: 10.1073/pnas.0603587103. PubMed DOI PMC
Schemske, D. W. Ecological and evolutionary perspectives on the origins of tropical diversity. In Foundations of tropical forest biology (eds Chazdon, R. & Whitmore, T.) 163–173 (University of Chicago Press, Chicago, IL, 2002).
Janzen DH. Why mountain passes are higher in the tropics. Am. Nat. 1967;101:233–249. doi: 10.1086/282487. DOI
Wahlberg N, et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. B. 2009;276:4295–4302. doi: 10.1098/rspb.2009.1303. PubMed DOI PMC
Aduse-Poku K, et al. Systematics and historical biogeography of the old world butterfly subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrinae) BMC Evol. Biol. 2015;15:167. doi: 10.1186/s12862-015-0449-3. PubMed DOI PMC
Kozak KM, et al. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst. Biol. 2015;64:505–524. doi: 10.1093/sysbio/syv007. PubMed DOI PMC
Chazot N, et al. Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Glob. Ecol. Biogeogr. 2019;28:1118–1132. doi: 10.1111/geb.12919. DOI
Chazot N, et al. Priors and posteriors in Bayesian timing of divergence analyses: the age of butterflies revisited. Syst. Biol. 2019;68:797–813. doi: 10.1093/sysbio/syz002. PubMed DOI PMC
Wahlberg N, Wheat CW, Peña C. Timing and patterns in the taxonomic diversification of Lepidoptera (Butterflies and Moths) PLoS ONE. 2013;8:e80875. doi: 10.1371/journal.pone.0080875. PubMed DOI PMC
Heikkilä M, Kaila L, Mutanen M, Peña C, Wahlberg N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B. 2012;279:1093–1099. doi: 10.1098/rspb.2011.1430. PubMed DOI PMC
Condamine FL, Nabholz B, Clamens A-L, Dupuis JR, Sperling FAH. Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in Bayesian molecular dating: mito-phylogenomics of swallowtail butterflies. Syst. Entomol. 2018;43:460–480. doi: 10.1111/syen.12284. DOI
Espeland M, et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 2018;28:770–778. doi: 10.1016/j.cub.2018.01.061. PubMed DOI
Ree RH, Smith SA. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 2008;57:4–14. doi: 10.1080/10635150701883881. PubMed DOI
Crisp M, Cook L. Do early branching lineages signify ancestral traits? Trends Ecol. Evol. 2005;20:122–128. doi: 10.1016/j.tree.2004.11.010. PubMed DOI
Meseguer AS, Condamine FL. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient*. Evolution. 2020;74:1966–1987. doi: 10.1111/evo.13967. PubMed DOI
Ziegler A, et al. Tracing the tropics across land and sea: Permian to present. Lethaia. 2003;36:227–254. doi: 10.1080/00241160310004657. DOI
Meng J, McKenna MC. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature. 1998;394:364–367. doi: 10.1038/28603. DOI
Archibald SB, Bossert WH, Greenwood DR, Farrell BD. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology. 2010;36:374–398. doi: 10.1666/09021.1. DOI
Baker WJ, Couvreur TLP. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. J. Biogeogr. 2013;40:274–285. doi: 10.1111/j.1365-2699.2012.02795.x. DOI
Liu Z, et al. Global cooling during the Eocene-Oligocene climate transition. Science. 2009;323:1187–1190. doi: 10.1126/science.1166368. PubMed DOI
Eldrett JS, Greenwood DR, Harding IC, Huber M. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature. 2009;459:969–973. doi: 10.1038/nature08069. PubMed DOI
Saupe EE, et al. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proc. Natl Acad. Sci. USA. 2019;116:12895–12900. doi: 10.1073/pnas.1903866116. PubMed DOI PMC
Hawkins BA, DeVries PJ. Tropical niche conservatism and the species richness gradient of North American butterflies. J. Biogeogr. 2009;36:1698–1711. doi: 10.1111/j.1365-2699.2009.02119.x. DOI
Mayr G. Two-phase extinction of “Southern Hemispheric” birds in the Cenozoic of Europe and the origin of the Neotropic avifauna. Palaeobio. Palaeoenv. 2011;91:325–333. doi: 10.1007/s12549-011-0062-4. DOI
Veizer J, Prokoph A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 2015;146:92–104. doi: 10.1016/j.earscirev.2015.03.008. DOI
Zhang Z, et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature. 2014;513:401–404. doi: 10.1038/nature13705. PubMed DOI
Feakins SJ, et al. Northeast African vegetation change over 12 m.y. Geology. 2013;41:295–298. doi: 10.1130/G33845.1. DOI
Jacobs BF. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos. Trans. R. Soc. Lond. B. 2004;359:1573–1583. doi: 10.1098/rstb.2004.1533. PubMed DOI PMC
Jaramillo C. Cenozoic plant diversity in the Neotropics. Science. 2006;311:1893–1896. doi: 10.1126/science.1121380. PubMed DOI
Stebbins, G. L. Flowering plants: evolution above the species level. (Harvard University Press, 1974). 10.4159/harvard.9780674864856.
Wahlberg N, Wheat CW. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst. Biol. 2008;57:231–242. doi: 10.1080/10635150802033006. PubMed DOI
Philippe H, et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 2011;9:e1000602. doi: 10.1371/journal.pbio.1000602. PubMed DOI PMC
Nee S. Birth-Death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 2006;37:1–17. doi: 10.1146/annurev.ecolsys.37.091305.110035. DOI
Ricklefs RE. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 2007;22:601–610. doi: 10.1016/j.tree.2007.06.013. PubMed DOI
Crisp MD, Cook LG. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution. 2009;63:2257–2265. doi: 10.1111/j.1558-5646.2009.00728.x. PubMed DOI
Lambert A, Stadler T. Birth–death models and coalescent point processes: the shape and probability of reconstructed phylogenies. Theor. Popul. Biol. 2013;90:113–128. doi: 10.1016/j.tpb.2013.10.002. PubMed DOI
Rabosky DL. Extinction rates should not be estimated from molecular phylogenies: estimating extinction from molecular phylogenies. Evolution. 2010;64:1816–1824. doi: 10.1111/j.1558-5646.2009.00926.x. PubMed DOI
Quental TB, Marshall CR. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 2010;25:434–441. doi: 10.1016/j.tree.2010.05.002. PubMed DOI
Burin G, Alencar LRV, Chang J, Alfaro ME, Quental TB. How well can we estimate diversity dynamics for clades in diversity decline? Syst. Biol. 2019;68:47–62. doi: 10.1093/sysbio/syy037. PubMed DOI
Louca S, Pennell MW. Extant timetrees are consistent with a myriad of diversification histories. Nature. 2020;580:502–505. doi: 10.1038/s41586-020-2176-1. PubMed DOI
Sohn J-C, Labandeira CC, Davis DR. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 2015;15:12. doi: 10.1186/s12862-015-0290-8. PubMed DOI PMC
de Jong R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea) Zootaxa. 2017;4270:1. doi: 10.11646/zootaxa.4270.1.1. PubMed DOI
Edger PP, et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA. 2015;112:8362–8366. doi: 10.1073/pnas.1503926112. PubMed DOI PMC
Allio R, et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 2021;12:354. doi: 10.1038/s41467-020-20507-3. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol.34, 772–773. 10.1093/molbev/msw260 (2016). PubMed
Smith SA. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 2009;36:2324–2337. doi: 10.1111/j.1365-2699.2009.02160.x. DOI
Beeravolu Reddy, C. & Condamine, F. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. bioRxiv.10.1101/038695 (2016). PubMed
Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE. 2014;9:e89543. doi: 10.1371/journal.pone.0089543. PubMed DOI PMC
Rabosky DL, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 2014;5:701–707. doi: 10.1111/2041-210X.12199. DOI
Rabosky DL, Mitchell JS, Chang J. Is BAMM flawed? theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 2017;66:477–498. doi: 10.1093/sysbio/syx037. PubMed DOI PMC
Dudas G, et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature. 2017;544:309–315. doi: 10.1038/nature22040. PubMed DOI PMC
Morlon H, Parsons TL, Plotkin JB. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. 2011;108:16327–16332. doi: 10.1073/pnas.1102543108. PubMed DOI PMC
Morlon H, et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 2016;7:589–597. doi: 10.1111/2041-210X.12526. DOI
Geography of Indian Butterflies: Patterns Revealed by Checklists of Federal States