A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

. 2023 Jun ; 7 (6) : 903-913. [epub] 20230515

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37188966

Grantová podpora
DEB-1541557 National Science Foundation (NSF)
DEB-1541560 National Science Foundation (NSF)
DBI-1349345 National Science Foundation (NSF)
DBI-1601369 National Science Foundation (NSF)
DEB-1557007 National Science Foundation (NSF)
IOS-1920895 National Science Foundation (NSF)
DBI-1256742 National Science Foundation (NSF)
DEB-1541500 National Science Foundation (NSF)
SES-0750480 National Science Foundation (NSF)
DEB-0447244 National Science Foundation (NSF)
DEB-9615760 National Science Foundation (NSF)
851188 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
19-14-00202 Russian Science Foundation (RSF)
563332/2010-7 Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development)
304273/2014-7 Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development)

Odkazy

PubMed 37188966
PubMed Central PMC10250192
DOI 10.1038/s41559-023-02041-9
PII: 10.1038/s41559-023-02041-9
Knihovny.cz E-zdroje

Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.

African Butterfly Research Institute Nairobi Kenya

Animal Biology Division Institute of Biological Sciences University of the Philippines Los Baños Laguna Philippines

Aquapro Villavicencio Colombia

Australian Museum Sydney New South Wales Australia

Australian National Insect Collection Canberra Australian Capital Territory Australia

Biology Centre CAS České Budějovice Czech Republic

Biology Department City College of New York City University of New York New York NY USA

Botany and National Herbarium Division National Museum of the Philippines Manila Philippines

Center for Biodiversity and Global Change Yale University New Haven CT USA

Center for Biodiversity Research Department of Biological Sciences University of Memphis Memphis TN USA

Center for Global Mountain Biodiversity Globe Institute University of Copenhagen Copenhagen Denmark

Center for Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Mengla China

Center for Macroecology Evolution and Climate GLOBE Institute University of Copenhagen Copenhagen Denmark

Centro de Ciências Naturais e Exatas Pós Graduação em Biodiversidade Animal Universidade Federal de Santa Maria Santa Maria Brazil

Chiang Mai Thailand

CNRS Institut des Sciences de l'Evolution de Montpellier Montpellier France

College of Arts and Sciences Jose Rizal Memorial State University Tampilisan Philippines

College of Life Science National Taiwan Normal University Taipei Taiwan

Departamento de Zoologia Universidade Federal do Rio Grande do Sul Porto Alegre Brazil

Department of Biology Georgetown University Washington DC USA

Department of Biology University of Florida Gainesville FL USA

Department of Biology University of Pennsylvania Philadelphia PA USA

Department of Biology Washington University in St Louis St Louis MO USA

Department of Botany and Plant Sciences University of California Riverside Riverside CA USA

Department of Ecology and Evolutionary Biology Yale University New Haven CT USA

Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden

Department of Entomology and Plant Pathology Auburn University Auburn AL USA

Department of Entomology College of Plant Protection South China Agricultural University Guangzhou China

Department of Entomology National Museum of Natural History Smithsonian Institution Washington DC USA

Department of Entomology Natural History Museum of Geneva Geneva Switzerland

Department of Evolution Ecology and Organismal Biology The Ohio State University Columbus OH USA

Department of Karyosystematics Zoological Institute of Russian Academy of Sciences St Petersburg Russia

Department of Life and Earth Sciences Perimeter College Georgia State University Decatur GA USA

Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA

Department of Plant and Wildlife Sciences Brigham Young University Provo UT USA

Division of Ecology and Evolution Research School of Biology The Australian National University Acton Canberra Australian Capital Territory Australia

Entomology and Nematology Department University of Florida Gainesville FL USA

Entomology Laboratory Museo de Zoología Universidad del Azuay Cuenca Ecuador

Entomology Section National Museum of Natural History Manila Philippines

Faculty of Science Department of Zoology University of South Bohemia České Budějovice Czech Republic

Florida Museum of Natural History University of Florida Gainesville FL USA

Hachiôji Japan

Institut Botànic de Barcelona Barcelona Spain

Institut de Biologia Evolutiva Barcelona Spain

Institute of Silviculture and Forest Protection University of West Hungary Sopron Hungary

Iziko South African Museum Cape Town South Africa

Köln Germany

Laboratorio de Ecología y Morfometría Evolutiva Centro de Investigación de Estudios Avanzados del Maule Universidad Católica del Maule Talca Chile

Leibniz Institute for the Analysis of Biodiversity Change Zoological Research Museum Alexander Koenig Bonn Germany

McGuire Center for Lepidoptera and Biodiversity Florida Museum of Natural History University of Florida Gainesville FL USA

Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems Santiago Chile

Museo de Historia Natural Universidad Nacional Mayor de San Marcos Lima Peru

National Centre for Biological Sciences Tata Institute of Fundamental Research Bengaluru India

Natural History Museum London UK

PhD Program in Biology Graduate Center City University of New York New York NY USA

RAPiD Genomics Gainesville FL USA

Research Center for Biosystematics and Evolution National Research and Innovation Agency Cibinong Bogor Indonesia

T G Masaryk Water Research Institute Prague Czech Republic

The Research Institute of Evolutionary Biology Setagaya Japan

The University Museum The University of Tokyo Tokyo Japan

Translational Data Analytics Institute The Ohio State University Columbus OH USA

Turkana Basin Institute Stony Brook University Stony Brook NY USA

University of Chinese Academy of Sciences Beijing China

Vietnam National Museum of Nature Vietnam Academy of Science and Technology Hanoi Vietnam

Vietnam Programme Fauna and Flora International Hanoi Vietnam

Zobrazit více v PubMed

Chazot N, et al. Priors and posteriors in Bayesian timing of divergence analyses: the age of butterflies revisited. Syst. Biol. 2019;68:797–813. doi: 10.1093/sysbio/syz002. PubMed DOI PMC

Allio R, et al. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Syst. Biol. 2020;69:38–60. doi: 10.1093/sysbio/syz030. PubMed DOI

Boggs, C. L., Watt, W. B. & Ehrlich, P. R. Butterflies: Ecology and Evolution Taking Flight (University of Chicago Press, 2003).

Braby MF, Trueman JWH, Eastwood R. When and where did troidine butterflies (Lepidoptera: Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous. Invertebr. Syst. 2005;19:113–143. doi: 10.1071/IS04020. DOI

Janz N, Nylin S. Butterflies and plants: a phylogenetic study. Evolution. 1998;52:486–502. doi: 10.2307/2411084. PubMed DOI

Braga MP, Landis MJ, Nylin S, Janz N, Ronquist F. Bayesian inference of ancestral host–parasite interactions under a phylogenetic model of host repertoire evolution. Syst. Biol. 2020;69:1149–1162. doi: 10.1093/sysbio/syaa019. PubMed DOI PMC

Braga MP, Janz N, Nylin S, Ronquist F, Landis MJ. Phylogenetic reconstruction of ancestral ecological networks through time for pierid butterflies and their host plants. Ecol. Lett. 2020;24:2134–2145. doi: 10.1111/ele.13842. PubMed DOI

Espeland M, et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 2018;28:770–778.e5. doi: 10.1016/j.cub.2018.01.061. PubMed DOI

Wahlberg N, Wheat CW, Peña C. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths) PLoS ONE. 2013;8:e80875. doi: 10.1371/journal.pone.0080875. PubMed DOI PMC

Linnert C, et al. Evidence for global cooling in the Late Cretaceous. Nat. Commun. 2014;5:4194. doi: 10.1038/ncomms5194. PubMed DOI PMC

Domingo L, Tomassini RL, Montalvo CI, Sanz-Pérez D, Alberdi MT. The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Sci. Rep. 2020;10:1608. doi: 10.1038/s41598-020-58575-6. PubMed DOI PMC

Carrillo JD, et al. Disproportionate extinction of South American mammals drove the asymmetry of the Great American Biotic Interchange. Proc. Natl Acad. Sci. USA. 2020;117:26281–26287. doi: 10.1073/pnas.2009397117. PubMed DOI PMC

Rolland J, Condamine FL, Beeravolu CR, Jiguet F, Morlon H. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora. Glob. Ecol. Biogeogr. 2015;24:1059–1071. doi: 10.1111/geb.12354. DOI

Condamine FL, Silva-Brandão KL, Kergoat GJ, Sperling FAH. Biogeographic and diversification patterns of neotropical Troidini butterflies (Papilionidae) support a museum model of diversity dynamics for Amazonia. BMC Evol. Biol. 2012;12:82. doi: 10.1186/1471-2148-12-82. PubMed DOI PMC

Chazot N, et al. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nat. Commun. 2021;12:5717. doi: 10.1038/s41467-021-25906-8. PubMed DOI PMC

Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 2015;207:437–453. doi: 10.1111/nph.13264. PubMed DOI

Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. doi: 10.1002/ajb2.1019. PubMed DOI

Li H-T, et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants. 2019;5:461–470. doi: 10.1038/s41477-019-0421-0. PubMed DOI

Heikkilä M, Kaila L, Mutanen M, Peña C, Wahlberg N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B Biol. Sci. 2011;279:1093–1099. doi: 10.1098/rspb.2011.1430. PubMed DOI PMC

Braga MP, Guimarães PR, Wheat CW, Nylin S, Janz N. Unifying host-associated diversification processes using butterfly–plant networks. Nat. Commun. 2018;9:5155. doi: 10.1038/s41467-018-07677-x. PubMed DOI PMC

Robinson, G. S., Ackery, P. R., Kitching, I. J., Beccaloni, G. W. & Hernández, L. M. HOSTS – A Database of the World’s Lepidopteran Hostplants (accessed 1 August 2020); http://www.nhm.ac.uk/our-science/data/hostplants/

Kaliszewska ZA, et al. When caterpillars attack: biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae) Evolution. 2015;69:571–588. doi: 10.1111/evo.12599. PubMed DOI

Pierce NE, et al. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera) Annu. Rev. Entomol. 2002;47:733–771. doi: 10.1146/annurev.ento.47.091201.145257. PubMed DOI

Moreau CS, Bell CD. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographical range evolution of the ants. Evolution. 2013;67:2240–2257. doi: 10.1111/evo.12105. PubMed DOI

Forister ML, et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA. 2015;112:442. doi: 10.1073/pnas.1423042112. PubMed DOI PMC

Kelly CK, Southwood TRE. Species richness and resource availability: a phylogenetic analysis of insects associated with trees. Proc. Natl Acad. Sci. USA. 1999;96:8013–8016. doi: 10.1073/pnas.96.14.8013. PubMed DOI PMC

Kennedy CEJ, Southwood TRE. The number of species of insects associated with British trees: a re-analysis. J. Anim. Ecol. 1984;53:455–478. doi: 10.2307/4528. DOI

Rutz A, et al. The LOTUS initiative for open knowledge management in natural products research. eLife. 2022;11:e70780. doi: 10.7554/eLife.70780. PubMed DOI PMC

Ehrlich PR, Raven PH. Butterflies and plants: a study of coevolution. Evolution. 1965;18:586–608. doi: 10.2307/2406212. DOI

Lemmon AR, Emme SA, Lemmon EM. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 2012;61:727–744. doi: 10.1093/sysbio/sys049. PubMed DOI

Valencia-Montoya, W. A. et al. Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae). Proc. R. Soc. B Biol. Sci.288, 1–10 (2021). PubMed PMC

Toussaint, E. F. A. et al. Anchored phylogenomics illuminates the skipper butterfly tree of life. BMC Evol. Biol.18, 101 (2018). PubMed PMC

Espeland, M. et al. Four hundred shades of brown: higher level phylogeny of the problematic Euptychiina (Lepidoptera, Nymphalidae, Satyrinae) based on hybrid enrichment data. Mol. Phylogenet. Evol. 131, 116–124 (2019). PubMed

Carvalho, A. P. S. et al. Diversification is correlated with temperature in white and sulfur butterflies. Preprint at bioRxiv10.1101/2022.09.22.509088 (2022).

Kawahara, A. Y. et al. Phylogenetics of moth-like butterflies (Papilionoidea: Hedylidae) based on a new 13-locus target capture probe set. Mol. Phylogenet. Evol. 127, 600–605 (2018). PubMed

Toussaint EFA, et al. Afrotropics on the wing: phylogenomics and historical biogeography of awl and policeman skippers. Syst. Entomol. 2021;46:172–185. doi: 10.1111/syen.12455. DOI

Nunes, R. et al. Predictors of sequence capture in a large-scale anchored phylogenomics project. Front. Ecol. Evol.10, 943361 (2022).

Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl Acad. Sci. USA 116, 22657–22663 (2019). PubMed PMC

Regier JC, et al. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies) PLoS ONE. 2013;8:1–23. doi: 10.1371/journal.pone.0058568. PubMed DOI PMC

Mayer C, et al. Adding leaves to the Lepidoptera tree: capturing hundreds of nuclear genes from old museum specimens. Syst. Entomol. 2021;46:649–671. doi: 10.1111/syen.12481. DOI

Rota J, et al. The unresolved phylogenomic tree of butterflies and moths (Lepidoptera): assessing the potential causes and consequences. Syst. Entomol. 2022;47:531–550. doi: 10.1111/syen.12545. DOI

Breinholt JW, et al. Resolving relationships among the megadiverse butterflies and moths with a novel pipeline for anchored phylogenomics. Syst. Biol. 2018;67:78–93. doi: 10.1093/sysbio/syx048. PubMed DOI

Regier JC, et al. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature. 2010;463:1079–1083. doi: 10.1038/nature08742. PubMed DOI

Zwick, A. Degeneracy coding web service. GitHubhttps://github.com/carlosp420/degenerate-dna (2010).

Minh BQ, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC

Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC

Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl Acad. Sci. USA. 1997;94:6815. doi: 10.1073/pnas.94.13.6815. PubMed DOI PMC

Smith SA, O’Meara BC. TreePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics. 2012;28:2689–2690. doi: 10.1093/bioinformatics/bts492. PubMed DOI

Parham JF, et al. Best practices for justifying fossil calibrations. Syst. Biol. 2012;61:346–359. doi: 10.1093/sysbio/syr107. PubMed DOI PMC

de Jong R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea) Zootaxa. 2017;4270:1–63. doi: 10.11646/zootaxa.4270.1.1. PubMed DOI

Graur D, Martin W. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet. 2004;20:80–86. doi: 10.1016/j.tig.2003.12.003. PubMed DOI

Foster CS, et al. Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale. Syst. Biol. 2017;66:338–351. PubMed

Shields O. Fossil butterflies and the evolution of Lepidoptera. J. Res. Lepid. 1976;15:132–143. doi: 10.5962/p.333719. DOI

Wahlberg N. That awkward age for butterflies: insights from the age of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae) Syst. Biol. 2006;55:703–714. doi: 10.1080/10635150600913235. PubMed DOI

Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE. 2014;9:e89543–e89543. doi: 10.1371/journal.pone.0089543. PubMed DOI PMC

Rabosky DL, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 2014;5:701–707. doi: 10.1111/2041-210X.12199. DOI

Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Mesquitehttps://www.mesquiteproject.org (2018).

Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 2016;65:583–601. doi: 10.1093/sysbio/syw022. PubMed DOI

Beaulieu, J., O’Meara, B., Caetano, D., Boyko, J. & Vasconcelos, T. Package ‘hisse’. CRANhttps://CRAN.R-project.org/package=hisse (2021).

Rabosky DL, Goldberg EE. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 2015;64:340–355. doi: 10.1093/sysbio/syu131. PubMed DOI

van Nieukerken EJ, et al. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa. 2011;3148:212. doi: 10.11646/zootaxa.3148.1.41. PubMed DOI

Cong Q, Zhang J, Shen J, Grishin NV. Fifty new genera of Hesperiidae (Lepidoptera) Insecta Mundi. 2019;2019:0731. PubMed PMC

Shirey, V. et al. LepTraits 1.0 A globally comprehensive dataset of butterfly traits. Sci. Data.9, 382 (2022). PubMed PMC

Pinkert S, Barve V, Guralnick RP, Jetz W. Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive country‐level occurrence database. Glob. Ecol. Biogeogr. 2022;31:830–839. doi: 10.1111/geb.13475. DOI

Savela, M. Lepidoptera and some other life forms. FUNEThttps://www.funet.fi/pub/sci/bio/life/intro.html (2021).

Ree RH, Smith SA. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 2008;57:4–14. doi: 10.1080/10635150701883881. PubMed DOI

Smith SA. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the northern hemisphere plant clade Caprifolieae. J. Biogeogr. 2009;36:2324–2337. doi: 10.1111/j.1365-2699.2009.02160.x. DOI

Beeravolu, C. R. & Condamine, F. L. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. Preprint at bioRxiv10.1101/038695 (2016).

Matzke, N. J. BioGeoBEARS: biogeography with Bayesian (and likelihood) evolutionary analysis in R scripts (GitHub, 2018).

Allio R, et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 2021;12:354. doi: 10.1038/s41467-020-20507-3. PubMed DOI PMC

Udvardy, M. D. F. A classification of the biogeographical provinces of the world. Morges (Switzerland): International Union of Conservation of Nature and Natural Resources. IUCN Occasional Paper no. 18 (IUCN, 1975).

Ree RH. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution. 2005;59:257–265. PubMed

Ronquist F. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 1997;46:195–203. doi: 10.1093/sysbio/46.1.195. DOI

Li X, et al. A diversification relay race from Caribbean-Mesoamerica to the Andes: historical biogeography of Xylophanes hawkmoths. Proc. R. Soc. B Biol. Sci. 2022;289:20212435. doi: 10.1098/rspb.2021.2435. PubMed DOI PMC

Saito MU, Jinbo U, Yago M, Kurashima O, Ito M. Larval host records of butterflies in Japan. Ecol. Res. 2016;31:491–491. doi: 10.1007/s11284-016-1365-8. DOI

Veenakumari K, Mohanraj P, Sreekumar P. Host plant utilization by butterfly larvae in the Andaman and Nicobar Islands (Indian Ocean) J. Insect Conserv. 1997;1:235–246. doi: 10.1023/A:1018424302583. DOI

Kunte K. Additions to known larval host plants of Indian butterflies. J. Bombay Nat. Hist. Soc. 2006;103:119–122.

Kalesh S, Prakash SK. Additions to larval host plants of butterflies of the Western Ghats, Kerala, Southern India (Rhopalocera, Lepidoptera). Part 1. J. Bombay Nat. Hist. Soc. 2007;104:235–238.

Kalesh S, Prakash SK. Additions to larval host plants of butterflies of the Western Ghats, Kerala, Southern India (Rhopalocera, Lepidoptera). Part 2. J. Bombay Nat. Hist. Soc. 2015;112:111–113.

Naik D, Mustak MS. Additions to larval host plants of Indian butterflies (Lepidoptera) J. Bombay Nat. Hist. Soc. 2015;112:181–183.

Karmakar T, et al. Early stages and larval host plants of some northeastern Indian butterflies. J. Threat. Taxa. 2018;10:11780–11799. doi: 10.11609/jott.3169.10.6.11780-11799. DOI

Nitin R, et al. Larval host plants of the butterflies of the Western Ghats, India. J. Threat. Taxa. 2018;10:11495–11550. doi: 10.11609/jott.3104.10.4.11495-11550. DOI

Edger PP, et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA. 2015;112:8362. doi: 10.1073/pnas.1503926112. PubMed DOI PMC

Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. doi: 10.1093/bioinformatics/btq166. PubMed DOI

Beckett SJ. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 2016;3:140536. doi: 10.1098/rsos.140536. PubMed DOI PMC

Dormann CF, Gruber B, Fründ J. Introducing the bipartite package: analysing ecological networks. R News. 2008;8:8–11.

R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2009).

Revell L. J. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI

Wahlberg N, et al. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. Soc. B Biol. Sci. 2005;272:1577–1586. doi: 10.1098/rspb.2005.3124. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...