A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DEB-1541557
National Science Foundation (NSF)
DEB-1541560
National Science Foundation (NSF)
DBI-1349345
National Science Foundation (NSF)
DBI-1601369
National Science Foundation (NSF)
DEB-1557007
National Science Foundation (NSF)
IOS-1920895
National Science Foundation (NSF)
DBI-1256742
National Science Foundation (NSF)
DEB-1541500
National Science Foundation (NSF)
SES-0750480
National Science Foundation (NSF)
DEB-0447244
National Science Foundation (NSF)
DEB-9615760
National Science Foundation (NSF)
851188
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
19-14-00202
Russian Science Foundation (RSF)
563332/2010-7
Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development)
304273/2014-7
Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development)
PubMed
37188966
PubMed Central
PMC10250192
DOI
10.1038/s41559-023-02041-9
PII: 10.1038/s41559-023-02041-9
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- fylogeneze * MeSH
- motýli * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.
African Butterfly Research Institute Nairobi Kenya
Aquapro Villavicencio Colombia
Australian Museum Sydney New South Wales Australia
Australian National Insect Collection Canberra Australian Capital Territory Australia
Biology Centre CAS České Budějovice Czech Republic
Biology Department City College of New York City University of New York New York NY USA
Botany and National Herbarium Division National Museum of the Philippines Manila Philippines
Center for Biodiversity and Global Change Yale University New Haven CT USA
Center for Global Mountain Biodiversity Globe Institute University of Copenhagen Copenhagen Denmark
CNRS Institut des Sciences de l'Evolution de Montpellier Montpellier France
College of Arts and Sciences Jose Rizal Memorial State University Tampilisan Philippines
College of Life Science National Taiwan Normal University Taipei Taiwan
Departamento de Zoologia Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
Department of Biology Georgetown University Washington DC USA
Department of Biology University of Florida Gainesville FL USA
Department of Biology University of Pennsylvania Philadelphia PA USA
Department of Biology Washington University in St Louis St Louis MO USA
Department of Botany and Plant Sciences University of California Riverside Riverside CA USA
Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Entomology and Plant Pathology Auburn University Auburn AL USA
Department of Entomology Natural History Museum of Geneva Geneva Switzerland
Department of Evolution Ecology and Organismal Biology The Ohio State University Columbus OH USA
Department of Life and Earth Sciences Perimeter College Georgia State University Decatur GA USA
Department of Plant and Wildlife Sciences Brigham Young University Provo UT USA
Entomology and Nematology Department University of Florida Gainesville FL USA
Entomology Laboratory Museo de Zoología Universidad del Azuay Cuenca Ecuador
Entomology Section National Museum of Natural History Manila Philippines
Faculty of Science Department of Zoology University of South Bohemia České Budějovice Czech Republic
Florida Museum of Natural History University of Florida Gainesville FL USA
Institut Botànic de Barcelona Barcelona Spain
Institut de Biologia Evolutiva Barcelona Spain
Institute of Silviculture and Forest Protection University of West Hungary Sopron Hungary
Iziko South African Museum Cape Town South Africa
Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems Santiago Chile
Museo de Historia Natural Universidad Nacional Mayor de San Marcos Lima Peru
National Centre for Biological Sciences Tata Institute of Fundamental Research Bengaluru India
Natural History Museum London UK
PhD Program in Biology Graduate Center City University of New York New York NY USA
RAPiD Genomics Gainesville FL USA
T G Masaryk Water Research Institute Prague Czech Republic
The Research Institute of Evolutionary Biology Setagaya Japan
The University Museum The University of Tokyo Tokyo Japan
Translational Data Analytics Institute The Ohio State University Columbus OH USA
Turkana Basin Institute Stony Brook University Stony Brook NY USA
University of Chinese Academy of Sciences Beijing China
Vietnam National Museum of Nature Vietnam Academy of Science and Technology Hanoi Vietnam
Vietnam Programme Fauna and Flora International Hanoi Vietnam
Zobrazit více v PubMed
Chazot N, et al. Priors and posteriors in Bayesian timing of divergence analyses: the age of butterflies revisited. Syst. Biol. 2019;68:797–813. doi: 10.1093/sysbio/syz002. PubMed DOI PMC
Allio R, et al. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Syst. Biol. 2020;69:38–60. doi: 10.1093/sysbio/syz030. PubMed DOI
Boggs, C. L., Watt, W. B. & Ehrlich, P. R. Butterflies: Ecology and Evolution Taking Flight (University of Chicago Press, 2003).
Braby MF, Trueman JWH, Eastwood R. When and where did troidine butterflies (Lepidoptera: Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the Late Cretaceous. Invertebr. Syst. 2005;19:113–143. doi: 10.1071/IS04020. DOI
Janz N, Nylin S. Butterflies and plants: a phylogenetic study. Evolution. 1998;52:486–502. doi: 10.2307/2411084. PubMed DOI
Braga MP, Landis MJ, Nylin S, Janz N, Ronquist F. Bayesian inference of ancestral host–parasite interactions under a phylogenetic model of host repertoire evolution. Syst. Biol. 2020;69:1149–1162. doi: 10.1093/sysbio/syaa019. PubMed DOI PMC
Braga MP, Janz N, Nylin S, Ronquist F, Landis MJ. Phylogenetic reconstruction of ancestral ecological networks through time for pierid butterflies and their host plants. Ecol. Lett. 2020;24:2134–2145. doi: 10.1111/ele.13842. PubMed DOI
Espeland M, et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 2018;28:770–778.e5. doi: 10.1016/j.cub.2018.01.061. PubMed DOI
Wahlberg N, Wheat CW, Peña C. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths) PLoS ONE. 2013;8:e80875. doi: 10.1371/journal.pone.0080875. PubMed DOI PMC
Linnert C, et al. Evidence for global cooling in the Late Cretaceous. Nat. Commun. 2014;5:4194. doi: 10.1038/ncomms5194. PubMed DOI PMC
Domingo L, Tomassini RL, Montalvo CI, Sanz-Pérez D, Alberdi MT. The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Sci. Rep. 2020;10:1608. doi: 10.1038/s41598-020-58575-6. PubMed DOI PMC
Carrillo JD, et al. Disproportionate extinction of South American mammals drove the asymmetry of the Great American Biotic Interchange. Proc. Natl Acad. Sci. USA. 2020;117:26281–26287. doi: 10.1073/pnas.2009397117. PubMed DOI PMC
Rolland J, Condamine FL, Beeravolu CR, Jiguet F, Morlon H. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora. Glob. Ecol. Biogeogr. 2015;24:1059–1071. doi: 10.1111/geb.12354. DOI
Condamine FL, Silva-Brandão KL, Kergoat GJ, Sperling FAH. Biogeographic and diversification patterns of neotropical Troidini butterflies (Papilionidae) support a museum model of diversity dynamics for Amazonia. BMC Evol. Biol. 2012;12:82. doi: 10.1186/1471-2148-12-82. PubMed DOI PMC
Chazot N, et al. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nat. Commun. 2021;12:5717. doi: 10.1038/s41467-021-25906-8. PubMed DOI PMC
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 2015;207:437–453. doi: 10.1111/nph.13264. PubMed DOI
Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. doi: 10.1002/ajb2.1019. PubMed DOI
Li H-T, et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants. 2019;5:461–470. doi: 10.1038/s41477-019-0421-0. PubMed DOI
Heikkilä M, Kaila L, Mutanen M, Peña C, Wahlberg N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B Biol. Sci. 2011;279:1093–1099. doi: 10.1098/rspb.2011.1430. PubMed DOI PMC
Braga MP, Guimarães PR, Wheat CW, Nylin S, Janz N. Unifying host-associated diversification processes using butterfly–plant networks. Nat. Commun. 2018;9:5155. doi: 10.1038/s41467-018-07677-x. PubMed DOI PMC
Robinson, G. S., Ackery, P. R., Kitching, I. J., Beccaloni, G. W. & Hernández, L. M. HOSTS – A Database of the World’s Lepidopteran Hostplants (accessed 1 August 2020); http://www.nhm.ac.uk/our-science/data/hostplants/
Kaliszewska ZA, et al. When caterpillars attack: biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae) Evolution. 2015;69:571–588. doi: 10.1111/evo.12599. PubMed DOI
Pierce NE, et al. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera) Annu. Rev. Entomol. 2002;47:733–771. doi: 10.1146/annurev.ento.47.091201.145257. PubMed DOI
Moreau CS, Bell CD. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographical range evolution of the ants. Evolution. 2013;67:2240–2257. doi: 10.1111/evo.12105. PubMed DOI
Forister ML, et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA. 2015;112:442. doi: 10.1073/pnas.1423042112. PubMed DOI PMC
Kelly CK, Southwood TRE. Species richness and resource availability: a phylogenetic analysis of insects associated with trees. Proc. Natl Acad. Sci. USA. 1999;96:8013–8016. doi: 10.1073/pnas.96.14.8013. PubMed DOI PMC
Kennedy CEJ, Southwood TRE. The number of species of insects associated with British trees: a re-analysis. J. Anim. Ecol. 1984;53:455–478. doi: 10.2307/4528. DOI
Rutz A, et al. The LOTUS initiative for open knowledge management in natural products research. eLife. 2022;11:e70780. doi: 10.7554/eLife.70780. PubMed DOI PMC
Ehrlich PR, Raven PH. Butterflies and plants: a study of coevolution. Evolution. 1965;18:586–608. doi: 10.2307/2406212. DOI
Lemmon AR, Emme SA, Lemmon EM. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 2012;61:727–744. doi: 10.1093/sysbio/sys049. PubMed DOI
Valencia-Montoya, W. A. et al. Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae). Proc. R. Soc. B Biol. Sci.288, 1–10 (2021). PubMed PMC
Toussaint, E. F. A. et al. Anchored phylogenomics illuminates the skipper butterfly tree of life. BMC Evol. Biol.18, 101 (2018). PubMed PMC
Espeland, M. et al. Four hundred shades of brown: higher level phylogeny of the problematic Euptychiina (Lepidoptera, Nymphalidae, Satyrinae) based on hybrid enrichment data. Mol. Phylogenet. Evol. 131, 116–124 (2019). PubMed
Carvalho, A. P. S. et al. Diversification is correlated with temperature in white and sulfur butterflies. Preprint at bioRxiv10.1101/2022.09.22.509088 (2022).
Kawahara, A. Y. et al. Phylogenetics of moth-like butterflies (Papilionoidea: Hedylidae) based on a new 13-locus target capture probe set. Mol. Phylogenet. Evol. 127, 600–605 (2018). PubMed
Toussaint EFA, et al. Afrotropics on the wing: phylogenomics and historical biogeography of awl and policeman skippers. Syst. Entomol. 2021;46:172–185. doi: 10.1111/syen.12455. DOI
Nunes, R. et al. Predictors of sequence capture in a large-scale anchored phylogenomics project. Front. Ecol. Evol.10, 943361 (2022).
Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl Acad. Sci. USA 116, 22657–22663 (2019). PubMed PMC
Regier JC, et al. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies) PLoS ONE. 2013;8:1–23. doi: 10.1371/journal.pone.0058568. PubMed DOI PMC
Mayer C, et al. Adding leaves to the Lepidoptera tree: capturing hundreds of nuclear genes from old museum specimens. Syst. Entomol. 2021;46:649–671. doi: 10.1111/syen.12481. DOI
Rota J, et al. The unresolved phylogenomic tree of butterflies and moths (Lepidoptera): assessing the potential causes and consequences. Syst. Entomol. 2022;47:531–550. doi: 10.1111/syen.12545. DOI
Breinholt JW, et al. Resolving relationships among the megadiverse butterflies and moths with a novel pipeline for anchored phylogenomics. Syst. Biol. 2018;67:78–93. doi: 10.1093/sysbio/syx048. PubMed DOI
Regier JC, et al. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature. 2010;463:1079–1083. doi: 10.1038/nature08742. PubMed DOI
Zwick, A. Degeneracy coding web service. GitHubhttps://github.com/carlosp420/degenerate-dna (2010).
Minh BQ, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl Acad. Sci. USA. 1997;94:6815. doi: 10.1073/pnas.94.13.6815. PubMed DOI PMC
Smith SA, O’Meara BC. TreePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics. 2012;28:2689–2690. doi: 10.1093/bioinformatics/bts492. PubMed DOI
Parham JF, et al. Best practices for justifying fossil calibrations. Syst. Biol. 2012;61:346–359. doi: 10.1093/sysbio/syr107. PubMed DOI PMC
de Jong R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea) Zootaxa. 2017;4270:1–63. doi: 10.11646/zootaxa.4270.1.1. PubMed DOI
Graur D, Martin W. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet. 2004;20:80–86. doi: 10.1016/j.tig.2003.12.003. PubMed DOI
Foster CS, et al. Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale. Syst. Biol. 2017;66:338–351. PubMed
Shields O. Fossil butterflies and the evolution of Lepidoptera. J. Res. Lepid. 1976;15:132–143. doi: 10.5962/p.333719. DOI
Wahlberg N. That awkward age for butterflies: insights from the age of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae) Syst. Biol. 2006;55:703–714. doi: 10.1080/10635150600913235. PubMed DOI
Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE. 2014;9:e89543–e89543. doi: 10.1371/journal.pone.0089543. PubMed DOI PMC
Rabosky DL, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 2014;5:701–707. doi: 10.1111/2041-210X.12199. DOI
Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Mesquitehttps://www.mesquiteproject.org (2018).
Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 2016;65:583–601. doi: 10.1093/sysbio/syw022. PubMed DOI
Beaulieu, J., O’Meara, B., Caetano, D., Boyko, J. & Vasconcelos, T. Package ‘hisse’. CRANhttps://CRAN.R-project.org/package=hisse (2021).
Rabosky DL, Goldberg EE. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 2015;64:340–355. doi: 10.1093/sysbio/syu131. PubMed DOI
van Nieukerken EJ, et al. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa. 2011;3148:212. doi: 10.11646/zootaxa.3148.1.41. PubMed DOI
Cong Q, Zhang J, Shen J, Grishin NV. Fifty new genera of Hesperiidae (Lepidoptera) Insecta Mundi. 2019;2019:0731. PubMed PMC
Shirey, V. et al. LepTraits 1.0 A globally comprehensive dataset of butterfly traits. Sci. Data.9, 382 (2022). PubMed PMC
Pinkert S, Barve V, Guralnick RP, Jetz W. Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive country‐level occurrence database. Glob. Ecol. Biogeogr. 2022;31:830–839. doi: 10.1111/geb.13475. DOI
Savela, M. Lepidoptera and some other life forms. FUNEThttps://www.funet.fi/pub/sci/bio/life/intro.html (2021).
Ree RH, Smith SA. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 2008;57:4–14. doi: 10.1080/10635150701883881. PubMed DOI
Smith SA. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the northern hemisphere plant clade Caprifolieae. J. Biogeogr. 2009;36:2324–2337. doi: 10.1111/j.1365-2699.2009.02160.x. DOI
Beeravolu, C. R. & Condamine, F. L. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. Preprint at bioRxiv10.1101/038695 (2016).
Matzke, N. J. BioGeoBEARS: biogeography with Bayesian (and likelihood) evolutionary analysis in R scripts (GitHub, 2018).
Allio R, et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 2021;12:354. doi: 10.1038/s41467-020-20507-3. PubMed DOI PMC
Udvardy, M. D. F. A classification of the biogeographical provinces of the world. Morges (Switzerland): International Union of Conservation of Nature and Natural Resources. IUCN Occasional Paper no. 18 (IUCN, 1975).
Ree RH. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution. 2005;59:257–265. PubMed
Ronquist F. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 1997;46:195–203. doi: 10.1093/sysbio/46.1.195. DOI
Li X, et al. A diversification relay race from Caribbean-Mesoamerica to the Andes: historical biogeography of Xylophanes hawkmoths. Proc. R. Soc. B Biol. Sci. 2022;289:20212435. doi: 10.1098/rspb.2021.2435. PubMed DOI PMC
Saito MU, Jinbo U, Yago M, Kurashima O, Ito M. Larval host records of butterflies in Japan. Ecol. Res. 2016;31:491–491. doi: 10.1007/s11284-016-1365-8. DOI
Veenakumari K, Mohanraj P, Sreekumar P. Host plant utilization by butterfly larvae in the Andaman and Nicobar Islands (Indian Ocean) J. Insect Conserv. 1997;1:235–246. doi: 10.1023/A:1018424302583. DOI
Kunte K. Additions to known larval host plants of Indian butterflies. J. Bombay Nat. Hist. Soc. 2006;103:119–122.
Kalesh S, Prakash SK. Additions to larval host plants of butterflies of the Western Ghats, Kerala, Southern India (Rhopalocera, Lepidoptera). Part 1. J. Bombay Nat. Hist. Soc. 2007;104:235–238.
Kalesh S, Prakash SK. Additions to larval host plants of butterflies of the Western Ghats, Kerala, Southern India (Rhopalocera, Lepidoptera). Part 2. J. Bombay Nat. Hist. Soc. 2015;112:111–113.
Naik D, Mustak MS. Additions to larval host plants of Indian butterflies (Lepidoptera) J. Bombay Nat. Hist. Soc. 2015;112:181–183.
Karmakar T, et al. Early stages and larval host plants of some northeastern Indian butterflies. J. Threat. Taxa. 2018;10:11780–11799. doi: 10.11609/jott.3169.10.6.11780-11799. DOI
Nitin R, et al. Larval host plants of the butterflies of the Western Ghats, India. J. Threat. Taxa. 2018;10:11495–11550. doi: 10.11609/jott.3104.10.4.11495-11550. DOI
Edger PP, et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA. 2015;112:8362. doi: 10.1073/pnas.1503926112. PubMed DOI PMC
Kembel SW, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. doi: 10.1093/bioinformatics/btq166. PubMed DOI
Beckett SJ. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 2016;3:140536. doi: 10.1098/rsos.140536. PubMed DOI PMC
Dormann CF, Gruber B, Fründ J. Introducing the bipartite package: analysing ecological networks. R News. 2008;8:8–11.
R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2009).
Revell L. J. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Wahlberg N, et al. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. Soc. B Biol. Sci. 2005;272:1577–1586. doi: 10.1098/rspb.2005.3124. PubMed DOI PMC