Cretaceous entomopathogenic fungi illuminate the early evolution of insect-fungal associations
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Second Tibetan Plateau Scientific Expedition and Research
Jiangsu Innovation Support Plan for International Science and Technology Cooperation Programme
Research Foundation Flanders
Science Foundation of Yunnan Province
Czech Science Foundation
PubMed
40495814
PubMed Central
PMC12152753
DOI
10.1098/rspb.2025.0407
Knihovny.cz E-zdroje
- Klíčová slova
- Mesozoic, amber, ant, fossil, host–parasite association,
- MeSH
- biologická evoluce * MeSH
- Diptera * mikrobiologie MeSH
- fylogeneze MeSH
- hmyz * mikrobiologie MeSH
- Hypocreales * fyziologie MeSH
- jantar MeSH
- zkameněliny * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jantar MeSH
Throughout evolution, entomopathogenic (insect-pathogenic) fungi have played a pivotal role in regulating insect populations. However, little is known about ancient entomopathogenic fungi due to the scarcity of fossils displaying typical pathogenic structures on their presumed hosts. Here, we report two new fungi, Paleoophiocordyceps gerontoformicae sp. nov. and Paleoophiocordyceps ironomyiae sp. nov., from mid-Cretaceous Kachin amber (approx. 99 million years old). They share common traits with Ophiocordyceps and are associated with an ant pupa and a fly, respectively. These fossils are among the oldest fossil records of animal-pathogenic fungi. In addition, we performed a divergence time estimation analysis showing that Ophiocordyceps likely originated during the Early Cretaceous. We further compiled the hosts of extant Ophiocordyceps and inferred the evolution of host associations within the genus based on ancestral character state reconstruction. Our results suggest that Ophiocordyceps made a host jump from Coleoptera to Lepidoptera and Hymenoptera during the Cretaceous, and its subsequent speciation was probably related to the increase in diversity and abundance of its moth and ant hosts. Our results not only highlight the ecological significance of pathogenic fungi in Mesozoic terrestrial ecosystems, but also provide new insights into the coevolution between entomopathogenic fungi and host insects.
Botanic Garden Meise Meise Flanders Belgium
Faculty of Science University of South Bohemia in Ceske Budejovice Ceske Budejovice Czech Republic
Institute of Entomology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
Research Group Mycology Department of Biology Ghent University Ghent Belgium
School of Life Science Yunnan University Kunming Yunnan People's Republic of China
Southwest United Graduate School Kunming Yunnan People's Republic of China
University of Chinese Academy of Sciences Beijing People's Republic of China
Zobrazit více v PubMed
Stork NE, McBroom J, Gely C, Hamilton AJ. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl Acad. Sci. USA 112, 7519–7523. ( 10.1073/pnas.1502408112) PubMed DOI PMC
Niskanen T, et al. 2023. Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. 48, 149–176. ( 10.1146/annurev-environ-112621-090937) DOI
Grimaldi D, Engel M. 2005. Evolution of the insects. Cambridge, UK: Cambridge University Press.
Taylor T, Taylor E, Krings M. 2015. Fossil fungi. Amsterdam, The Netherlands: Elsevier.
Vega FE, Meyling NV, Luangsa-ard JJ, Blackwell M. 2012. Fungal entomopathogens. In Insect pathology, pp. 171–220. Amsterdam, The Netherlands: Academic Press. ( 10.1016/b978-0-12-384984-7.00006-3) DOI
Wang C, Wang S. 2017. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu. Rev. Entomol. 62, 73–90. ( 10.1146/annurev-ento-031616-035509) PubMed DOI
Biedermann PHW, Vega FE. 2020. Ecology and evolution of insect–fungus mutualisms. Annu. Rev. Entomol. 65, 431–455. ( 10.1146/annurev-ento-011019-024910) PubMed DOI
Cheek M, et al. 2020. New scientific discoveries: plants and fungi. Plants People Planet 2, 371–388. ( 10.1002/ppp3.10148) DOI
Hong S, Sun Y, Chen H, Wang C. 2023. Suppression of the insect cuticular microbiomes by a fungal defensin to facilitate parasite infection. ISME J. 17, 1–11. ( 10.1038/s41396-022-01323-7) PubMed DOI PMC
Joop G, Vilcinskas A. 2016. Coevolution of parasitic fungi and insect hosts. Zoology 119, 350–358. ( 10.1016/j.zool.2016.06.005) PubMed DOI
Araújo JPM, Evans HC, Fernandes IO, Ishler MJ, Hughes DP. 2020. Zombie-ant fungi cross continents: II. Myrmecophilous hymenostilboid species and a novel zombie lineage. Mycologia 112, 1138–1170. ( 10.1080/00275514.2020.1822093) PubMed DOI
Andersen SB, Gerritsma S, Yusah KM, Mayntz D, Hywel‐Jones NL, Billen J, Boomsma JJ, Hughes DP. 2009. The life of a dead ant: the expression of an adaptive extended phenotype. Am. Nat. 174, 424–433. ( 10.1086/603640) PubMed DOI
Litwin A, Nowak M, Różalska S. 2020. Entomopathogenic fungi: unconventional applications. Rev. Environ. Sci. Biotechnol. 19, 23–42. ( 10.1007/s11157-020-09525-1) DOI
Haelewaters D, Blackwell M, Pfister DH. 2021. Laboulbeniomycetes: intimate fungal associates of arthropods. Annu. Rev. Entomol. 66, 257–276. ( 10.1146/annurev-ento-013020-013553) PubMed DOI
Humber RA. 2008. Evolution of entomopathogenicity in fungi. J. Invertebr. Pathol. 98, 262–266. ( 10.1016/j.jip.2008.02.017) PubMed DOI
Araújo JPM, Hughes DP. 2016. Diversity of entomopathogenic fungi: which groups conquered the insect body? In Genetics and molecular biology of entomopathogenic fungi, pp. 1–39. Amsterdam, The Netherlands: Academic Press. ( 10.1016/bs.adgen.2016.01.001) PubMed DOI
Mora MAE, Castilho AMC, Fraga ME. 2018. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84, 1–10. ( 10.1590/1808-1657000552015) DOI
Perreau M, Haelewaters D, Tafforeau P. 2021. A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections. Sci. Rep. 11, 2672. ( 10.1038/s41598-020-79481-x) PubMed DOI PMC
Halbwachs H. 2019. Fungi trapped in amber—a fossil legacy frozen in time. Mycol. Prog. 18, 879–893. ( 10.1007/s11557-019-01498-y) DOI
Harper CJ, Krings M. 2021. Fungi as parasites: a conspectus of the fossil record. In The evolution and fossil record of parasitism (eds De Baets K, Huntley JW), pp. 69–108. Cham, Switzerland: Springer. ( 10.1007/978-3-030-42484-8_3) DOI
Luo C, Haelewaters D, Krings M. 2023. Fossils of parasitic fungi. Preprint. ( 10.22541/au.166696714.49994889/v2) DOI
Sung GH, Poinar G, Spatafora J. 2008. The oldest fossil evidence of animal parasitism by fungi supports a cretaceous diversification of fungal–arthropod symbioses. Mol. Phylogenetics Evol. 49, 495–502. ( 10.1016/j.ympev.2008.08.028) PubMed DOI
Araújo JPM, Evans HC, Kepler R, Hughes DP. 2018. Zombie-ant fungi across continents: 15 new species and new combinations within Ophiocordyceps. I. Myrmecophilous hirsutelloid species. Stud. Mycol. 90, 119–160. ( 10.1016/j.simyco.2017.12.002) PubMed DOI PMC
Araújo JPM, Hughes DP. 2019. Zombie-ant fungi emerged from non-manipulating, beetle-infecting ancestors. Curr. Biol. 29, 3735–3738.( 10.1016/j.cub.2019.09.004) PubMed DOI
Tang D, Huang O, Zou W, Wang Y, Wang Y, Dong Q, Sun T, Yang G, Yu H. 2023. Six new species of zombie-ant fungi from Yunnan in China. IMA Fungus 14, 9. ( 10.1186/s43008-023-00114-9) PubMed DOI PMC
Hughes DP, Araújo JPM, Loreto RG, Quevillon L, De Bekker C, Evans HC. 2016. From so simple a beginning: the evolution of behavioral manipulation by fungi. In Genetics and molecular biology of entomopathogenic fungi, pp. 437–469. Amsterdam, The Netherlands: Academic Press. ( 10.1016/bs.adgen.2016.01.004) PubMed DOI
Loreto RG, Araújo JPM, Kepler RM, Fleming KR, Moreau CS, Hughes DP. 2018. Evidence for convergent evolution of host parasitic manipulation in response to environmental conditions. Evolution 72, 2144–2155. ( 10.1111/evo.13489) PubMed DOI
Hughes DP, Wappler T, Labandeira CC. 2011. Ancient death-grip leaf scars reveal ant–fungal parasitism. Biol. Lett. 7, 67–70. ( 10.1098/rsbl.2010.0521) PubMed DOI PMC
Araújo JPM, Moriguchi MG, Uchiyama S, Kinjo N, Matsuura Y. 2021. Ophiocordyceps salganeicola, a parasite of social cockroaches in Japan and insights into the evolution of other closely-related Blattodea-associated lineages. IMA Fungus 12, 3. ( 10.1186/s43008-020-00053-9) PubMed DOI PMC
Araújo J, Hughes D. 2017. The fungal spore: myrmecophilous
Kawahara AY, et al. 2019. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl Acad. Sci. USA 116, 22657–22663. ( 10.1073/pnas.1907847116) PubMed DOI PMC
Kawahara AY, et al. 2023. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat. Ecol. Evol. 7, 903–913. ( 10.1038/s41559-023-02041-9) PubMed DOI PMC
Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312, 101–104. ( 10.1126/science.1124891) PubMed DOI
Boudinot BE, Richter A, Katzke J, Chaul JCM, Keller RA, Economo EP, Beutel RG, Yamamoto S. 2022. Evidence for the evolution of eusociality in stem ants and a systematic revision of †Gerontoformica (Hymenoptera: Formicidae). Zool. J. Linn. Soc. 195, 1355–1389. ( 10.1093/zoolinnean/zlab097) DOI
Barden P, Grimaldi DA. 2016. Adaptive radiation in socially advanced stem-group ants from the cretaceous. Curr. Biol. 26, 515–521. ( 10.1016/j.cub.2015.12.060) PubMed DOI
Yamamoto S, Maruyama M, Parker J. 2016. Evidence for social parasitism of early insect societies by cretaceous rove beetles. Nat. Commun. 7, 13658. ( 10.1038/ncomms13658) PubMed DOI PMC
Zhou YL, Ślipiński A, Ren D, Parker J. 2019. A Mesozoic clown beetle myrmecophile (Coleoptera: Histeridae). eLife 8, e44985. ( 10.7554/elife.44985) PubMed DOI PMC
Walker TN, Hughes WOH. 2009. Adaptive social immunity in leaf-cutting ants. Biol. Lett. 5, 446–448. ( 10.1098/rsbl.2009.0107) PubMed DOI PMC
Malagocka J, Eilenberg J, Jensen AB. 2019. Social immunity behaviour among ants infected by specialist and generalist fungi. Curr. Opin. Insect Sci. 33, 99–104. ( 10.1016/j.cois.2019.05.001) PubMed DOI
Wei D, Wanasinghe D, Hyde K, Mortimer P, Xu J, To-anun C, Yu F, Zha L. 2020. Ophiocordyceps tianshanensis sp. nov. on ants from Tianshan mountains, PR China. Phytotaxa 464, 277–292. ( 10.11646/phytotaxa.464.4.2) DOI
Zhou YM, Zhi JR, Qu JJ, Zou X. 2022. Estimated divergence times of Lecanicillium in the family Cordycipitaceae provide insights into the attribution of Lecanicillium. Front. Microbiol. 13, 859886. ( 10.3389/fmicb.2022.859886) PubMed DOI PMC
Zheng D, et al. 2018. Middle-late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Sci. Adv. 4, t1380. ( 10.1126/sciadv.aat1380) PubMed DOI PMC
McKenna DD, et al. 2019. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA 116, 24729–24737. ( 10.1073/pnas.1909655116) PubMed DOI PMC
Wang B, Xu C, Jarzembowski EA. 2022. Ecological radiations of insects in the mesozoic. Trends Ecol. Evol. 37, 529–540. ( 10.1016/j.tree.2022.02.007) PubMed DOI
Benton MJ, Wilf P, Sauquet H. 2022. The angiosperm terrestrial revolution and the origins of modern biodiversity. New Phytol. 233, 2017–2035. ( 10.1111/nph.17822) PubMed DOI
Shi G, Grimaldi D, Harlow G, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. 2012. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163. ( 10.1016/j.cretres.2012.03.014) DOI
Yu T, et al. 2019. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 116, 11345–11350. ( 10.1073/pnas.1821292116) PubMed DOI PMC
Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57, 5–59. ( 10.3114/sim.2007.57.01) PubMed DOI PMC
Quandt CA, et al. 2014. Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 5, 121–134. ( 10.5598/imafungus.2014.05.01.12) PubMed DOI PMC
Katoh K, Rozewicki J, Yamada K. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinform. 20, 1160–1166. ( 10.1093/bib/bbx108) PubMed DOI PMC
Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. ( 10.1111/j.1096-0031.2010.00329.x) PubMed DOI
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. ( 10.1038/nmeth.4285) PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. ( 10.1093/molbev/msu300) PubMed DOI PMC
Hoang DT, Chernomor O. 2017. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. ( 10.1093/molbev/msx281) PubMed DOI PMC
Ronquist F, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. ( 10.1093/sysbio/sys029) PubMed DOI PMC
Huelsenbeck JP, Larget B, Alfaro ME. 2004. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133. ( 10.1093/molbev/msh123) PubMed DOI
Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24, 2669–2680. ( 10.1093/molbev/msm193) PubMed DOI
Fan Q, Yang T, Li H, Wang X, Liao H, Shen P, Yang Z, Zeng W, Wang Y. 2024. Molecular phylogeny and morphology reveal two new entomopathogenic species of Ophiocordyceps (Ophiocordycipitaceae, Hypocreales) parasitic on termites from China. MycoKeys 8, 1–24. ( 10.3897/mycokeys.103.116153) PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. ( 10.1093/sysbio/syy032) PubMed DOI PMC
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. ( 10.1111/j.2041-210x.2011.00169.x) DOI
Zhuang Y. 2025. Data for ‘Cretaceous entomopathogenic fungi illuminate the early evolution of insect–fungal associations’. Figshare. ( 10.6084/m9.figshare.28876400) PubMed DOI PMC
Zhuang Y, Luo C, Tang D, Araújo JPM de, Yu H, Zhao Jet al. 2025. Supplementary material from: Cretaceous entomopathogenic fungi illuminate the early evolution of insect–fungal associations. Figshare. ( 10.6084/m9.figshare.c.7828966) PubMed DOI PMC
Cretaceous entomopathogenic fungi illuminate the early evolution of insect-fungal associations