Cretaceous entomopathogenic fungi illuminate the early evolution of insect-fungal associations

. 2025 Jun ; 292 (2048) : 20250407. [epub] 20250611

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40495814

Grantová podpora
Second Tibetan Plateau Scientific Expedition and Research
Jiangsu Innovation Support Plan for International Science and Technology Cooperation Programme
Research Foundation Flanders
Science Foundation of Yunnan Province
Czech Science Foundation

Throughout evolution, entomopathogenic (insect-pathogenic) fungi have played a pivotal role in regulating insect populations. However, little is known about ancient entomopathogenic fungi due to the scarcity of fossils displaying typical pathogenic structures on their presumed hosts. Here, we report two new fungi, Paleoophiocordyceps gerontoformicae sp. nov. and Paleoophiocordyceps ironomyiae sp. nov., from mid-Cretaceous Kachin amber (approx. 99 million years old). They share common traits with Ophiocordyceps and are associated with an ant pupa and a fly, respectively. These fossils are among the oldest fossil records of animal-pathogenic fungi. In addition, we performed a divergence time estimation analysis showing that Ophiocordyceps likely originated during the Early Cretaceous. We further compiled the hosts of extant Ophiocordyceps and inferred the evolution of host associations within the genus based on ancestral character state reconstruction. Our results suggest that Ophiocordyceps made a host jump from Coleoptera to Lepidoptera and Hymenoptera during the Cretaceous, and its subsequent speciation was probably related to the increase in diversity and abundance of its moth and ant hosts. Our results not only highlight the ecological significance of pathogenic fungi in Mesozoic terrestrial ecosystems, but also provide new insights into the coevolution between entomopathogenic fungi and host insects.

Botanic Garden Meise Meise Flanders Belgium

Department of Geological Survey and Mineral Exploration Myanmar Gems Museum Ministry of Natural Resources and Environmental Conservation Nay Pyi Taw Myanmar

Faculty of Science University of South Bohemia in Ceske Budejovice Ceske Budejovice Czech Republic

Institute of Entomology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic

MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment Yunnan University Kunming Yunnan People's Republic of China

Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark

Research Group Mycology Department of Biology Ghent University Ghent Belgium

School of Life Science Yunnan University Kunming Yunnan People's Republic of China

Southwest United Graduate School Kunming Yunnan People's Republic of China

State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming Yunnan People's Republic of China

State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing People's Republic of China

State Key Laboratory of Palaeobiology and Stratigraphy Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences Nanjing People's Republic of China

University of Chinese Academy of Sciences Beijing People's Republic of China

Yunnan Herbal Laboratory College of Ecology and Environmental Sciences Yunnan University Kunming Yunnan People's Republic of China

Yunnan Key Laboratory for Palaeobiology Institute of Palaeontology Yunnan University Kunming Yunnan People's Republic of China

Zobrazit více v PubMed

Stork NE, McBroom J, Gely C, Hamilton AJ. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl Acad. Sci. USA 112, 7519–7523. ( 10.1073/pnas.1502408112) PubMed DOI PMC

Niskanen T, et al. 2023. Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. 48, 149–176. ( 10.1146/annurev-environ-112621-090937) DOI

Grimaldi D, Engel M. 2005. Evolution of the insects. Cambridge, UK: Cambridge University Press.

Taylor T, Taylor E, Krings M. 2015. Fossil fungi. Amsterdam, The Netherlands: Elsevier.

Vega FE, Meyling NV, Luangsa-ard JJ, Blackwell M. 2012. Fungal entomopathogens. In Insect pathology, pp. 171–220. Amsterdam, The Netherlands: Academic Press. ( 10.1016/b978-0-12-384984-7.00006-3) DOI

Wang C, Wang S. 2017. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu. Rev. Entomol. 62, 73–90. ( 10.1146/annurev-ento-031616-035509) PubMed DOI

Biedermann PHW, Vega FE. 2020. Ecology and evolution of insect–fungus mutualisms. Annu. Rev. Entomol. 65, 431–455. ( 10.1146/annurev-ento-011019-024910) PubMed DOI

Cheek M, et al. 2020. New scientific discoveries: plants and fungi. Plants People Planet 2, 371–388. ( 10.1002/ppp3.10148) DOI

Hong S, Sun Y, Chen H, Wang C. 2023. Suppression of the insect cuticular microbiomes by a fungal defensin to facilitate parasite infection. ISME J. 17, 1–11. ( 10.1038/s41396-022-01323-7) PubMed DOI PMC

Joop G, Vilcinskas A. 2016. Coevolution of parasitic fungi and insect hosts. Zoology 119, 350–358. ( 10.1016/j.zool.2016.06.005) PubMed DOI

Araújo JPM, Evans HC, Fernandes IO, Ishler MJ, Hughes DP. 2020. Zombie-ant fungi cross continents: II. Myrmecophilous hymenostilboid species and a novel zombie lineage. Mycologia 112, 1138–1170. ( 10.1080/00275514.2020.1822093) PubMed DOI

Andersen SB, Gerritsma S, Yusah KM, Mayntz D, Hywel‐Jones NL, Billen J, Boomsma JJ, Hughes DP. 2009. The life of a dead ant: the expression of an adaptive extended phenotype. Am. Nat. 174, 424–433. ( 10.1086/603640) PubMed DOI

Litwin A, Nowak M, Różalska S. 2020. Entomopathogenic fungi: unconventional applications. Rev. Environ. Sci. Biotechnol. 19, 23–42. ( 10.1007/s11157-020-09525-1) DOI

Haelewaters D, Blackwell M, Pfister DH. 2021. Laboulbeniomycetes: intimate fungal associates of arthropods. Annu. Rev. Entomol. 66, 257–276. ( 10.1146/annurev-ento-013020-013553) PubMed DOI

Humber RA. 2008. Evolution of entomopathogenicity in fungi. J. Invertebr. Pathol. 98, 262–266. ( 10.1016/j.jip.2008.02.017) PubMed DOI

Araújo JPM, Hughes DP. 2016. Diversity of entomopathogenic fungi: which groups conquered the insect body? In Genetics and molecular biology of entomopathogenic fungi, pp. 1–39. Amsterdam, The Netherlands: Academic Press. ( 10.1016/bs.adgen.2016.01.001) PubMed DOI

Mora MAE, Castilho AMC, Fraga ME. 2018. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84, 1–10. ( 10.1590/1808-1657000552015) DOI

Perreau M, Haelewaters D, Tafforeau P. 2021. A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections. Sci. Rep. 11, 2672. ( 10.1038/s41598-020-79481-x) PubMed DOI PMC

Halbwachs H. 2019. Fungi trapped in amber—a fossil legacy frozen in time. Mycol. Prog. 18, 879–893. ( 10.1007/s11557-019-01498-y) DOI

Harper CJ, Krings M. 2021. Fungi as parasites: a conspectus of the fossil record. In The evolution and fossil record of parasitism (eds De Baets K, Huntley JW), pp. 69–108. Cham, Switzerland: Springer. ( 10.1007/978-3-030-42484-8_3) DOI

Luo C, Haelewaters D, Krings M. 2023. Fossils of parasitic fungi. Preprint. ( 10.22541/au.166696714.49994889/v2) DOI

Sung GH, Poinar G, Spatafora J. 2008. The oldest fossil evidence of animal parasitism by fungi supports a cretaceous diversification of fungal–arthropod symbioses. Mol. Phylogenetics Evol. 49, 495–502. ( 10.1016/j.ympev.2008.08.028) PubMed DOI

Araújo JPM, Evans HC, Kepler R, Hughes DP. 2018. Zombie-ant fungi across continents: 15 new species and new combinations within Ophiocordyceps. I. Myrmecophilous hirsutelloid species. Stud. Mycol. 90, 119–160. ( 10.1016/j.simyco.2017.12.002) PubMed DOI PMC

Araújo JPM, Hughes DP. 2019. Zombie-ant fungi emerged from non-manipulating, beetle-infecting ancestors. Curr. Biol. 29, 3735–3738.( 10.1016/j.cub.2019.09.004) PubMed DOI

Tang D, Huang O, Zou W, Wang Y, Wang Y, Dong Q, Sun T, Yang G, Yu H. 2023. Six new species of zombie-ant fungi from Yunnan in China. IMA Fungus 14, 9. ( 10.1186/s43008-023-00114-9) PubMed DOI PMC

Hughes DP, Araújo JPM, Loreto RG, Quevillon L, De Bekker C, Evans HC. 2016. From so simple a beginning: the evolution of behavioral manipulation by fungi. In Genetics and molecular biology of entomopathogenic fungi, pp. 437–469. Amsterdam, The Netherlands: Academic Press. ( 10.1016/bs.adgen.2016.01.004) PubMed DOI

Loreto RG, Araújo JPM, Kepler RM, Fleming KR, Moreau CS, Hughes DP. 2018. Evidence for convergent evolution of host parasitic manipulation in response to environmental conditions. Evolution 72, 2144–2155. ( 10.1111/evo.13489) PubMed DOI

Hughes DP, Wappler T, Labandeira CC. 2011. Ancient death-grip leaf scars reveal ant–fungal parasitism. Biol. Lett. 7, 67–70. ( 10.1098/rsbl.2010.0521) PubMed DOI PMC

Araújo JPM, Moriguchi MG, Uchiyama S, Kinjo N, Matsuura Y. 2021. Ophiocordyceps salganeicola, a parasite of social cockroaches in Japan and insights into the evolution of other closely-related Blattodea-associated lineages. IMA Fungus 12, 3. ( 10.1186/s43008-020-00053-9) PubMed DOI PMC

Araújo J, Hughes D. 2017. The fungal spore: myrmecophilous

Kawahara AY, et al. 2019. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl Acad. Sci. USA 116, 22657–22663. ( 10.1073/pnas.1907847116) PubMed DOI PMC

Kawahara AY, et al. 2023. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat. Ecol. Evol. 7, 903–913. ( 10.1038/s41559-023-02041-9) PubMed DOI PMC

Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312, 101–104. ( 10.1126/science.1124891) PubMed DOI

Boudinot BE, Richter A, Katzke J, Chaul JCM, Keller RA, Economo EP, Beutel RG, Yamamoto S. 2022. Evidence for the evolution of eusociality in stem ants and a systematic revision of †Gerontoformica (Hymenoptera: Formicidae). Zool. J. Linn. Soc. 195, 1355–1389. ( 10.1093/zoolinnean/zlab097) DOI

Barden P, Grimaldi DA. 2016. Adaptive radiation in socially advanced stem-group ants from the cretaceous. Curr. Biol. 26, 515–521. ( 10.1016/j.cub.2015.12.060) PubMed DOI

Yamamoto S, Maruyama M, Parker J. 2016. Evidence for social parasitism of early insect societies by cretaceous rove beetles. Nat. Commun. 7, 13658. ( 10.1038/ncomms13658) PubMed DOI PMC

Zhou YL, Ślipiński A, Ren D, Parker J. 2019. A Mesozoic clown beetle myrmecophile (Coleoptera: Histeridae). eLife 8, e44985. ( 10.7554/elife.44985) PubMed DOI PMC

Walker TN, Hughes WOH. 2009. Adaptive social immunity in leaf-cutting ants. Biol. Lett. 5, 446–448. ( 10.1098/rsbl.2009.0107) PubMed DOI PMC

Malagocka J, Eilenberg J, Jensen AB. 2019. Social immunity behaviour among ants infected by specialist and generalist fungi. Curr. Opin. Insect Sci. 33, 99–104. ( 10.1016/j.cois.2019.05.001) PubMed DOI

Wei D, Wanasinghe D, Hyde K, Mortimer P, Xu J, To-anun C, Yu F, Zha L. 2020. Ophiocordyceps tianshanensis sp. nov. on ants from Tianshan mountains, PR China. Phytotaxa 464, 277–292. ( 10.11646/phytotaxa.464.4.2) DOI

Zhou YM, Zhi JR, Qu JJ, Zou X. 2022. Estimated divergence times of Lecanicillium in the family Cordycipitaceae provide insights into the attribution of Lecanicillium. Front. Microbiol. 13, 859886. ( 10.3389/fmicb.2022.859886) PubMed DOI PMC

Zheng D, et al. 2018. Middle-late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Sci. Adv. 4, t1380. ( 10.1126/sciadv.aat1380) PubMed DOI PMC

McKenna DD, et al. 2019. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA 116, 24729–24737. ( 10.1073/pnas.1909655116) PubMed DOI PMC

Wang B, Xu C, Jarzembowski EA. 2022. Ecological radiations of insects in the mesozoic. Trends Ecol. Evol. 37, 529–540. ( 10.1016/j.tree.2022.02.007) PubMed DOI

Benton MJ, Wilf P, Sauquet H. 2022. The angiosperm terrestrial revolution and the origins of modern biodiversity. New Phytol. 233, 2017–2035. ( 10.1111/nph.17822) PubMed DOI

Shi G, Grimaldi D, Harlow G, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. 2012. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163. ( 10.1016/j.cretres.2012.03.014) DOI

Yu T, et al. 2019. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 116, 11345–11350. ( 10.1073/pnas.1821292116) PubMed DOI PMC

Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57, 5–59. ( 10.3114/sim.2007.57.01) PubMed DOI PMC

Quandt CA, et al. 2014. Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 5, 121–134. ( 10.5598/imafungus.2014.05.01.12) PubMed DOI PMC

Katoh K, Rozewicki J, Yamada K. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinform. 20, 1160–1166. ( 10.1093/bib/bbx108) PubMed DOI PMC

Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. ( 10.1111/j.1096-0031.2010.00329.x) PubMed DOI

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. ( 10.1038/nmeth.4285) PubMed DOI PMC

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. ( 10.1093/molbev/msu300) PubMed DOI PMC

Hoang DT, Chernomor O. 2017. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. ( 10.1093/molbev/msx281) PubMed DOI PMC

Ronquist F, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. ( 10.1093/sysbio/sys029) PubMed DOI PMC

Huelsenbeck JP, Larget B, Alfaro ME. 2004. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133. ( 10.1093/molbev/msh123) PubMed DOI

Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24, 2669–2680. ( 10.1093/molbev/msm193) PubMed DOI

Fan Q, Yang T, Li H, Wang X, Liao H, Shen P, Yang Z, Zeng W, Wang Y. 2024. Molecular phylogeny and morphology reveal two new entomopathogenic species of Ophiocordyceps (Ophiocordycipitaceae, Hypocreales) parasitic on termites from China. MycoKeys 8, 1–24. ( 10.3897/mycokeys.103.116153) PubMed DOI PMC

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. ( 10.1093/sysbio/syy032) PubMed DOI PMC

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. ( 10.1111/j.2041-210x.2011.00169.x) DOI

Zhuang Y. 2025. Data for ‘Cretaceous entomopathogenic fungi illuminate the early evolution of insect–fungal associations’. Figshare. ( 10.6084/m9.figshare.28876400) PubMed DOI PMC

Zhuang Y, Luo C, Tang D, Araújo JPM de, Yu H, Zhao Jet al. 2025. Supplementary material from: Cretaceous entomopathogenic fungi illuminate the early evolution of insect–fungal associations. Figshare. ( 10.6084/m9.figshare.c.7828966) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cretaceous entomopathogenic fungi illuminate the early evolution of insect-fungal associations

. 2025 Jun ; 292 (2048) : 20250407. [epub] 20250611

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...