A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33514784
PubMed Central
PMC7846571
DOI
10.1038/s41598-020-79481-x
PII: 10.1038/s41598-020-79481-x
Knihovny.cz E-resources
- MeSH
- Ascomycota * MeSH
- Coleoptera microbiology MeSH
- X-Ray Microtomography * MeSH
- Synchrotrons * MeSH
- Fossils * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The discovery of a new fossil species of the Caribbeo-Mexican genus Proptomaphaginus (Coleoptera, Leiodidae, Cholevinae) from Dominican amber, associated with a new fossil parasitic fungus in the genus Columnomyces (Ascomycota, Laboulbeniales), triggered an investigation of extant species of Proptomaphaginus and revealed the long-enduring parasitic association between these two genera. This effort resulted in the description of the fossil species †Proptomaphaginus alleni sp. nov., and one fossil and two extant species of Columnomyces, selectively associated with species of Proptomaphaginus: †Columnomyces electri sp. nov. associated with the fossil †Proptomaphaginus alleni in Dominican amber, Columnomyces hispaniolensis sp. nov. with the extant Proptomaphaginus hispaniolensis (endemic of Hispaniola), and Columnomyces peckii sp. nov. with the extant Proptomaphaginus puertoricensis (endemic of Puerto Rico). Based on biogeography, our current understanding is that the Caribbean species of Proptomaphaginus and their parasitic species of Columnomyces have coevolved since the Miocene. This is the first occurrence of such a coevolution between a genus of parasitic fungus and a genus of Coleoptera. The phylogenetic relations among Proptomaphaginus species are also addressed based on a parsimony analysis. Fossil specimens were observed by propagation phase-contrast synchrotron X-ray microtomography (PPC-SRμCT) and extant specimens were obtained through the study of preserved dried, pinned insects, attesting for the importance of (i) technological advancement and (ii) natural history collections in the study of microparasitic relationships.
Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
Department of Zoology University of South Bohemia České Budějovice Czech Republic
See more in PubMed
Hawksworth DL. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 1991;95:641–655. doi: 10.1016/S0953-7562(09)80810-1. DOI
Rossman A. A strategy for an all-taxa inventory of fungal biodiversity. In: Peng CI, Chou CH, editors. Biodiversity and Terrestrial Ecosystems. Taipei: Academia Sinica Monograph Series; 1994. pp. 169–194.
Weir A, Hammond PM. Laboulbeniales on beetles: Host utilization patterns and species richness of the parasites. Biodivers. Conserv. 1997;16:701–719. doi: 10.1023/A:1018318320019. DOI
Müller GM, Schmidt JP. Fungal biodiversity: What do we know? What can we predict? Biodivers. Conserv. 2007;16:1–5. doi: 10.1007/s10531-006-9117-7. DOI
Schmidt JP, Müller GM. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 2007;16:99–111. doi: 10.1007/s10531-006-9129-3. DOI
Blackwell M. The fungi: 1, 2, 3… 5.1 million species? Am. J. Bot. 2011;98:426–438. doi: 10.3732/ajb.1000298. PubMed DOI
Benjamin RK, Blackwell M, Chapella I, Humber RA, Jones KG, Klepzig KA, Lichtwardt RW, Malloch D, Noda H, Roeper RA, Spatafora JW, Weir A. The search for diversity of insects and other arthropod associated fungi. In: Mueller GM, Bills GF, Foster MS, editors. Biodiversity of Fungi: Inventory and Monitoring Methods. New York: Elsevier Academic Press; 2004. pp. 395–433.
Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, ThorstenLumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007;111:509–547. doi: 10.1016/j.mycres.2007.03.004. PubMed DOI
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalysn R, White MM, Stajich JE. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108:1028–1046. doi: 10.3852/16-042. PubMed DOI PMC
Haelewaters D, Pfliegler WP, Gorczak M, Pfister DH. Birth of an order: comprehensive molecular phylogenetic study reveals that Herpomyces (Fungi, Laboulbeniomycetes) is not part of Laboulbeniales. Mol. Phylogenet. Evol. 2019;133:286–301. doi: 10.1016/j.ympev.2019.01.007. PubMed DOI
Haelewaters D, Blackwell M, Pfister DH. Laboulbeniomycetes: intimate fungal associates of arthropods. Annu. Rev. Entomol. 2020 doi: 10.1146/annurev-ento-013020-013553. PubMed DOI
Haelewaters D, Gorczak M, Pfliegler WP, Tartally A, Tischer M, Wrzosek M, Pfister DH. Bringing Laboulbeniales into the 21st century: enhanced techniques for extraction and PCR amplification of DNA from minute ectoparasitic fungi. IMA Fungus. 2015;6:363–372. doi: 10.5598/imafungus.2015.06.02.08. PubMed DOI PMC
Sundberg H, Ekman S, Kruys Å. A crush on small fungi: An efficient and quick method for obtaining DNA from minute ascomycetes. Methods Ecol. Evol. 2018;9:148–158. doi: 10.1111/2041-210X.12850. DOI
Rossi W, Kotrba M, Striebel B. A new species of Stigmatomyces from Baltic amber, the first fossil record of Laboulbeniomycetes. Mycol. Res. 2005;109:271–274. doi: 10.1017/S0953756204001819. PubMed DOI
Weitschat W. Bitterfelder Bernstein—ein eozäner Bernstein auf miozäner Lagerstätte. Metalla. 1997;66:71–84.
Knuth G, Koch T, Rappsilber I, Volland L. Concerning amber in the Bitterfeld region: Geologic and genetic aspects. Hallesch. Jahrb. Geowiss. 2002;24:35–46.
Blumenstengel H. Zur Palynologie und Stratigraphie der Bitterfelde Bernsteinvorkommen (Tertiär) Exkurs. f. Veröfftl. DGG. 2004;224:17.
Standke G. Bitterfelder Bernstein gleich Baltischer Bernstein? Eine geologische Raum-Zeit-Betrachtung und genetische Schlußfolgerungen. Exkurs. f. Veröfftl. DGG. 2008;236:11–33.
Benjamin RK. New genera of Laboulbeniales. Aliso. 1955;3:183–197. doi: 10.5642/aliso.19550302.08. DOI
Santamaría S. Two new genera of Laboulbeniales allied to Zodiomyces. Mycologia. 2004;96:761–772. doi: 10.1080/15572536.2005.11832924. PubMed DOI
Rossi W, Santamaría S. New species of Diphymyces (Laboulbeniales, Acomycota) Mycol. Progr. 2010;9:597–601. doi: 10.1007/s11557-010-0667-4. DOI
Haelewaters D, Rossi W. Laboulbeniales parasitic on American small carrion beetles: new species of Corethromyces, Diphymyces, and Rodaucea. Mycologia. 2017;109:655–666. doi: 10.1080/00275514.2017.1379118. PubMed DOI
Huggert L. Laboulbeniales on coleoptera from Sweden (Ascomycetes). I. Host families Silphidae and Liodidae. Svensk. Bot. Tidskr. 1973;67:238–252.
Haelewaters D, Schilthuizen M, Pfister DH. On Diphymyces (Laboulbeniales, Ascomycota) in Malaysian Borneo. Plant. Ecol. Evol. 2014;147:93–100. doi: 10.5091/plecevo.2014.912. DOI
Rossi W, Santamaría S. Rodaucea, a new genus of the Laboulbeniales. Mycologia. 2012;104:785–788. doi: 10.3852/11-337. PubMed DOI
Peck SB. New cavernicolous Proptomaphaginus from Hispaniola and Mexico (Coleoptera: Leiodidae: Cholevinae) Florida Entomol. 1983;66:254–260. doi: 10.2307/3494249. DOI
Peck SB, Cook J. A review of the small carrion beetles and the round fungus beetles of the West Indies (Coleoptera: Leiodidae), with descriptions of two new genera and 61 new species. Insecta Mundi. 2014;397:1–76.
Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger JJ, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl. Phys. A. 2006;83:195–202. doi: 10.1007/s00339-006-3507-2. DOI
Perreau M, Tafforeau P. Virtual dissection using phase-contrast X-ray synchrotron microtomography: reducing the gap between fossils and extant species. Syst. Entomol. 2011;36:573–580. doi: 10.1111/j.1365-3113.2011.00573.x. DOI
Lak M, Néraudeau D, Nel A, Cloetens P, Perrichot V, Tafforeau P. Phase contrast X-ray synchrotron imaging: opening access to fossil inclusions in opaque amber. Microsc. Microanal. 2008;14:251–259. doi: 10.1017/S1431927608080264. PubMed DOI
Carayon J. Emploi du noir chlorazole en anatomie microscopique des insectes. Ann. Soc. Entomol. Fr. 1969;5:179–193.
Liu J, Haelewaters D, Pfliegler WP, Page RA, Dick CW, Aime MC. A new species of Gloeandromyces from Ecuador and Panama revealed by morphology and phylogenetic re-construction, with a discussion of secondary barcodes in Laboulbeniomycetes taxonomy. Mycologia. 2020 doi: 10.1080/00275514.2020.1781496. PubMed DOI
Thiers, B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanic Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/. Accessed 7 Aug 2020.
Swofford DLPAUP. Phylogenetic Analysis Using Parsimony (and other methods). Version 4. Sunderland: Sinauer Associates; 2003.
Nixon KC. Winclada Version 1.00.08. New York: Ithaca; 2002.
Peck SB. New species and records of “small carrion beetles” (Coleoptera: Leiodidae: Cholevinae) from caves and forests of Cuba and Hispaniola. Can. Entomol. 1999;131:605–611. doi: 10.4039/Ent131605-5. DOI
Perreau M. Catalogue des Coléoptères Leiodidae Cholevinae et Platypsyllinae. Mém. Soc. Entomol. Fr. 2000;4:1–460.
Schilthuizen M, Perreau M, Njunjić I. A review of the Cholevinae (Coleoptera, Leiodidae) from the island of Borneo. Zookeys. 2018;777:57–108. doi: 10.3897/zookeys.777.23212. PubMed DOI PMC
Peck SB, Newton AF. An annotated catalog of the Leiodidae (Coleoptera) of the Nearctic Region (Continental North America North of Mexico) Coleopt. Bull. 2017;71:211–258. doi: 10.1649/0010-065X-71.2.211. DOI
De Kesel A. Host specificity and habitat preference of Laboulbenia slackensis. Mycologia. 1996;88:565–573. doi: 10.1080/00275514.1996.12026687. DOI
Haelewaters D, De Kesel A, Pfister DH. Integrative taxonomy reveals hidden species within a common fungal parasite of ladybirds. Sci. Rep. 2018;8:15966. doi: 10.1038/s41598-018-34319-5. PubMed DOI PMC
Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, Schmidt AR. Estimating the Phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Mol. Phylogenet. Evol. 2014;78:386–398. doi: 10.1016/j.ympev.2014.04.024. PubMed DOI
Alekseev VI, Bukejs A, McKellar RC. The second fossil species of Cathartosilvanus (Coleoptera: Cucujoidea: Silvanidae) from Eocene Baltic amber. Foss. Rec. 2019;22:111–118. doi: 10.5194/fr-22-111-2019. DOI
Martínez-Delclos X, Briggs DEG, Peñalver E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004;203:19–64. doi: 10.1016/S0031-0182(03)00643-6. DOI
Thaxter R. New Laboulbeniales from Chile and New Zealand. Proc. Am. Soc. Acad. Arts Sci. 1918;54:207–232. doi: 10.2307/20025751. DOI
Thaxter R. Contribution towards a monograph of the Laboulbeniaceae Part V. Mem. Am. Soc. Arts Sci. 1931;16:1–435. doi: 10.2307/25058136. DOI
De Kesel A, Haelewaters D. Laboulbeniales (Fungi, Ascomycota) of cholevine beetles (Coleoptera, Leiodidae) in Belgium and the Netherlands. Sterbeeckia. 2019;35:60–66.
Sokolowski K. Die Catopiden der Nordmark. Entomol. Blätt. 1942;38:173–211.
Chandler DS, Peck SB. Diversity and seasonality of leiodid beetles (Coleoptera: Leiodidae) in an old-growth and a 40-year-old forest in New Hampshire. Environ. Entomol. 1992;21:1283–1293. doi: 10.1093/ee/21.6.1283. DOI
Peck SB. The Catopinae (Coleoptera Leiodidae) of Puerto Rico. Psyche. 1970;77:237–242. doi: 10.1155/1970/61040. DOI
Peck SB. The subterranean and epigean Catopinae of Mexico (Coleoptera: Leiodidae) Bull. Assoc. Mex. Cave Stud. 1977;6:185–213.
Peck SB. New records and species of Leiodinae and Catopinae (Coleoptera: Leiodidae) from Jamaica and Puerto Rico with a discussion of wing dimorphism. Psyche. 1978;83(1977):243–254. doi: 10.1155/1977/92540. DOI
Szymczakowski W. Découverte d'un représentant des Ptomaphaginini à Cuba (avec une esquisse de la systématique et la géonémie de cette tribu) (Coleoptera Catopidae) Acta Zool. Cracov. 1969;14:87–98.
Iturralde-Vinent MA. Geology of the amber-bearing deposits of the Greater Antilles. Caribb. J. Earth Sci. 2001;37:141–167.
Iturralde-Vinent MA, MacPhee MVE. Age and paleogeographical origin of Dominican amber. Science. 1996;273:1850–1852. doi: 10.1126/science.273.5283.1850. DOI
Peck SB. A systematic revision and the evolutionary biology of the Ptomaphagus (Adelops) beetles of north America (Coleoptera, Leiodidae, Catopinae), with emphasis of cave inhabiting species. Bull. Mus. Comp. Zool. 1973;145:29–162.
Szymczakowski W. Analyse systématique et zoogéographique des Catopidae (Coleoptera) de la Région orientale. Acta Zool. Cracov. 1964;9:55–289.
Wang CB, Zhou HZ. Taxonomy of the genus Ptomaphaginus Portevin (Coleoptera: Leiodidae: Cholevinae: Ptomaphagini) from China, with description of eleven new species. Zootaxa. 2015;3941:301–338. doi: 10.11646/zootaxa.3941.3.1. PubMed DOI
Bao, T. & Antunes-Carvalho, C. Two new polyphagan beetles (Tenebrionidae, Leiodidae) from lower Cenomanian amber of Myanmar. Cretac. Res.116, 104599. 10.1016/j.cretres.2020.104599 (2020).
Perreau M. Description of a new genus and two new species of Leiodidae (Coleoptera) from Baltic amber using phase contrast synchrotron X-ray microtomography. Zootaxa. 2012;3455:81–88. doi: 10.11646/zootaxa.3455.1.5. DOI
Voeten DF, Reich T, Araujo R, Scheyer TM. Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia. PLoS ONE. 2018;13:e0188509. doi: 10.1371/journal.pone.0188509. PubMed DOI PMC
Mansuit R, Clément G, Herrel A, Dutel H, Tafforeau P, Santin MD, Herbin M. Development and growth of the pectoral girdle and fin skeleton in the extant coelacanth Latimeria chalumnae. J. Anat. 2020;236:493–509. doi: 10.1111/joa.13115. PubMed DOI PMC
Sanchez, S., Ahlberg, P. E., Trinajstic, K. M., Mirone, A. & Tafforeau, P. Three-dimensional synchrotron virtual paleohistology: A new insight into the world of fossil bone microstructures. Microsc. Microanal. 18, 1095–1105. 10.1017/S1431927612001079 (2012). PubMed
Hawksworth DL, Lücking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017 doi: 10.1128/microbiolspec.FUNK-0052-2016. PubMed DOI PMC
Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska J, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M. Outline of fungi and fungus-like taxa. Mycosphere. 2020;11:1060–1456. doi: 10.5943/mycosphere/11/1/8. DOI
Lang PL, Willems FM, Scheepens JF, Burbano HA, Bossdorf O. Using herbaria to study global environmental change. New Phytol. 2019;221:110–122. doi: 10.1111/nph.15401. PubMed DOI PMC
Santamaría S, Enghoff H, Reboleira ASPS. Hidden biodiversity revealed by collections-based research: Laboulbeniales in millipedes: genus Rickia. Phytotaxa. 2016;243:101–127. doi: 10.11646/phytotaxa.243.2.1. DOI
Santamaría S, Enghoff H, Reboleira AS. The first Laboulbeniales (Ascomycota, Laboulbeniomycetes) from an American millipede, discovered through social media. MycoKeys. 2020;67:45–54. doi: 10.3897/mycokeys.67.51811. PubMed DOI PMC
Kaishian P, Weir A. New species of Prolixandromyces (Laboulbeniales) from South America. Mycologia. 2018;110:222–229. doi: 10.1080/00275514.2017.1419779. PubMed DOI
Kaishian P, Rossi W, Weir A. New species of Laboulbenia (Laboulbeniales, Ascomycota) on Gerridae (Hemiptera, Insecta), a new host family. Mycologia. 2020;112:570–576. doi: 10.1080/00275514.2020.1713655. PubMed DOI
Haelewaters D, Zhao SY, Clusella-Trullas S, Cottrell TE, De Kesel A, Fiedler L, Herz A, Hesketh H, Hui C, Kleespies RG, Losey JE, Minnaar IA, Murray KM, Nedvěd O, Pfliegler WP, van den Berg CL, Riddick EW, Shapiro-Ilan DI, Smyth RR, Steenberg T, van Wielink PS, Viglášová S, Zhao Z, Ceryngier P, Roy HE. Parasites of Harmonia axyridis: Current research and perspectives. Biol. Control. 2017;62:355–371. doi: 10.1007/s10526-016-9766-8. DOI
LP DAAC (Land Processes Distributed Active Archive Center). ASTER Global Digital Elevation Model V002 and Global 30 Arc-Second Elevation Data Set GTOPO30. Land Process Distributed Active Archive Center. U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science. https://lpdaac.usgs.gov/. Accessed 7 May 2020.
Cretaceous entomopathogenic fungi illuminate the early evolution of insect-fungal associations
Singleton-based species names and fungal rarity: Does the number really matter?