Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23717623
PubMed Central
PMC3663796
DOI
10.1371/journal.pone.0064520
PII: PONE-D-13-08726
Knihovny.cz E-zdroje
- MeSH
- chromozomy hmyzu * MeSH
- histony genetika MeSH
- karyotyp * MeSH
- mapování chromozomů MeSH
- mitóza MeSH
- molekulární evoluce * MeSH
- můry genetika MeSH
- oocyty metabolismus MeSH
- pohlavní chromozomy MeSH
- RNA ribozomální 18S genetika MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH
- RNA ribozomální 18S MeSH
Moths of the family Tortricidae constitute one of the major microlepidopteran groups in terms of species richness and economic importance. Yet, despite their overall significance, our knowledge of their genome organization is very limited. In order to understand karyotype evolution in the family Tortricidae, we performed detailed cytogenetic analysis of Grapholita molesta, G. funebrana, Lobesia botrana, and Eupoecilia ambiguella, representatives of two main tortricid subfamilies, Olethreutinae and Tortricinae. Besides standard cytogenetic methods, we used fluorescence in situ hybridization for mapping of major rRNA and histone gene clusters and comparative genomic hybridization to determine the level of molecular differentiation of the W and Z sex chromosomes. Our results in combination with available data in the codling moth, Cydia pomonella, and other tortricids allow us a comprehensive reconstruction of chromosomal evolution across the family Tortricidae. The emerging picture is that the karyotype of a common ancestor of Tortricinae and Olethreutinae differentiated from the ancestral lepidopteran chromosome print of n = 31 by a sex chromosome-autosome fusion. This rearrangement resulted in a large neo-sex chromosome pair and a karyotype with n = 30 conserved in most Tortricinae species, which was further reduced to n = 28 observed in Olethreutinae. Comparison of the tortricid neo-W chromosomes showed differences in their structure and composition presumably reflecting stochasticity of molecular degeneration of the autosomal part of the neo-W chromosome. Our analysis also revealed conservative pattern of the histone distribution, which is in contrast with high rDNA mobility. Despite the dynamic evolution of rDNA, we can infer a single NOR-chromosome pair as an ancestral state not only in tortricids but probably in all Lepidoptera. The results greatly expand our knowledge of the genome architecture in tortricids, but also contribute to the understanding of chromosomal evolution in Lepidoptera in general.
Zobrazit více v PubMed
van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, et al. (2011) Order Lepidoptera Linnaeus, 1758. In: Zootaxa Zhang ZQ, editor. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. 3148: 212–221.
Kristensen NP, Scoble MJ, Karsholt O (2007) Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668: 699–747.
Wolf KW (1996) The structure of condensed chromosomes in mitosis and meiosis of insects. Int J Insect Morphol Embryol 25: 37–62.
Yasukochi Y, Tanaka-Okuyama M, Shibata F, Yoshido A, Marec F, et al. (2009) Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping. PLoS ONE 4: e7465. PubMed PMC
Robinson R (1971) Lepidoptera genetics. Oxford: Pergamon Press. 687 p.
Lukhtanov VA (2000) Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta). J Zoolog Syst Evol Res 38: 73–79.
De Prins J, Saitoh K (2003) Karyology and sex determination. In: Kristensen NP, editor. Lepidoptera, moths and butterflies: Morphology, physiology, and development. Berlin: Walter de Gruyter. 449–468 pp.
Brown KS Jr, Freitas AVL, Wahlberg N, von Schoultz B, Saura AO, et al. (2007) Chromosomal evolution in the South American Nymphalidae. Hereditas 144: 137–148. PubMed
Beldade P, Saenko SV, Pul N, Long AD (2009) A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet 5: e1000366. PubMed PMC
d’Alençon E, Sezutsu H, Legeai F, Permal E, Bernard-Samain S, et al. (2010) Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci USA 107: 7680–7685. PubMed PMC
Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, et al. (2011) Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE 6: e19315. PubMed PMC
The Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487: 94–98. PubMed PMC
Van’t Hof AE, Nguyen P, Dalíková M, Edmonds N, Marec F, et al. (2013) Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity 110: 283–295. PubMed PMC
Mutanen M, Wahlberg N, Kaila L (2010) Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc Biol Sci 277: 2839–2848. PubMed PMC
Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, et al. (2005) Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature 436: 385–389. PubMed
Lukhtanov VA, Dincă V, Talavera G, Vila R (2011) Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation. BMC Evol Biol 11: 109. PubMed PMC
van der Geest LPS, Evenhuis HH, editors (1991) Tortricid pests: their biology, natural enemies and control. Amsterdam: Elsevier. 808 p.
Zhang BC, editor (1994) Index of economically important Lepidoptera. Wallingford: CAB International. 600 p.
Gilligan TM, Baixeras J, Brown JW, Tuck KR (2012) T@RTS: Online world catalogue of the Tortricidae.Version 2.0. Available: http://www.tortricid.net/catalogue.asp. Accessed 2013 Feb 25.
Horak M (1998) The Tortricoidea. In: Kristensen NP, editor. Lepidoptera: moths and butterflies. Vol. 1: Evolution, systematics, and biogeography. Handbook of Zoology, Vol. 4, Part 35, Arthropoda: Insecta. Berlin & New York: Walter de Gruyter. 199–215 pp.
Regier JC, Brown JW, Mitter C, Baixeras J, Cho S, et al. (2012) A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLoS ONE 7: e35574. PubMed PMC
Brown JW, Byun BK, Gilligan TM (2010) Tortricid literature library. Version 1.0. Available: http://www.tortricidae.com/library.asp. Accessed 2013 Feb 25.
Saitoh K (1966) The chromosomes of two tortricid species (Lepidoptera) with notes on the chromosomes of two other allied species. Jap J Genet 41: 275–278.
Suomalainen E (1971) Unequal sex chromosomes in a moth Lozotaenia forsterana F. (Lepidoptera: Tortricidae). Hereditas 68: 313–316. PubMed
Ennis TJ (1976) Sex chromatin and chromosome numbers in Lepidoptera. Can J Genet Cytol 18: 119–130. PubMed
Ortiz E, Templado J (1976) Los cromosomas de tres especies de tortrícidos (Lep. Tortricidae). EOS-Rev Esp Entomol 51: 77–84.
Lukhtanov VA, Kuznetsova VG (1989) Karyotype structure in higher Lepidoptera (Papilionomorpha). Entomological Review 68: 12–31.
Harvey GT (1997) Interspecific crosses and fertile hybrids among the coniferophagous Choristoneura (Lepidoptera: Tortricidae). Can Entomol 129: 519–536.
Saitoh K, Kudoh K (1968) Notes on chromosomes of Exartema mori (Lepidoptera: Olethreutidae). Kontyu 36: 403–405.
Suomalainen E (1969) On the sex chromosome trivalent in some Lepidoptera females. Chromosoma 28: 298–308.
Emelianov I, Marec F, Mallet J (2004) Genomic evidence for divergence with gene flow in host races of the larch budmoth. Proc Biol Sci 271: 97–105. PubMed PMC
Fuková I, Nguyen P, Marec F (2005) Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48: 1083–1092. PubMed
Barnes MM (1991) Codling moth occurrence, host race formation, and damage. In: van der Geest LPS, Evenhuis HH, editors. Tortricid pests: their biology, natural enemies and control. Amsterdam: Elsevier. 313–327 pp.
Mediouni J, Fuková I, Frydrychová R, Dhoubi MH, Marec F (2004) Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia 57: 184–194.
Nguyen P, Sahara K, Yoshido A, Marec F (2010) Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138: 343–354. PubMed
Traut W, Sahara K, Otto TD, Marec F (1999) Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108: 173–180. PubMed
Vítková M, Fuková I, Kubíčková S, Marec F (2007) Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosome Res 15: 917–930. PubMed
Traut W, Sahara K, Marec F (2007) Sex chromosomes and sex determination in Lepidoptera. Sex Dev 1: 332–346. PubMed
Marec F, Sahara K, Traut W (2010) Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith MR, Marec F, editors. Molecular biology and genetics of the Lepidoptera. Boca Raton: CRC Press. 49–63 pp.
Fuková I, Traut W, Vítková M, Nguyen P, Kubíčková S, et al. (2007) Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma 116: 135–145. PubMed
Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, et al. (2013) Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci USA 110: 6931–6936. PubMed PMC
Vreysen MJB, Carpenter JE, Marec F (2010) Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus) (Lepidoptera, Tortricidae) to facilitate expansion of field application. J Appl Entomol 134: 165–181.
Notter-Hausmann C, Dorn S (2010) Relationship between behavior and physiology in an invasive pest species: oviposition site selection and temperature-dependent development of the Oriental fruit moth (Lepidoptera: Tortricidae). Environ Entomol 39: 561–569. PubMed
Traut W, Marec F (1996) Sex chromatin in Lepidoptera. Q Rev Biol 71: 239–256. PubMed
Traut W, Weith A, Traut G (1986) Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera). Genetica 70: 69–79.
Marec F, Traut W (1994) Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera). Genome 37: 426–435. PubMed
Cabrero J, López-León MD, Teruel M, Camacho JPM (2009) Chromosome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers. Chromosome Res 17: 397–404. PubMed
Cabral-de-Mello DC, Oliveira SG, de Moura RC, Martins C (2011) Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet 12: 88. PubMed PMC
Roy V, Monti-Dedieu L, Chaminade N, Siljak-Yakovlev S, Aulard S, et al. (2005) Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: ananassae and melanogaster . Heredity 94: 388–395. PubMed
Cabrero J, Camacho JPM (2008) Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Res 16: 595–607. PubMed
Regier JC, Mitter C, Zwick A, Bazinet AL, Cummings MP, et al. (2013) A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE 8: e58568. PubMed PMC
Van’t Hof AE, Marec F, Saccheri IJ, Brakefield PM, Zwaan BJ (2008) Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes. PLoS ONE 3: e3882. PubMed PMC
Yoshido A, Marec F, Sahara K (2005) Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma 114: 193–202. PubMed
Galián J, Proença SJR, Vogler AP (2007) Evolutionary dynamics of autosomal-heterosomal rearrangements in a multiple-X chromosome system of tiger beetles (Cicindelidae). BMC Evol Biol 7: 158. PubMed PMC
Warchalowska-Sliwa E, Maryanska-Nadachowska A, Grzywacz B, Karamysheva T, Lehmann AW, et al. (2011) Changes in the numbers of chromosomes and sex determination system in bushcrickets of the genus Odontura (Orthoptera: Tettigoniidae: Phaneropterinae). Eur J Entomol 108: 183–195.
Panzera Y, Pita S, Ferreiro MJ, Ferrandis I, Lages C, et al. (2012) High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). Cytogenet Genome Res 138: 56–67. PubMed
Marchi A, Pili E (1994) Ribosomal RNA genes in mosquitoes: localization by fluorescence in situ hybridization (FISH). Heredity 72: 599–605. PubMed
Rafael MS, Santos IP Jr, Tadei WP, Carvalho KA, Recco-Pimente SM, et al. (2006) Cytogenetic study of Anopheles albitarsis (Diptera: Culicidae) by C-banding and in situ hybridization. Hereditas 143: 62–67. PubMed
Brianti MT, Ananina G, Recco-Pimentel SM, Klaczko LB (2009) Comparative analysis of the chromosomal positions of rDNA genes in species of the tripunctata radiation of Drosophila . Cytogenet Genome Res 125: 149–157. PubMed
Drosopoulou E, Nakou I, Šíchová J, Kubíčková S, Marec F, et al. (2012) Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae). Genetica 140: 169–180. PubMed
Marec F, Neven LG, Robinson AS, Vreysen M, Goldsmith MR, et al. (2005) Development of genetic sexing strains in Lepidoptera: From traditional to transgenic approaches. J Econ Entomol 98: 248–259. PubMed
Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies
Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
Analyses of the Updated "Animal rDNA Loci Database" with an Emphasis on Its New Features
Large-scale comparative analysis of cytogenetic markers across Lepidoptera
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Advances and Challenges of Using the Sterile Insect Technique for the Management of Pest Lepidoptera
Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea
Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus
CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella