The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths

. 2021 ; 12 () : 661417. [epub] 20210330

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33859676

Tandem repeats are important parts of eukaryotic genomes being crucial e.g., for centromere and telomere function and chromatin modulation. In Lepidoptera, knowledge of tandem repeats is very limited despite the growing number of sequenced genomes. Here we introduce seven new satellite DNAs (satDNAs), which more than doubles the number of currently known lepidopteran satDNAs. The satDNAs were identified in genomes of three species of Crambidae moths, namely Ostrinia nubilalis, Cydalima perspectalis, and Diatraea postlineella, using graph-based computational pipeline RepeatExplorer. These repeats varied in their abundance and showed high variability within and between species, although some degree of conservation was noted. The satDNAs showed a scattered distribution, often on both autosomes and sex chromosomes, with the exception of both satellites in D. postlineella, in which the satDNAs were located at a single autosomal locus. Three satDNAs were abundant on the W chromosomes of O. nubilalis and C. perspectalis, thus contributing to their differentiation from the Z chromosomes. To provide background for the in situ localization of the satDNAs, we performed a detailed cytogenetic analysis of the karyotypes of all three species. This comparative analysis revealed differences in chromosome number, number and location of rDNA clusters, and molecular differentiation of sex chromosomes.

Zobrazit více v PubMed

Abbott J. K., Nordén A. K., Hansson B. (2017). Sex chromosome evolution: historical insights and future perspectives. PubMed DOI PMC

Abe H., Mita K., Yasukochi Y., Oshiki T., Shimada T. (2005). Retrotransposable elements on the W chromosome of the silkworm, PubMed DOI

Acosta M. J., Marchal J. A., Martínez S., Puerma E., Bullejos M., Díaz de la Guardia R., et al. (2007). Characterization of the satellite DNA Msat-160 from the species PubMed DOI

Ahola V., Lehtonen R., Somervuo P., Salmela L., Koskinen P., Rastas P., et al. (2014). The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. PubMed DOI PMC

Andrews S. (2010).

Bardella V. B., Milani D., Cabral-de-Mello D. C. (2020). Analysis of PubMed DOI

Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. PubMed DOI PMC

Brajković J., Feliciello I., Bruvo-Mađarić B., Ugarković Ð. (2012). Satellite DNA-like elements associated with genes within euchromatin of the beetle PubMed DOI PMC

Bull J. J. (1983).

Cabral-de-Mello D. C., Marec F. (2021). Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. PubMed DOI

Cabral-de-Mello D. C., Moura R. C., Martins C. (2011). Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of PubMed DOI

Camacho J. P., Ruiz-Ruano F. J., Martín-Blázquez R., López-León M. D., Cabrero J., Lorite P., et al. (2015). A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs. PubMed DOI

Charlesworth B. (1991). The evolution of sex chromosomes. PubMed DOI

Charlesworth D., Charlesworth B., Marais G. (2005). Steps in the evolution of heteromorphic sex chromosomes. PubMed DOI

Crepaldi C., Parise-Maltempi P. P. (2020). Heteromorphic sex chromosomes and their DNA content in fish: an insight through satellite DNA accumulation in PubMed DOI

da Silva M. J., Fogarin Destro R., Gazoni T., Narimatsu H., Pereira, dos Santos P. S., et al. (2020). Great abundance of satellite DNA in PubMed DOI

Dalíková M., Zrzavá M., Hladová I., Nguyen P., Šonský I., Flegrová M., et al. (2017a). New insights into the evolution of the W chromosome in Lepidoptera. PubMed DOI

Dalíková M., Zrzavá M., Kubíčková S., Marec F. (2017b). W-enriched satellite sequence in the Indian meal moth, PubMed DOI

de Vos J. M., Augustijnen H., Bätscher L., Lucek K. (2020). Speciation through chromosomal fusion and fission in Lepidoptera. PubMed DOI PMC

Escudeiro A., Adega F., Robinson T. J., Heslop-Harrison J. S., Chaves R. (2019). Conservation, divergence, and functions of centromeric satellite DNA families in the Bovidae. PubMed DOI PMC

Feliciello I., Akrap I., Ugarković Ð. (2015). Satellite DNA modulates gene expression in the beetle PubMed DOI PMC

Ferretti A. B. S. M., Milani D., Palacios-Gimenez O. M., Ruiz-Ruano F. J., Cabral-de-Mello D. C. (2020). High dynamism for neo-sex chromosomes: satellite DNAs reveal complex evolution in a grasshopper. PubMed DOI PMC

Ferretti A. B. S. M., Ruiz-Ruano F. J., Milani D., Loreto V., Martí D. A., Ramos E., et al. (2019). How dynamic could be the 45S rDNA cistron? An intriguing variability in a grasshopper species revealed by integration of chromosomal and genomic data. PubMed DOI

Fraïsse C., Picard M. A. L., Vicoso B. (2017). The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. PubMed DOI PMC

Fry K., Salser W. (1977). Nucleotide sequences of HS-α satellite DNA from kangaroo rat PubMed DOI

Fuková I., Nguyen P., Marec F. (2005). Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. PubMed DOI

Fuková I., Traut W., Vítková M., Kubíčková S., Marec F. (2007). Probing the W chromosome of the codling moth, PubMed DOI

Furman B. L. S., Metzger D. C. H., Darolti I., Wright A. E., Sandkam B. A., Almeida P., et al. (2020). Sex chromosome evolution: so many exceptions to the rules. PubMed DOI PMC

Garrido-Ramos M. A. (2017). Satellite DNA: an evolving topic. PubMed DOI PMC

Gatto K. P., Mattos J. V., Seger K. R., Lourenço L. B. (2018). Sex chromosome differentiation in the frog genus PubMed DOI PMC

Giovannotti M., Cerioni P. N., Rojo V., Olmo E., Slimani T., Splendiani A., et al. (2018). Characterization of a satellite DNA in the genera PubMed DOI

Gordon A., Hannon G. J. (2010).

Gregory T. R. (2020).

Guthrie W. D., Dollinger E. J., Stetson J. F. (1965). Chromosome studies of the European corn borer, smartweed borer, and lotus borer (Pyralidae). DOI

Hejníčková M., Koutecký P., Potocký P., Provazníková I., Voleníková A., Dalíková M., et al. (2019). Absence of W chromosome in Psychidae moths and implications for the theory of sex chromosome evolution in Lepidoptera. PubMed DOI PMC

Hobza R., Cegan R., Jesionek W., Kejnovsky E., Vyskot B., Kubat Z. (2017). Impact of repetitive elements on the Y chromosome formation in plants. PubMed DOI PMC

Hobza R., Kubat Z., Cegan R., Jesionek W., Vyskot B., Kejnovsky E. (2015). Impact of repetitive DNA on sex chromosome evolution in plants. PubMed DOI

Ijdo J. W., Wells R. A., Baldini A., Reeders S. T. (1991). Improved telomere detection using a telomere repeat probe (TTAGGG) PubMed DOI PMC

Kageyma D., Traut W. (2004). Opposite sex-specific effects of PubMed DOI PMC

Kato A., Albert P. S., Veja J. M., Birchler J. A. (2006). Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. PubMed DOI

Kubickova S., Cernohorska H., Musilova P., Rubes J. (2002). The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. PubMed DOI

Léger T., Mally R., Neinhuis C., Nuss M. (2021). Refining the phylogeny of Crambidae with complete sampling of subfamilies (Lepidoptera, Pyraloidea). DOI

Lewis L. C., Lynch R. E. (1969). Rearing the European corn borer,

Lorite P., Carrillo J. A., Aguilar J. A., Palomeque T. (2004). Isolation and characterization of two families of satellite DNA with repetitive units of 135 bp and 2.5 kb in the ant PubMed DOI

Lu Y. J., Kochert G. D., Isenhour D. J., Adang M. J. (1994). Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm PubMed DOI

Lynch R. E. (1980). European corn borer: yield losses in relation to hybrid and stage of corn development. DOI

Mahendran B., Acharya C., Dash R., Ghosh S. K., Kundu S. C. (2006). Repetitive DNA in tropical tasar silkworm PubMed DOI

Mandrioli M., Manicardi G. C., Marec F. (2003). Cytogenetic and molecular characterization of the MBSAT1 satellite DNA in holokinetic chromosomes of the cabbage moth, PubMed DOI

Marec F., Traut W. (1994). Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of PubMed DOI

Mata-Sucre Y., Sader M., Van-Lume B., Gagnon E., Pedrosa-Harand A., Leitch I. J., et al. (2020). How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of PubMed DOI

Mediouni J., Fuková I., Frydrychová R., Dhouibi M. H., Marec F. (2004). Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, DOI

Meissle M., Mouron P., Musa T., Bigler F., Pons X., Vasileiadis V. P., et al. (2010). Pests, pesticide use and alternative options in European maize production: current status and future prospects. DOI

Mora P., Vela J., Ruiz-Ruano F. J., Ruiz-Mena A., Montiel E. E., Palomeque T., et al. (2020). Satellitome analysis in the ladybird beetle PubMed DOI PMC

Munroe E., Solis M. A. (1999). “The Pyraloidea,” in

Nacambo S., Leuthardt F. L. G., Wan H., Li H., Haye T., Baur B., et al. (2013). Development characteristics of the box-tree moth DOI

Navrátilová A., Koblížková A., Macas J. (2008). Survey of extrachromosomal circular DNA derived from plant satellite repeats. PubMed DOI PMC

Nguyen P., Sahara K., Yoshido A., Marec F. (2010). Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). PubMed DOI

Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková Frydrychová R., et al. (2013). Neo-sex chromosomes and adaptive potential in tortricid pests. PubMed DOI PMC

Novák P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. PubMed DOI PMC

Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. PubMed DOI

Novák P., Robledillo L. A., Koblížková A., Vrbová I., Neumann P., Macas J. (2017). TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. PubMed DOI PMC

Nuss M., Landry B., Mally R., Vegliante F., Trankner A., Bauer F., et al. (2003–2020).

Palacios-Gimenez O. M., Dias G. B., Lima L. G., Kuhn G. C. S., Ramos E., Martins C., et al. (2017). High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket PubMed DOI PMC

Palacios-Gimenez O. M., Milani D., Song H., Martí D. A., López-León M. D., Ruiz-Ruano F. J., et al. (2020). Eight million years of satellite DNA evolution in grasshoppers of the genus PubMed DOI PMC

Palomeque T., Lorite P. (2008). Satellite DNA in insects: a review. PubMed DOI

Pita S., Panzera F., Mora P., Vela J., Cuadrado A., Sánches A., et al. (2017). Comparative repeatome analysis on PubMed DOI PMC

Pons J., Petitpierre E., Juan C. (1993). Characterization of the heterochromatin of the darkling beetle PubMed DOI

Pringle E. G., Baxter S. W., Webster C. L., Papanicolaou A., Lee S. F., Jiggins C. D. (2007). Synteny and chromosome evolution in the Lepidoptera: evidence from mapping in PubMed DOI PMC

Regier J. C., Mitter C., Solis M. A., Hayden J. E., Landry B., Nuss M., et al. (2012). A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. DOI

Robinson R. (1971).

Sahara K., Marec F., Eickhoff U., Traut W. (2003). Moth sex chromatin probed by comparative genomic hybridization (CGH). PubMed DOI

Sahara K., Yoshido A., Shibata F., Fujikawa-Kojima N., Okabe T., Tanaka-Okuyama M., et al. (2013). FISH identification of PubMed DOI

Sahara K., Yoshido A., Traut W. (2012). Sex chromosome evolution in moths and butterflies. PubMed DOI

Saitoh K. (1959). The chromosome numbers of some species of moths.

Serrano-Freitas E. A., Silva D. M. Z. A., Ruiz-Ruano F. J., Utsunomia R., Araya-Jaime C., Oliveira C., et al. (2020). Satellite DNA content of B chromosomes in the characid fish PubMed DOI

Šíchová J., Nguyen P., Dalíková M., Marec F. (2013). Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PubMed DOI PMC

Šíchová J., Ohno M., Dincă V., Watanabe M., Sahara K., Marec F. (2016). Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, DOI

Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., Sahara K., et al. (2015). Dynamic karyotype evolution and unique sex determination systems in PubMed DOI PMC

Silva B. S. M. L., Heringer P., Dias G. B., Svartman M., Kuhn G. C. S. (2019). De novo identification of satellite DNAs in the sequenced genomes of PubMed DOI PMC

Silva D. M. Z. A., Utsunomia R., Ruiz-Ruano F. J., Daniel S. N., Porto-Foresti F., Hashimoto D. T., et al. (2017). High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus PubMed DOI PMC

Smit A. F. A., Hubley R., Green P. (2013–2015).

Smith S. G. (1945). Heteropycnosis as a means of diagnosing sex. DOI

Solis M. A. (1997). “Snout moths: unraveling the taxonomic diversity of a speciose group in the neotropics,” in

Solis M. A., Metz M. (2016). An illustrated guide to the identification of the known species of PubMed DOI PMC

Solis M. A., Scheffer S. J., Lewis M. L., Rendon P. (accepted).

Sproul J. S., Khost D. E., Eickbush D. G., Negm S., Wei X., Wong I., et al. (2020). Dynamic evolution of euchromatic satellites on the X chromosome in PubMed DOI PMC

Talla V., Suh A., Kalsoom F., Dincă V., Vila R., Friberg M., et al. (2017). Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white ( PubMed DOI PMC

Thakur R., Gautam D. C. (2013). Chromosome studies on four species of moths. DOI

Traut W., Marec F. (1996). Sex chromatin in Lepidoptera. PubMed DOI

Traut W., Marec F. (1997). Sex chromosome differentiation in some species of Lepidoptera (Insecta). PubMed DOI

Traut W., Sahara K., Marec F. (2007). Sex chromosomes and sex determination in Lepidoptera. PubMed DOI

Traut W., Sahara K., Otto T. D., Marec F. (1999). Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. PubMed DOI

Traut W., Vogel H., Glöckner G., Hartmann E., Heckel D. G. (2013). High-throughput sequencing of a single chromosome: a moth W chromosome. PubMed DOI

Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3-new capabilities and interfaces. PubMed DOI PMC

Utsunomia R., Silva D. M. Z. A., Ruiz-Ruano F. J., Goes C. A. G., Melo S., Ramos L. P., et al. (2019). Satellitome landscape analysis of PubMed DOI PMC

Van Nieukerken E. J., Kaila L., Kitching I. J., Kristensen N. P., Lees D. C., Minet J., et al. (2011). “Order Lepidoptera Linnaeus, 1758,” in

Van’t Hof A. E., Marec F., Saccheri I. J., Brakefield P. M., Zwaan B. J. (2008). Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly PubMed DOI PMC

Van’t Hof A. E., Nguyen P., Dalíková M., Edmonds N., Marec F., Saccheri I. J. (2013). Linkage map of the peppered moth, PubMed DOI PMC

Věchtová P., Dalíková M., Sýkorová M., Žurovcová M., Füssy Z., Zrzavá M. (2016). CpSAT-1, a transcribed satellite sequence from the codling moth, PubMed DOI

Virkki N. (1963). Gametogenesis in the sugarcane borer moth, DOI

Vítková M., Fuková I., Kubíčková S., Marec F. (2007). Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). PubMed DOI

Vondrak T., Robledillo L. A., Novák P., Koblížková A., Neumann P., Macas J. (2020). Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. PubMed DOI PMC

Wei K. H. C., Barbash D. A. (2015). Never settling down: frequent changes in sex chromosomes. PubMed DOI PMC

Winnepenninckx B., Backeljau T., de Wachter R. (1993). Extraction of high molecular weight DNA from molluscs. PubMed DOI

Wright A. E., Dean R., Zimmer F., Mank J. E. (2016). How to make a sex chromosome. PubMed DOI PMC

Yasukochi Y., Ohno M., Shibata F., Jouraku A., Nakano R., Ishikawa Y., et al. (2016). A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm. PubMed DOI PMC

Yoshido A., Marec F., Sahara K. (2005). Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG) PubMed DOI

Yoshido A., Šíchová J., Pospíšilová K., Nguyen P., Voleníková A., Šafář J., et al. (2020). Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in PubMed DOI PMC

Zhu W., Yan J., Song J., You P. (2018). The first mitochondrial genomes for Pyralinae (Pyralidae) and Glaphyriinae (Crambidae), with phylogenetic implications of Pyraloidea. PubMed DOI PMC

Zrzavá M., Hladová I., Dalíková M., Šíchová J., Õunap E., Kubíčková S., et al. (2018). Sex chromosomes of the iconic moth PubMed DOI PMC

Zwyrtková J., Němečková A., Čížková J., Holušová K., Kapustová V., Svačina R., et al. (2020). Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...