The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33859676
PubMed Central
PMC8042265
DOI
10.3389/fgene.2021.661417
Knihovny.cz E-zdroje
- Klíčová slova
- Lepidoptera, W chromatin, holocentric chromosomes, repetitive DNAs, tandem repeat,
- Publikační typ
- časopisecké články MeSH
Tandem repeats are important parts of eukaryotic genomes being crucial e.g., for centromere and telomere function and chromatin modulation. In Lepidoptera, knowledge of tandem repeats is very limited despite the growing number of sequenced genomes. Here we introduce seven new satellite DNAs (satDNAs), which more than doubles the number of currently known lepidopteran satDNAs. The satDNAs were identified in genomes of three species of Crambidae moths, namely Ostrinia nubilalis, Cydalima perspectalis, and Diatraea postlineella, using graph-based computational pipeline RepeatExplorer. These repeats varied in their abundance and showed high variability within and between species, although some degree of conservation was noted. The satDNAs showed a scattered distribution, often on both autosomes and sex chromosomes, with the exception of both satellites in D. postlineella, in which the satDNAs were located at a single autosomal locus. Three satDNAs were abundant on the W chromosomes of O. nubilalis and C. perspectalis, thus contributing to their differentiation from the Z chromosomes. To provide background for the in situ localization of the satDNAs, we performed a detailed cytogenetic analysis of the karyotypes of all three species. This comparative analysis revealed differences in chromosome number, number and location of rDNA clusters, and molecular differentiation of sex chromosomes.
Biology Centre Czech Academy of Sciences Institute of Entomology České Budějovice Czechia
Faculty of Science University of South Bohemia České Budějovice Czechia
IAEA TCLA Consultant USDA APHIS Moscamed Program Guatemala Guatemala City Guatemala
Zobrazit více v PubMed
Abbott J. K., Nordén A. K., Hansson B. (2017). Sex chromosome evolution: historical insights and future perspectives. PubMed DOI PMC
Abe H., Mita K., Yasukochi Y., Oshiki T., Shimada T. (2005). Retrotransposable elements on the W chromosome of the silkworm, PubMed DOI
Acosta M. J., Marchal J. A., Martínez S., Puerma E., Bullejos M., Díaz de la Guardia R., et al. (2007). Characterization of the satellite DNA Msat-160 from the species PubMed DOI
Ahola V., Lehtonen R., Somervuo P., Salmela L., Koskinen P., Rastas P., et al. (2014). The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. PubMed DOI PMC
Andrews S. (2010).
Bardella V. B., Milani D., Cabral-de-Mello D. C. (2020). Analysis of PubMed DOI
Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. PubMed DOI PMC
Brajković J., Feliciello I., Bruvo-Mađarić B., Ugarković Ð. (2012). Satellite DNA-like elements associated with genes within euchromatin of the beetle PubMed DOI PMC
Bull J. J. (1983).
Cabral-de-Mello D. C., Marec F. (2021). Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. PubMed DOI
Cabral-de-Mello D. C., Moura R. C., Martins C. (2011). Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of PubMed DOI
Camacho J. P., Ruiz-Ruano F. J., Martín-Blázquez R., López-León M. D., Cabrero J., Lorite P., et al. (2015). A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs. PubMed DOI
Charlesworth B. (1991). The evolution of sex chromosomes. PubMed DOI
Charlesworth D., Charlesworth B., Marais G. (2005). Steps in the evolution of heteromorphic sex chromosomes. PubMed DOI
Crepaldi C., Parise-Maltempi P. P. (2020). Heteromorphic sex chromosomes and their DNA content in fish: an insight through satellite DNA accumulation in PubMed DOI
da Silva M. J., Fogarin Destro R., Gazoni T., Narimatsu H., Pereira, dos Santos P. S., et al. (2020). Great abundance of satellite DNA in PubMed DOI
Dalíková M., Zrzavá M., Hladová I., Nguyen P., Šonský I., Flegrová M., et al. (2017a). New insights into the evolution of the W chromosome in Lepidoptera. PubMed DOI
Dalíková M., Zrzavá M., Kubíčková S., Marec F. (2017b). W-enriched satellite sequence in the Indian meal moth, PubMed DOI
de Vos J. M., Augustijnen H., Bätscher L., Lucek K. (2020). Speciation through chromosomal fusion and fission in Lepidoptera. PubMed DOI PMC
Escudeiro A., Adega F., Robinson T. J., Heslop-Harrison J. S., Chaves R. (2019). Conservation, divergence, and functions of centromeric satellite DNA families in the Bovidae. PubMed DOI PMC
Feliciello I., Akrap I., Ugarković Ð. (2015). Satellite DNA modulates gene expression in the beetle PubMed DOI PMC
Ferretti A. B. S. M., Milani D., Palacios-Gimenez O. M., Ruiz-Ruano F. J., Cabral-de-Mello D. C. (2020). High dynamism for neo-sex chromosomes: satellite DNAs reveal complex evolution in a grasshopper. PubMed DOI PMC
Ferretti A. B. S. M., Ruiz-Ruano F. J., Milani D., Loreto V., Martí D. A., Ramos E., et al. (2019). How dynamic could be the 45S rDNA cistron? An intriguing variability in a grasshopper species revealed by integration of chromosomal and genomic data. PubMed DOI
Fraïsse C., Picard M. A. L., Vicoso B. (2017). The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. PubMed DOI PMC
Fry K., Salser W. (1977). Nucleotide sequences of HS-α satellite DNA from kangaroo rat PubMed DOI
Fuková I., Nguyen P., Marec F. (2005). Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. PubMed DOI
Fuková I., Traut W., Vítková M., Kubíčková S., Marec F. (2007). Probing the W chromosome of the codling moth, PubMed DOI
Furman B. L. S., Metzger D. C. H., Darolti I., Wright A. E., Sandkam B. A., Almeida P., et al. (2020). Sex chromosome evolution: so many exceptions to the rules. PubMed DOI PMC
Garrido-Ramos M. A. (2017). Satellite DNA: an evolving topic. PubMed DOI PMC
Gatto K. P., Mattos J. V., Seger K. R., Lourenço L. B. (2018). Sex chromosome differentiation in the frog genus PubMed DOI PMC
Giovannotti M., Cerioni P. N., Rojo V., Olmo E., Slimani T., Splendiani A., et al. (2018). Characterization of a satellite DNA in the genera PubMed DOI
Gordon A., Hannon G. J. (2010).
Gregory T. R. (2020).
Guthrie W. D., Dollinger E. J., Stetson J. F. (1965). Chromosome studies of the European corn borer, smartweed borer, and lotus borer (Pyralidae). DOI
Hejníčková M., Koutecký P., Potocký P., Provazníková I., Voleníková A., Dalíková M., et al. (2019). Absence of W chromosome in Psychidae moths and implications for the theory of sex chromosome evolution in Lepidoptera. PubMed DOI PMC
Hobza R., Cegan R., Jesionek W., Kejnovsky E., Vyskot B., Kubat Z. (2017). Impact of repetitive elements on the Y chromosome formation in plants. PubMed DOI PMC
Hobza R., Kubat Z., Cegan R., Jesionek W., Vyskot B., Kejnovsky E. (2015). Impact of repetitive DNA on sex chromosome evolution in plants. PubMed DOI
Ijdo J. W., Wells R. A., Baldini A., Reeders S. T. (1991). Improved telomere detection using a telomere repeat probe (TTAGGG) PubMed DOI PMC
Kageyma D., Traut W. (2004). Opposite sex-specific effects of PubMed DOI PMC
Kato A., Albert P. S., Veja J. M., Birchler J. A. (2006). Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. PubMed DOI
Kubickova S., Cernohorska H., Musilova P., Rubes J. (2002). The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. PubMed DOI
Léger T., Mally R., Neinhuis C., Nuss M. (2021). Refining the phylogeny of Crambidae with complete sampling of subfamilies (Lepidoptera, Pyraloidea). DOI
Lewis L. C., Lynch R. E. (1969). Rearing the European corn borer,
Lorite P., Carrillo J. A., Aguilar J. A., Palomeque T. (2004). Isolation and characterization of two families of satellite DNA with repetitive units of 135 bp and 2.5 kb in the ant PubMed DOI
Lu Y. J., Kochert G. D., Isenhour D. J., Adang M. J. (1994). Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm PubMed DOI
Lynch R. E. (1980). European corn borer: yield losses in relation to hybrid and stage of corn development. DOI
Mahendran B., Acharya C., Dash R., Ghosh S. K., Kundu S. C. (2006). Repetitive DNA in tropical tasar silkworm PubMed DOI
Mandrioli M., Manicardi G. C., Marec F. (2003). Cytogenetic and molecular characterization of the MBSAT1 satellite DNA in holokinetic chromosomes of the cabbage moth, PubMed DOI
Marec F., Traut W. (1994). Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of PubMed DOI
Mata-Sucre Y., Sader M., Van-Lume B., Gagnon E., Pedrosa-Harand A., Leitch I. J., et al. (2020). How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of PubMed DOI
Mediouni J., Fuková I., Frydrychová R., Dhouibi M. H., Marec F. (2004). Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, DOI
Meissle M., Mouron P., Musa T., Bigler F., Pons X., Vasileiadis V. P., et al. (2010). Pests, pesticide use and alternative options in European maize production: current status and future prospects. DOI
Mora P., Vela J., Ruiz-Ruano F. J., Ruiz-Mena A., Montiel E. E., Palomeque T., et al. (2020). Satellitome analysis in the ladybird beetle PubMed DOI PMC
Munroe E., Solis M. A. (1999). “The Pyraloidea,” in
Nacambo S., Leuthardt F. L. G., Wan H., Li H., Haye T., Baur B., et al. (2013). Development characteristics of the box-tree moth DOI
Navrátilová A., Koblížková A., Macas J. (2008). Survey of extrachromosomal circular DNA derived from plant satellite repeats. PubMed DOI PMC
Nguyen P., Sahara K., Yoshido A., Marec F. (2010). Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). PubMed DOI
Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková Frydrychová R., et al. (2013). Neo-sex chromosomes and adaptive potential in tortricid pests. PubMed DOI PMC
Novák P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. PubMed DOI
Novák P., Robledillo L. A., Koblížková A., Vrbová I., Neumann P., Macas J. (2017). TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. PubMed DOI PMC
Nuss M., Landry B., Mally R., Vegliante F., Trankner A., Bauer F., et al. (2003–2020).
Palacios-Gimenez O. M., Dias G. B., Lima L. G., Kuhn G. C. S., Ramos E., Martins C., et al. (2017). High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket PubMed DOI PMC
Palacios-Gimenez O. M., Milani D., Song H., Martí D. A., López-León M. D., Ruiz-Ruano F. J., et al. (2020). Eight million years of satellite DNA evolution in grasshoppers of the genus PubMed DOI PMC
Palomeque T., Lorite P. (2008). Satellite DNA in insects: a review. PubMed DOI
Pita S., Panzera F., Mora P., Vela J., Cuadrado A., Sánches A., et al. (2017). Comparative repeatome analysis on PubMed DOI PMC
Pons J., Petitpierre E., Juan C. (1993). Characterization of the heterochromatin of the darkling beetle PubMed DOI
Pringle E. G., Baxter S. W., Webster C. L., Papanicolaou A., Lee S. F., Jiggins C. D. (2007). Synteny and chromosome evolution in the Lepidoptera: evidence from mapping in PubMed DOI PMC
Regier J. C., Mitter C., Solis M. A., Hayden J. E., Landry B., Nuss M., et al. (2012). A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. DOI
Robinson R. (1971).
Sahara K., Marec F., Eickhoff U., Traut W. (2003). Moth sex chromatin probed by comparative genomic hybridization (CGH). PubMed DOI
Sahara K., Yoshido A., Shibata F., Fujikawa-Kojima N., Okabe T., Tanaka-Okuyama M., et al. (2013). FISH identification of PubMed DOI
Sahara K., Yoshido A., Traut W. (2012). Sex chromosome evolution in moths and butterflies. PubMed DOI
Saitoh K. (1959). The chromosome numbers of some species of moths.
Serrano-Freitas E. A., Silva D. M. Z. A., Ruiz-Ruano F. J., Utsunomia R., Araya-Jaime C., Oliveira C., et al. (2020). Satellite DNA content of B chromosomes in the characid fish PubMed DOI
Šíchová J., Nguyen P., Dalíková M., Marec F. (2013). Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PubMed DOI PMC
Šíchová J., Ohno M., Dincă V., Watanabe M., Sahara K., Marec F. (2016). Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, DOI
Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., Sahara K., et al. (2015). Dynamic karyotype evolution and unique sex determination systems in PubMed DOI PMC
Silva B. S. M. L., Heringer P., Dias G. B., Svartman M., Kuhn G. C. S. (2019). De novo identification of satellite DNAs in the sequenced genomes of PubMed DOI PMC
Silva D. M. Z. A., Utsunomia R., Ruiz-Ruano F. J., Daniel S. N., Porto-Foresti F., Hashimoto D. T., et al. (2017). High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus PubMed DOI PMC
Smit A. F. A., Hubley R., Green P. (2013–2015).
Smith S. G. (1945). Heteropycnosis as a means of diagnosing sex. DOI
Solis M. A. (1997). “Snout moths: unraveling the taxonomic diversity of a speciose group in the neotropics,” in
Solis M. A., Metz M. (2016). An illustrated guide to the identification of the known species of PubMed DOI PMC
Solis M. A., Scheffer S. J., Lewis M. L., Rendon P. (accepted).
Sproul J. S., Khost D. E., Eickbush D. G., Negm S., Wei X., Wong I., et al. (2020). Dynamic evolution of euchromatic satellites on the X chromosome in PubMed DOI PMC
Talla V., Suh A., Kalsoom F., Dincă V., Vila R., Friberg M., et al. (2017). Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white ( PubMed DOI PMC
Thakur R., Gautam D. C. (2013). Chromosome studies on four species of moths. DOI
Traut W., Marec F. (1996). Sex chromatin in Lepidoptera. PubMed DOI
Traut W., Marec F. (1997). Sex chromosome differentiation in some species of Lepidoptera (Insecta). PubMed DOI
Traut W., Sahara K., Marec F. (2007). Sex chromosomes and sex determination in Lepidoptera. PubMed DOI
Traut W., Sahara K., Otto T. D., Marec F. (1999). Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. PubMed DOI
Traut W., Vogel H., Glöckner G., Hartmann E., Heckel D. G. (2013). High-throughput sequencing of a single chromosome: a moth W chromosome. PubMed DOI
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3-new capabilities and interfaces. PubMed DOI PMC
Utsunomia R., Silva D. M. Z. A., Ruiz-Ruano F. J., Goes C. A. G., Melo S., Ramos L. P., et al. (2019). Satellitome landscape analysis of PubMed DOI PMC
Van Nieukerken E. J., Kaila L., Kitching I. J., Kristensen N. P., Lees D. C., Minet J., et al. (2011). “Order Lepidoptera Linnaeus, 1758,” in
Van’t Hof A. E., Marec F., Saccheri I. J., Brakefield P. M., Zwaan B. J. (2008). Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly PubMed DOI PMC
Van’t Hof A. E., Nguyen P., Dalíková M., Edmonds N., Marec F., Saccheri I. J. (2013). Linkage map of the peppered moth, PubMed DOI PMC
Věchtová P., Dalíková M., Sýkorová M., Žurovcová M., Füssy Z., Zrzavá M. (2016). CpSAT-1, a transcribed satellite sequence from the codling moth, PubMed DOI
Virkki N. (1963). Gametogenesis in the sugarcane borer moth, DOI
Vítková M., Fuková I., Kubíčková S., Marec F. (2007). Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). PubMed DOI
Vondrak T., Robledillo L. A., Novák P., Koblížková A., Neumann P., Macas J. (2020). Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. PubMed DOI PMC
Wei K. H. C., Barbash D. A. (2015). Never settling down: frequent changes in sex chromosomes. PubMed DOI PMC
Winnepenninckx B., Backeljau T., de Wachter R. (1993). Extraction of high molecular weight DNA from molluscs. PubMed DOI
Wright A. E., Dean R., Zimmer F., Mank J. E. (2016). How to make a sex chromosome. PubMed DOI PMC
Yasukochi Y., Ohno M., Shibata F., Jouraku A., Nakano R., Ishikawa Y., et al. (2016). A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm. PubMed DOI PMC
Yoshido A., Marec F., Sahara K. (2005). Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG) PubMed DOI
Yoshido A., Šíchová J., Pospíšilová K., Nguyen P., Voleníková A., Šafář J., et al. (2020). Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in PubMed DOI PMC
Zhu W., Yan J., Song J., You P. (2018). The first mitochondrial genomes for Pyralinae (Pyralidae) and Glaphyriinae (Crambidae), with phylogenetic implications of Pyraloidea. PubMed DOI PMC
Zrzavá M., Hladová I., Dalíková M., Šíchová J., Õunap E., Kubíčková S., et al. (2018). Sex chromosomes of the iconic moth PubMed DOI PMC
Zwyrtková J., Němečková A., Čížková J., Holušová K., Kapustová V., Svačina R., et al. (2020). Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. PubMed DOI PMC
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera