The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33859676
PubMed Central
PMC8042265
DOI
10.3389/fgene.2021.661417
Knihovny.cz E-zdroje
- Klíčová slova
- Lepidoptera, W chromatin, holocentric chromosomes, repetitive DNAs, tandem repeat,
- Publikační typ
- časopisecké články MeSH
Tandem repeats are important parts of eukaryotic genomes being crucial e.g., for centromere and telomere function and chromatin modulation. In Lepidoptera, knowledge of tandem repeats is very limited despite the growing number of sequenced genomes. Here we introduce seven new satellite DNAs (satDNAs), which more than doubles the number of currently known lepidopteran satDNAs. The satDNAs were identified in genomes of three species of Crambidae moths, namely Ostrinia nubilalis, Cydalima perspectalis, and Diatraea postlineella, using graph-based computational pipeline RepeatExplorer. These repeats varied in their abundance and showed high variability within and between species, although some degree of conservation was noted. The satDNAs showed a scattered distribution, often on both autosomes and sex chromosomes, with the exception of both satellites in D. postlineella, in which the satDNAs were located at a single autosomal locus. Three satDNAs were abundant on the W chromosomes of O. nubilalis and C. perspectalis, thus contributing to their differentiation from the Z chromosomes. To provide background for the in situ localization of the satDNAs, we performed a detailed cytogenetic analysis of the karyotypes of all three species. This comparative analysis revealed differences in chromosome number, number and location of rDNA clusters, and molecular differentiation of sex chromosomes.
Biology Centre Czech Academy of Sciences Institute of Entomology České Budějovice Czechia
Faculty of Science University of South Bohemia České Budějovice Czechia
IAEA TCLA Consultant USDA APHIS Moscamed Program Guatemala Guatemala City Guatemala
Zobrazit více v PubMed
Abbott J. K., Nordén A. K., Hansson B. (2017). Sex chromosome evolution: historical insights and future perspectives. Proc. Biol. Sci. 284:20162806. 10.1098/rspb.2016.2806 PubMed DOI PMC
Abe H., Mita K., Yasukochi Y., Oshiki T., Shimada T. (2005). Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet. Genome Res. 110 144–151. 10.1159/000084946 PubMed DOI
Acosta M. J., Marchal J. A., Martínez S., Puerma E., Bullejos M., Díaz de la Guardia R., et al. (2007). Characterization of the satellite DNA Msat-160 from the species Chionomys nivalis (Rodentia, Arvicolinae). Genetica 130 43–51. 10.1007/s10709-006-0018-1 PubMed DOI
Ahola V., Lehtonen R., Somervuo P., Salmela L., Koskinen P., Rastas P., et al. (2014). The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 5:4737. 10.1038/ncomms5737 PubMed DOI PMC
Andrews S. (2010). FastQC: a Quality Control Tool for High Throughput Sequence Data. Available online at: http://www.bioinformatics.babrahamac.uk/projects/fastqc/. (Accessed March 18, 2019).
Bardella V. B., Milani D., Cabral-de-Mello D. C. (2020). Analysis of Holhymenia histrio genome provides insight into the satDNA evolution in an insect with holocentric chromosomes. Chromosome Res. 28 369–380. 10.1007/s10577-020-09642-1 PubMed DOI
Benson G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27 573–580. 10.1093/nar/27.2.573 PubMed DOI PMC
Brajković J., Feliciello I., Bruvo-Mađarić B., Ugarković Ð. (2012). Satellite DNA-like elements associated with genes within euchromatin of the beetle Tribolium castaneum. G3 (Bethesda) 2 931–941. 10.1534/g3.112.003467 PubMed DOI PMC
Bull J. J. (1983). Evolution of Sex Determining Mechanisms. San Francisco, CA: The Benjamin/Cummings Publishing Company, Inc.
Cabral-de-Mello D. C., Marec F. (2021). Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol. Genet. Genom. 10.1007/s00438-021-01765-2 Online ahead of print. PubMed DOI
Cabral-de-Mello D. C., Moura R. C., Martins C. (2011). Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. Cytogenet. Genome Res. 134 127–135. 10.1159/000326803 PubMed DOI
Camacho J. P., Ruiz-Ruano F. J., Martín-Blázquez R., López-León M. D., Cabrero J., Lorite P., et al. (2015). A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs. Chromosoma 124 263–275. 10.1007/s00412-014-0499-0 PubMed DOI
Charlesworth B. (1991). The evolution of sex chromosomes. Science 251 1030–1033. 10.1126/science.1998119 PubMed DOI
Charlesworth D., Charlesworth B., Marais G. (2005). Steps in the evolution of heteromorphic sex chromosomes. Heredity 95 118–128. 10.1038/sj.hdy.6800697 PubMed DOI
Crepaldi C., Parise-Maltempi P. P. (2020). Heteromorphic sex chromosomes and their DNA content in fish: an insight through satellite DNA accumulation in Megaleporinus elongatus. Cytogenet. Genome Res. 160 38–46. 10.1159/000506265 PubMed DOI
da Silva M. J., Fogarin Destro R., Gazoni T., Narimatsu H., Pereira, dos Santos P. S., et al. (2020). Great abundance of satellite DNA in Proceratophrys (Anura, Odontophrynidae) revealed by genome sequencing. Cytogenet. Genome Res. 160 141–147. 10.1159/000506531 PubMed DOI
Dalíková M., Zrzavá M., Hladová I., Nguyen P., Šonský I., Flegrová M., et al. (2017a). New insights into the evolution of the W chromosome in Lepidoptera. J. Hered. 108 709–719. 10.1093/jhered/esx063 PubMed DOI
Dalíková M., Zrzavá M., Kubíčková S., Marec F. (2017b). W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae). Chromosome Res. 25 241–252. 10.1007/s10577-017-9558-8 PubMed DOI
de Vos J. M., Augustijnen H., Bätscher L., Lucek K. (2020). Speciation through chromosomal fusion and fission in Lepidoptera. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375 20190539. 10.1098/rstb.2019.0539 PubMed DOI PMC
Escudeiro A., Adega F., Robinson T. J., Heslop-Harrison J. S., Chaves R. (2019). Conservation, divergence, and functions of centromeric satellite DNA families in the Bovidae. Gen. Biol. Evol. 11 1152–1165. 10.1093/gbe/evz061 PubMed DOI PMC
Feliciello I., Akrap I., Ugarković Ð. (2015). Satellite DNA modulates gene expression in the beetle Tribolium castaneum after heat stress. PLoS Genet. 11:e1005466. 10.1371/journal.pgen.1005466 PubMed DOI PMC
Ferretti A. B. S. M., Milani D., Palacios-Gimenez O. M., Ruiz-Ruano F. J., Cabral-de-Mello D. C. (2020). High dynamism for neo-sex chromosomes: satellite DNAs reveal complex evolution in a grasshopper. Heredity 125 124–137. 10.1038/s41437-020-0327-7 PubMed DOI PMC
Ferretti A. B. S. M., Ruiz-Ruano F. J., Milani D., Loreto V., Martí D. A., Ramos E., et al. (2019). How dynamic could be the 45S rDNA cistron? An intriguing variability in a grasshopper species revealed by integration of chromosomal and genomic data. Chromosoma 128 165–175. 10.1007/s00412-019-00706-8 PubMed DOI
Fraïsse C., Picard M. A. L., Vicoso B. (2017). The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 8:1486. 10.1038/s41467-017-01663-5 PubMed DOI PMC
Fry K., Salser W. (1977). Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12 1069–1084. 10.1016/0092-8674(77)90170-2 PubMed DOI
Fuková I., Nguyen P., Marec F. (2005). Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48 1083–1092. 10.1139/g05-063 PubMed DOI
Fuková I., Traut W., Vítková M., Kubíčková S., Marec F. (2007). Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma 116 135–145. 10.1007/s00412-006-0086-0 PubMed DOI
Furman B. L. S., Metzger D. C. H., Darolti I., Wright A. E., Sandkam B. A., Almeida P., et al. (2020). Sex chromosome evolution: so many exceptions to the rules. Genome Biol. Evol. 12 750–763. 10.1093/gbe/evaa081 PubMed DOI PMC
Garrido-Ramos M. A. (2017). Satellite DNA: an evolving topic. Genes 8:230. 10.3390/genes8090230 PubMed DOI PMC
Gatto K. P., Mattos J. V., Seger K. R., Lourenço L. B. (2018). Sex chromosome differentiation in the frog genus Pseudis involves satellite DNA and chromosome rearrangements. Front. Genet. 9:301. 10.3389/fgene.2018.00301 PubMed DOI PMC
Giovannotti M., Cerioni P. N., Rojo V., Olmo E., Slimani T., Splendiani A., et al. (2018). Characterization of a satellite DNA in the genera Lacerta and Timon (Reptilia, Lacertidae) and its role in the differentiation of the W chromosome. J. Exp. Zool. Part B Mol. Develop. Evol. 330 83–95. 10.1002/jez.b.22790 PubMed DOI
Gordon A., Hannon G. J. (2010). Fastx-toolkit. FASTQ/A Short-reads Pre-processing Tools. Available online at: http://hannonlab.cshl.edu/fastx_toolkit. (Accessed April 8, 2020).
Gregory T. R. (2020). Animal Genome Size Database. Available online at: http://www.genomesize.com. (Accessed November 26, 2020).
Guthrie W. D., Dollinger E. J., Stetson J. F. (1965). Chromosome studies of the European corn borer, smartweed borer, and lotus borer (Pyralidae). Ann. Entomol. Soc. Amer. 58 100–105. 10.1093/aesa/58.1.100 DOI
Hejníčková M., Koutecký P., Potocký P., Provazníková I., Voleníková A., Dalíková M., et al. (2019). Absence of W chromosome in Psychidae moths and implications for the theory of sex chromosome evolution in Lepidoptera. Genes 10:1016. 10.3390/genes10121016 PubMed DOI PMC
Hobza R., Cegan R., Jesionek W., Kejnovsky E., Vyskot B., Kubat Z. (2017). Impact of repetitive elements on the Y chromosome formation in plants. Genes 8:302. 10.3390/genes8110302 PubMed DOI PMC
Hobza R., Kubat Z., Cegan R., Jesionek W., Vyskot B., Kejnovsky E. (2015). Impact of repetitive DNA on sex chromosome evolution in plants. Chromosome Res. 23 561–570. 10.1007/s10577-015-9496-2 PubMed DOI
Ijdo J. W., Wells R. A., Baldini A., Reeders S. T. (1991). Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 19:4780. 10.1093/nar/19.17.4780 PubMed DOI PMC
Kageyma D., Traut W. (2004). Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proc. Biol. Sci. 271 251–258. 10.1098/rspb.2003.2604 PubMed DOI PMC
Kato A., Albert P. S., Veja J. M., Birchler J. A. (2006). Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotechnic Histoch. 81 71–78. 10.1080/10520290600643677 PubMed DOI
Kubickova S., Cernohorska H., Musilova P., Rubes J. (2002). The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res. 10 571–577. 10.1023/A:1020914702767 PubMed DOI
Léger T., Mally R., Neinhuis C., Nuss M. (2021). Refining the phylogeny of Crambidae with complete sampling of subfamilies (Lepidoptera, Pyraloidea). Zool. Scripta. 50 84–99. 10.1111/zsc.12452 DOI
Lewis L. C., Lynch R. E. (1969). Rearing the European corn borer, Ostrinia nubilalis (Hubner), on diets containing corn leaf and wheat germ. Iowa State J. Sci. 44 9–14.
Lorite P., Carrillo J. A., Aguilar J. A., Palomeque T. (2004). Isolation and characterization of two families of satellite DNA with repetitive units of 135 bp and 2.5 kb in the ant Monomorium subopacum (Hymenoptera, Formicidae). Cytogenet. Genome Res. 105 83–92. 10.1159/000078013 PubMed DOI
Lu Y. J., Kochert G. D., Isenhour D. J., Adang M. J. (1994). Molecular characterization of a strain-specific repeated DNA sequence in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect Mol. Biol. 3 123–130. 10.1111/j.1365-2583.1994.tb00159.x PubMed DOI
Lynch R. E. (1980). European corn borer: yield losses in relation to hybrid and stage of corn development. J. Econ. Entomol. 73 159–164. 10.1093/jee/73.1.159 DOI
Mahendran B., Acharya C., Dash R., Ghosh S. K., Kundu S. C. (2006). Repetitive DNA in tropical tasar silkworm Antheraea mylitta. Gene 370 51–57. 10.1016/j.gene.2005.11.010 PubMed DOI
Mandrioli M., Manicardi G. C., Marec F. (2003). Cytogenetic and molecular characterization of the MBSAT1 satellite DNA in holokinetic chromosomes of the cabbage moth, Mamestra brassicae (Lepidoptera). Chromosome Res. 11 51–56. 10.1023/A:1022058032217 PubMed DOI
Marec F., Traut W. (1994). Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera). Genome 37 426–435. 10.1139/g94-060 PubMed DOI
Mata-Sucre Y., Sader M., Van-Lume B., Gagnon E., Pedrosa-Harand A., Leitch I. J., et al. (2020). How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & G.P. Lewis (Leguminosae: Caesalpinioideae). Planta 252:49. 10.1007/s00425-020-03453-8 PubMed DOI
Mediouni J., Fuková I., Frydrychová R., Dhouibi M. H., Marec F. (2004). Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia 57 184–194. 10.1080/00087114.2004.10589391 DOI
Meissle M., Mouron P., Musa T., Bigler F., Pons X., Vasileiadis V. P., et al. (2010). Pests, pesticide use and alternative options in European maize production: current status and future prospects. J. Appl. Entomol. 134 357–375. 10.1111/j.1439-0418.2009.01491.x DOI
Mora P., Vela J., Ruiz-Ruano F. J., Ruiz-Mena A., Montiel E. E., Palomeque T., et al. (2020). Satellitome analysis in the ladybird beetle Hippodamia variegata (Coleoptera, Coccinellidae). Genes 11:783. 10.3390/genes11070783 PubMed DOI PMC
Munroe E., Solis M. A. (1999). “The Pyraloidea,” in Handbook of Zoology IV: Lepidoptera, Moths and Butterflies, Vol. 1, Arthropoda, Insect, Vol.4, Part 35, ed. Kristensen N. (Berlin: Walter de Gruyter & Co.), 491.
Nacambo S., Leuthardt F. L. G., Wan H., Li H., Haye T., Baur B., et al. (2013). Development characteristics of the box-tree moth Cydalima perspectalis and its potential distribution in Europe. J. Appl. Entomol. 138 14–26. 10.1111/jen.12078 DOI
Navrátilová A., Koblížková A., Macas J. (2008). Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol. 8:90. 10.1186/1471-2229-8-90 PubMed DOI PMC
Nguyen P., Sahara K., Yoshido A., Marec F. (2010). Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138 343–354. 10.1007/s10709-009-9424-5 PubMed DOI
Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková Frydrychová R., et al. (2013). Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. U S A 110 6931–6936. 10.1073/pnas.1220372110 PubMed DOI PMC
Novák P., Neumann P., Macas J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 11:378. 10.1186/1471-2105-11-378 PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29 792–793. 10.1093/bioinformatics/btt054 PubMed DOI
Novák P., Robledillo L. A., Koblížková A., Vrbová I., Neumann P., Macas J. (2017). TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 45:e111. 10.1093/nar/gkx257 PubMed DOI PMC
Nuss M., Landry B., Mally R., Vegliante F., Trankner A., Bauer F., et al. (2003–2020). Global informationsystem on Pyraloidea. Available online at: http://www.pyral oidea.org. (Accessed December 16, 2020).
Palacios-Gimenez O. M., Dias G. B., Lima L. G., Kuhn G. C. S., Ramos E., Martins C., et al. (2017). High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci. Rep. 7:6422. 10.1038/s41598-017-06822-6828 PubMed DOI PMC
Palacios-Gimenez O. M., Milani D., Song H., Martí D. A., López-León M. D., Ruiz-Ruano F. J., et al. (2020). Eight million years of satellite DNA evolution in grasshoppers of the genus Schistocerca illuminate the ins and outs of the library hypothesis. Genome Biol. Evol. 12 88–102. 10.1093/gbe/evaa018 PubMed DOI PMC
Palomeque T., Lorite P. (2008). Satellite DNA in insects: a review. Heredity 100 564–573. 10.1038/hdy.2008.24 PubMed DOI
Pita S., Panzera F., Mora P., Vela J., Cuadrado A., Sánches A., et al. (2017). Comparative repeatome analysis on Triatoma infestans Andean and non-Andean lineages, main vector of Chagas disease. PLoS One 12:e0181635. 10.1371/journal.pone.0181635 PubMed DOI PMC
Pons J., Petitpierre E., Juan C. (1993). Characterization of the heterochromatin of the darkling beetle Misolampus goudoti: cloning of two satellite DNA families and digestion of chromosomes with restriction enzymes. Hereditas 119 179–185. 10.1111/j.1601-5223.1993.00179.x PubMed DOI
Pringle E. G., Baxter S. W., Webster C. L., Papanicolaou A., Lee S. F., Jiggins C. D. (2007). Synteny and chromosome evolution in the Lepidoptera: evidence from mapping in Heliconius melpomene. Genetics 177 417–426. 10.1534/genetics.107.073122 PubMed DOI PMC
Regier J. C., Mitter C., Solis M. A., Hayden J. E., Landry B., Nuss M., et al. (2012). A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. Syst. Entomol. 37 635–656. 10.1111/j.1365-3113.2012.00641.x DOI
Robinson R. (1971). Lepidoptera Genetics. Oxford: Pergamon.
Sahara K., Marec F., Eickhoff U., Traut W. (2003). Moth sex chromatin probed by comparative genomic hybridization (CGH). Genome 46 339–342. 10.1139/G03-003 PubMed DOI
Sahara K., Yoshido A., Shibata F., Fujikawa-Kojima N., Okabe T., Tanaka-Okuyama M., et al. (2013). FISH identification of Helicoverpa armigera and Mamestra brassicae chromosomes by BAC and fosmid probes. Insect Biochem. Mol. Biol. 43 644–653. 10.1016/j.ibmb.2013.04.003 PubMed DOI
Sahara K., Yoshido A., Traut W. (2012). Sex chromosome evolution in moths and butterflies. Chromosome Res. 20 83–94. 10.1007/s10577-011-9262-z PubMed DOI
Saitoh K. (1959). The chromosome numbers of some species of moths. Jap. J. Genet. 34 84–87.
Serrano-Freitas E. A., Silva D. M. Z. A., Ruiz-Ruano F. J., Utsunomia R., Araya-Jaime C., Oliveira C., et al. (2020). Satellite DNA content of B chromosomes in the characid fish Characidium gomesi supports their origin from sex chromosomes. Mol. Genet. Genom. 295 195–207. 10.1007/s00438-019-01615-2 PubMed DOI
Šíchová J., Nguyen P., Dalíková M., Marec F. (2013). Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS One 8:e64520. 10.1371/journal.pone.0064520 PubMed DOI PMC
Šíchová J., Ohno M., Dincă V., Watanabe M., Sahara K., Marec F. (2016). Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. Biol. J. Linnean Soc. 118 457–471. 10.1111/bij.12756 DOI
Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., Sahara K., et al. (2015). Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol. Biol. 15:89. 10.1186/s12862-015-0375-4 PubMed DOI PMC
Silva B. S. M. L., Heringer P., Dias G. B., Svartman M., Kuhn G. C. S. (2019). De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines. PLoS One 14:e0223466. 10.1371/journal.pone.0223466 PubMed DOI PMC
Silva D. M. Z. A., Utsunomia R., Ruiz-Ruano F. J., Daniel S. N., Porto-Foresti F., Hashimoto D. T., et al. (2017). High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci. Rep. 7:12726. 10.1038/s41598-017-12939-7 PubMed DOI PMC
Smit A. F. A., Hubley R., Green P. (2013–2015). RepeatMasker Open-4.0. Available online at: http://www.repeatmasker.org. (Accessed Dec 14, 2018).
Smith S. G. (1945). Heteropycnosis as a means of diagnosing sex. J. Hered. 36 195–196. 10.1093/oxfordjournals.jhered.a105498 DOI
Solis M. A. (1997). “Snout moths: unraveling the taxonomic diversity of a speciose group in the neotropics,” in Biodiversity II: Understanding and Protecting our Biological Resources, eds Reaka-Kudla M. L., Wilson D., Wilson E. O. (Washington, D. C: Joseph Henry Press; ), 231–242.
Solis M. A., Metz M. (2016). An illustrated guide to the identification of the known species of Diatraea Guilding (Lepidoptera: Crambidae: Crambinae) based on genitalia. Zookeys. 565 73–121. 10.3897/zookeys.565.6797 PubMed DOI PMC
Solis M. A., Scheffer S. J., Lewis M. L., Rendon P. (accepted). Diatraea postlineella Schaus (Lepidoptera: Crambidae) from Guatemala: molecular identity and host plant. Proc. Entomol. Soc. Wash.
Sproul J. S., Khost D. E., Eickbush D. G., Negm S., Wei X., Wong I., et al. (2020). Dynamic evolution of euchromatic satellites on the X chromosome in Drosophila melanogaster and the simulans clade. Mol. Biol. Evol. 37 2241–2256. 10.1093/molbev/msaa078 PubMed DOI PMC
Talla V., Suh A., Kalsoom F., Dincă V., Vila R., Friberg M., et al. (2017). Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol. Evol. 9 2491–2505. 10.1093/gbe/evx163 PubMed DOI PMC
Thakur R., Gautam D. C. (2013). Chromosome studies on four species of moths. Cytologia 78 327–331. 10.1508/cytologia.78.327 DOI
Traut W., Marec F. (1996). Sex chromatin in Lepidoptera. Quar. Rev. Biol. 71 239–256. 10.1086/419371 PubMed DOI
Traut W., Marec F. (1997). Sex chromosome differentiation in some species of Lepidoptera (Insecta). Chromosome Res. 5 283–291. 10.1023/B:CHRO.0000038758.08263.c3 PubMed DOI
Traut W., Sahara K., Marec F. (2007). Sex chromosomes and sex determination in Lepidoptera. Sex. Dev. 1 332–346. 10.1159/000111765 PubMed DOI
Traut W., Sahara K., Otto T. D., Marec F. (1999). Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108 173–180. 10.1007/s004120050366 PubMed DOI
Traut W., Vogel H., Glöckner G., Hartmann E., Heckel D. G. (2013). High-throughput sequencing of a single chromosome: a moth W chromosome. Chromosome Res. 110 491–505. 10.1007/s10577-013-9376-6 PubMed DOI
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3-new capabilities and interfaces. Nucleic Acids Res. 40:e115. 10.1093/nar/gks596 PubMed DOI PMC
Utsunomia R., Silva D. M. Z. A., Ruiz-Ruano F. J., Goes C. A. G., Melo S., Ramos L. P., et al. (2019). Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci. Rep. 9:5856. 10.1038/s41598-019-42383-8 PubMed DOI PMC
Van Nieukerken E. J., Kaila L., Kitching I. J., Kristensen N. P., Lees D. C., Minet J., et al. (2011). “Order Lepidoptera Linnaeus, 1758,” in Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness, ed. Zhang Z. Q. (Auckland: Magnolia Press; ).
Van’t Hof A. E., Marec F., Saccheri I. J., Brakefield P. M., Zwaan B. J. (2008). Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes. PLoS One 3:e3882. 10.1371/journal.pone.0003882 PubMed DOI PMC
Van’t Hof A. E., Nguyen P., Dalíková M., Edmonds N., Marec F., Saccheri I. J. (2013). Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity 110 283–295. 10.1038/hdy.2012.84 PubMed DOI PMC
Věchtová P., Dalíková M., Sýkorová M., Žurovcová M., Füssy Z., Zrzavá M. (2016). CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella. Genetica 144 385–395. 10.1007/s10709-016-9907-0 PubMed DOI
Virkki N. (1963). Gametogenesis in the sugarcane borer moth, Diatraea saccharalis (F.) (Crambidae). J. Agricult. University Puerto Rico 47 102–137. 10.46429/jaupr.v47i2.12944 DOI
Vítková M., Fuková I., Kubíčková S., Marec F. (2007). Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosome Res. 15 917–930. 10.1007/s10577-007-1173-7 PubMed DOI
Vondrak T., Robledillo L. A., Novák P., Koblížková A., Neumann P., Macas J. (2020). Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 101 484–500. 10.1111/tpj.14546 PubMed DOI PMC
Wei K. H. C., Barbash D. A. (2015). Never settling down: frequent changes in sex chromosomes. PLoS Biol. 13:e1002077. 10.1371/journal.pbio.1002077 PubMed DOI PMC
Winnepenninckx B., Backeljau T., de Wachter R. (1993). Extraction of high molecular weight DNA from molluscs. Trends Genet. 12:407. 10.1016/0168-9525(93)90102-n PubMed DOI
Wright A. E., Dean R., Zimmer F., Mank J. E. (2016). How to make a sex chromosome. Nat. Commun. 7:12087. 10.1038/ncomms12087 PubMed DOI PMC
Yasukochi Y., Ohno M., Shibata F., Jouraku A., Nakano R., Ishikawa Y., et al. (2016). A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm. Heredity 116 75–83. 10.1038/hdy.2015.72 PubMed DOI PMC
Yoshido A., Marec F., Sahara K. (2005). Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma 114 193–202. 10.1007/s00412-005-0013-9 PubMed DOI
Yoshido A., Šíchová J., Pospíšilová K., Nguyen P., Voleníková A., Šafář J., et al. (2020). Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity 125 138–154. 10.1038/s41437-020-0325-9 PubMed DOI PMC
Zhu W., Yan J., Song J., You P. (2018). The first mitochondrial genomes for Pyralinae (Pyralidae) and Glaphyriinae (Crambidae), with phylogenetic implications of Pyraloidea. PLoS One 13:e0194672. 10.1371/journal.pone.0194672 PubMed DOI PMC
Zrzavá M., Hladová I., Dalíková M., Šíchová J., Õunap E., Kubíčková S., et al. (2018). Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata. Genes 9:279. 10.3390/genes9060279 PubMed DOI PMC
Zwyrtková J., Němečková A., Čížková J., Holušová K., Kapustová V., Svačina R., et al. (2020). Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC Plant Biol. 20:280. 10.1186/s12870-020-02495-0 PubMed DOI PMC
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera