The burst of satellite DNA in Leptidea wood white butterflies and their putative role in karyotype evolution
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
39460673
PubMed Central
PMC11565590
DOI
10.1093/dnares/dsae030
PII: 7845187
Knihovny.cz E-zdroje
- Klíčová slova
- Lepidoptera, chromosome mapping, cryptic species, genome evolution, repetitive DNA,
- MeSH
- fylogeneze MeSH
- genom hmyzu * MeSH
- heterochromatin genetika MeSH
- karyotyp * MeSH
- mapování chromozomů MeSH
- molekulární evoluce * MeSH
- motýli * genetika MeSH
- satelitní DNA * genetika MeSH
- transpozibilní elementy DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- heterochromatin MeSH
- satelitní DNA * MeSH
- transpozibilní elementy DNA MeSH
Satellite DNAs (satDNAs) are abundant components of eukaryotic genomes, playing pivotal roles in chromosomal organization, genome stability, and evolution. Here, we combined cytogenetic and genomic methods to characterize the satDNAs in the genomes of Leptidea butterflies. Leptidea is characterized by the presence of a high heterochromatin content, large genomes, and extensive chromosomal reshuffling as well as the occurrence of cryptic species. We show that, in contrast to other Lepidoptera, satDNAs constitute a considerable proportion of Leptidea genomes, ranging between 4.11% and 11.05%. This amplification of satDNAs, together with the hyperactivity of transposable elements, contributes to the substantial genome expansion in Leptidea. Using chromosomal mapping, we show that, particularly LepSat01-100 and LepSat03-167 satDNAs, are preferentially localized in heterochromatin exhibiting variable distribution that may have contributed to the highly diverse karyotypes within the genus. The satDNAs also exhibit W-chromosome accumulation, suggesting their involvement in sex chromosome evolution. Our results provide insights into the dynamics of satDNAs in Lepidoptera genomes and highlight their role in genome expansion and chromosomal organization, which could influence the speciation process. The high proportion of repetitive DNAs in the genomes of Leptidea underscores the complex evolutionary dynamics revealing the interplay between repetitive DNAs and genomic architecture in the genus.
Zobrazit více v PubMed
Charlesworth B, Sniegowski P, Stephan W.. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994:371:215–220. https://doi.org/10.1038/371215a0 PubMed DOI
Biémont C, Vieira C.. Genetics: junk DNA as an evolutionary force. Nature. 2006:443:521–524. https://doi.org/10.1038/443521a PubMed DOI
López-Flores I, Garrido-Ramos MA.. The repetitive DNA content of eukaryotic genomes. Genome Dyn. 2012:7:1–28. https://doi.org/10.1159/000337118 PubMed DOI
Garrido-Ramos MA. Satellite DNA: an evolving topic. Genes. 2017:8:230, https://doi.org/10.3390/genes8090230 PubMed DOI PMC
Ruíz-Herrera A, Castresana J, Robinson TJ.. Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol. 2006:7:R115, https://doi.org/10.1186/gb-2006-7-12-r115 PubMed DOI PMC
Raskina O, Barber JC, Nevo E, Belyayev A.. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res. 2008:120:351–357. https://doi.org/10.1159/000121084 PubMed DOI
Farré M, et al.Assessing the role of tandem repeats in shaping the genomic architecture of great apes. PLoS One. 2011:6:e27239, https://doi.org/10.1371/journal.pone.0027239 PubMed DOI PMC
Paço A, Adega F, Meštrović N, Plohl M, Chaves R.. The puzzling character of repetitive DNA in Phodopus genomes (Cricetidae, Rodentia). Chromosome Res. 2015:23:427–440. https://doi.org/10.1007/s10577-015-9481-9 PubMed DOI
Vieira-da-Silva A, Louzada S, Adega F, Chaves R.. A high-resolution comparative chromosome map of Cricetus cricetus and Peromyscus eremicus reveals the involvement of constitutive heterochromatin in breakpoint regions. Cytogenet Genome Res. 2015:145:59–67. https://doi.org/10.1159/000381840 PubMed DOI
Mathers TC, Wouters RHM, Mugford ST, Swarbreck D, van Oosterhout C, et al.Chromosome-scale genome assemblies of aphids reveal extensively rearranged autosomes and long-term conservation of the X chromosome. Mol Biol Evol. 2021:38:856–875. https://doi.org/10.1093/molbev/msaa246 PubMed DOI PMC
White MJD. Chromosomal rearrangements and speciation in animals. Annu Rev Genet. 1969:3:75–98. https://doi.org/10.1146/annurev.ge.03.120169.000451 DOI
Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001:16:351–358. https://doi.org/10.1016/s0169-5347(01)02187-5 PubMed DOI
Ayala FJ, Coluzzi M.. Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci USA. 2005:102:6535–6542. https://doi.org/10.1073/pnas.0501847102 PubMed DOI PMC
Potter S, Bragg JG, Blom MPK, Deakin JE, Kirkpatrick M, et al.Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies. Front Genet. 2017:8:10. https://doi.org/10.3389/fgene.2017.00010 PubMed DOI PMC
Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982:299:111–117. https://doi.org/10.1038/299111a0 PubMed DOI
Dover G. Molecular drive. Trends Genet. 2002:18:587–589. https://doi.org/10.1016/s0168-9525(02)02789-0 PubMed DOI
Plohl M, Meštrović N, Mravinac B.. Satellite DNA evolution. In: Garrido-Ramos MA, editor. Repetitive DNA. Genome dynamics vol 7. Karger; 2012. p. 126–152. PubMed
Henikoff S, Ahmad K, Malik HS.. The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001:293:1098–1102. https://doi.org/10.1126/science.1062939 PubMed DOI
Ferree PM, Barbash DA.. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol. 2009:7:e1000234, https://doi.org/10.1371/journal.pbio.1000234 PubMed DOI PMC
Ferree PM, Prasad S.. How can satellite DNA divergence cause reproductive isolation? Let us count the chromosomal ways. Genet. Res. Int. 2012:2012:430136, https://doi.org/10.1155/2012/430136 PubMed DOI PMC
Jagannathan M, Yamashita YM.. Defective satellite DNA clustering into chromocenters underlies hybrid incompatibility in Drosophila. Mol Biol Evol. 2021:38:4977–4986. https://doi.org/10.1093/molbev/msab221 PubMed DOI PMC
Van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, et al.‘Order Lepidoptera Linnaeus, 1758’, In Zhang ZQ, editor. Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness. Magnolia Press; 2011.
Robinson R. Lepidoptera Genetics. Pergamon; 1971.
Lukhtanov VA. Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta). J Zool Syst Evol Res. 2000:38:73–79. https://doi.org/10.1046/j.1439-0469.2000.382130.x DOI
Traut W, Sahara K, Marec F.. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007:1:332–346. https://doi.org/10.1159/000111765 PubMed DOI
Sahara K, Yoshido A, Traut W.. Sex chromosome evolution in moths and butterflies. Chromosome Res. 2012:20:83–94. https://doi.org/10.1007/s10577-011-9262-z PubMed DOI
Věchtová P, Dalíková M, Sýkorová M, Žurovcová M, Füssy Z, et al.CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella. Genetica. 2016:144:385–395. https://doi.org/10.1007/s10709-016-9907-0 PubMed DOI
Dalíková M, Zrzavá M, Kubíčková S, Marec F.. W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae). Chromosome Res. 2017:25:241–252. https://doi.org/10.1007/s10577-017-9558-8 PubMed DOI
Dalíková M, Provazníková I, Provazník J, Grof-Tisza P, Pepi A, et al.The role of repetitive sequences in repatterning of major ribosomal DNA clusters in Lepidoptera. Genome Biol. Evol. 2023:15:evad090, https://doi.org/10.1093/gbe/evad090 PubMed DOI PMC
Cabral-de-Mello DC, Zrzavá M, Kubíčková S, Rendón P, Marec, F.. The role of satellite DNAs in genome architecture and sex chromosome evolution in Crambidae moths. Front Genet. 2021:12:661417, https://doi.org/10.3389/fgene.2021.661417 PubMed DOI PMC
Haq IU, Muhammad M, Yuan H, Ali S, Abbasi A, et al.Satellitome analysis and transposable elements comparison in geographically distant populations of Spodoptera frugiperda. Life 2022:12:521, https://doi.org/10.3390/life12040521 PubMed DOI PMC
Dincă V, Lukhtanov V, Talavera G, Vila R.. Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nat Commun. 2011:2:324. PubMed
Dincă V, Dapporto L, Somervuo P, Vodă R, Cuvelier S, et al.High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Commun Biol. 2021:4:315, https://doi.org/10.1038/s42003-021-01834-7 PubMed DOI PMC
Šíchová J, Voleníková A, Dinca V, Nguyen P, Vila R, et al.Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol Biol. 2015:15:89, https://doi.org/10.1186/s12862-015-0375-4 PubMed DOI PMC
Lukhtanov VA, Dincă V, Friberg M, Šíchová J, Olofsson M, et al.Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proc Natl Acad Sci USA. 2018:115:E9610–E9619. https://doi.org/10.1073/pnas.1802610115 PubMed DOI PMC
Yoshido A, Šíchová J, Pospíšilová K, Nguyen P, Voleníková A, et al.Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity. 2020:125:138–154. https://doi.org/10.1038/s41437-020-0325-9 PubMed DOI PMC
Höök L, Näsvall K, Vila R, Wiklund C, Backström N.. High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Res. 2023:31:2, https://doi.org/10.1007/s10577-023-09713-z PubMed DOI PMC
Šíchová J, Ohno M, Dinca V, Watanabe M, Sahara K, et al.Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. Biol J Linn Soc. 2016:118:457–471. https://doi.org/10.1111/bij.12756 DOI
Traut W, Marec F.. Sex chromatin in Lepidoptera. Q Rev Biol. 1996:71:239–256. https://doi.org/10.1086/419371 PubMed DOI
Traut W, Marec F.. Sex chromosome differentiation in some species of Lepidoptera (Insecta). Chromosome Res. 1997:5:283–291. https://doi.org/10.1023/B:CHRO.0000038758.08263.c3 PubMed DOI
Nguyen P, Sahara K, Yoshido A, Marec F.. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica. 2010:138:343–354. https://doi.org/10.1007/s10709-009-9424-5 PubMed DOI
Šíchová J, Nguyen P, Dalíková M, Marec F.. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS One. 2013:8:e64520, https://doi.org/10.1371/journal.pone.0064520 PubMed DOI PMC
Talla V, Suh A, Kalsoom F, Dinca V, Vila R, et al.Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol Evol. 2017:9:2491–2505. https://doi.org/10.1093/gbe/evx163 PubMed DOI PMC
Novák P, et al.RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013:29:792–793. https://doi.org/10.1093/bioinformatics/btt054 PubMed DOI
Novák P, Robledillo, LA, Koblížková A, Vrbová I, Neumann P, et al.TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017:45:e111. https://doi.org/10.1093/nar/gkx257 PubMed PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004:32:1792–1797. https://doi.org/10.1093/nar/gkh340 PubMed DOI PMC
Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M.. Geneious v.4.8.5. Biomatters Ltd; 2009.
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.1.1. 2017. Accessed in May 2023. http://www.repeatmasker.org
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980:16:111–120. https://doi.org/10.1007/BF01731581 PubMed DOI
Bolger AM, Lohse M, Usadel B.. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014:30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PubMed DOI PMC
Cabral-de-Mello DC, Marec F.. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol Genet Genomics. 2021:296:513–526. https://doi.org/10.1007/s00438-021-01765-2 PubMed DOI
Rico-Porras JM, Mora P, Palomeque T, Montiel EE, Cabral-de-Mello DC, et al.Heterochromatin is not the only place for satDNAs: the high diversity of satDNAs in the euchromatin of the beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genes. 2024:15:395, https://doi.org/10.3390/genes15040395 PubMed DOI PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al.Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012:28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199 PubMed PMC
Wickham H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer International Publishing; 2016. Available online: https://ggplot2.tidyverse.org
Talla V, Johansson A, Dincă V, Vila R, Friberg M, et al.Lack of gene flow: narrow and dispersed differentiation islands in a triplet of Leptidea butterfly species. Mol Ecol. 2019:28:3756–3770. https://doi.org/10.1111/mec.15188 PubMed DOI
Gasparotto AE, Milani D, Martí E, Ferretti ABSM, Bardella VB, et al.A step forward in the genome characterization of the sugarcane borer, Diatraea saccharalis: karyotype analysis, sex chromosome system and repetitive DNAs through a cytogenomic approach. Chromosoma. 2022:131:253–267. https://doi.org/10.1007/s00412-022-00781-4 PubMed DOI
Blommaert J. Genome size evolution: towards new model systems for old questions. Proc Biol Sci. 2020:287:20201441, https://doi.org/10.1098/rspb.2020.1441 PubMed DOI PMC
Pereira JA, Milani D, Ferretti ABSM, Bardella VB, Cabral-de-Mello DC, et al.The extensive amplification of heterochromatin in Melipona bees revealed by high throughput genomic and chromosomal analysis. Chromosoma. 2021:130:251–262. https://doi.org/10.1007/s00412-021-00764-x PubMed DOI
Mora P, Pita S, Montiel EE, Rico-Porras JM, Palomeque T, et al.Making the genome huge: the case of Triatoma delpontei, a Triatominae species with more than 50% of its genome full of satellite DNA. Genes. 2023:14:371, https://doi.org/10.3390/genes14020371 PubMed DOI PMC
Petitpierre E, Gatewood JM, Schmid CW.. Satellite DNA from the beetle Tenebrio molitor. Experientia. 1988:44:498–499. https://doi.org/10.1007/bf01958925 DOI
Šatović-Vukšić E, Plohl M.. Satellite DNAs-from localized to highly dispersed genome components. Genes. 2023:14:742, https://doi.org/10.3390/genes14030742 PubMed DOI PMC
Fry K, Salser W.. Nucleotide sequences of HS-satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell. 1977:12:1069–1084. https://doi.org/10.1016/0092-8674(77)90170-2 PubMed DOI
Cornet C, Mora P, Augustijnen H, Nguyen P, Escudero M, et al.Holocentric repeat landscapes: from micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution. Mol Ecol. 2023, https://doi.org/10.1111/mec.17100. online ahead of print PubMed DOI PMC
Gatto KP, Mattos JV, Seger KR, Lourenço LB.. Sex chromosome differentiation in the frog genus Pseudis involves satellite DNA and chromosome rearrangements. Front Genet. 2018:9:301, https://doi.org/10.3389/fgene.2018.00301 PubMed DOI PMC
Utsunomia R, Silva DMZA, Ruiz-Ruano FJ, Goes CAG, Melo S, et al.Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci Rep. 2019:9:5856, https://doi.org/10.1038/s41598-019-42383-8 PubMed DOI PMC
Ferretti ABSM, Milani D, Palacios-Gimenez OM, Ruiz-Ruano FJ, Cabral-de-Mello DC.. High dynamism for neo-sex chromosomes: satellite DNAs reveal complex evolution in a grasshopper. Heredity. 2020:125:124–137. https://doi.org/10.1038/s41437-020-0327-7 PubMed DOI PMC