Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods

. 2021 May ; 296 (3) : 513-526. [epub] 20210224

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33625598

Grantová podpora
2017/097319 and 2019/19069-7 Fundação de Amparo à Pesquisa do Estado de São Paulo
17-13713S and 20-13784S Grantová Agentura České Republiky

Odkazy

PubMed 33625598
DOI 10.1007/s00438-021-01765-2
PII: 10.1007/s00438-021-01765-2
Knihovny.cz E-zdroje

Repetitive DNAs comprise large portion of eukaryote genomes. In genome projects, the assembly of repetitive DNAs is challenging due to the similarity between repeats, which generate ambiguities for alignment. Fluorescence in situ hybridization (FISH) is a powerful technique for the physical mapping of various sequences on chromosomes. This technique is thus very helpful in chromosome-based genome assemblies, providing information on the fine architecture of genomes and their evolution. However, various protocols are currently used for FISH mapping, most of which are relatively laborious and expensive, or work properly only with a specific type of probes or sequences, and there is a need for a universal and affordable FISH protocol. Here we tested a FISH protocol for mapping of different DNA repeats, such as multigene families (rDNAs, U snDNAs, histone genes), satellite DNAs, microsatellites, transposable elements, DOP-PCR products, and telomeric motif (TTAGG)n, on the chromosomes of various insects and other arthropods. Different cell types and stages obtained from diverse tissues were used. The FISH procedure proved high quality and reliable results in all experiments performed. We obtained data on the chromosomal distribution of DNA repeats in representatives of insects and other arthropods. Thus, our results allow us to conclude that the protocol is universal and requires only time adjustment for chromosome/DNA denaturation. The use of this FISH protocol will facilitate studies focused on understanding the evolution and role of repetitive DNA in arthropod genomes.

Zobrazit více v PubMed

Almeida BRR, Milhomem-Paixão SSR, Noronha RCR, Nagamachi CY, Costa MJRD, Pardal PPO, Coelho JS, Pieczarka JC (2017) Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae). BMC Genet 18:35. https://doi.org/10.1186/s12863-017-0494-6 PubMed DOI PMC

Anjos A, Ruiz-Ruano FJ, Camacho JP, Loreto V, Cabrero J, de Souza MJ, Cabral-de-Mello DC (2015) U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization. Heredity 114:207–219. https://doi.org/10.1038/hdy.2014.87 PubMed DOI

Bardella VB, Fernandes JA, Cabral-de-Mello DC (2016) Chromosomal evolutionary dynamics of four multigene families in Coreidae and Pentatomidae (Heteroptera) true bugs. Mol Genet Genom 291:1919–1925. https://doi.org/10.1007/s00438-016-1229-5 DOI

Bardella VB, Milani D, Cabral-de-Mello DC (2020) Analysis of Holhymenia histrio genome provides insight into the satDNA evolution in an insect with holocentric chromosomes. Chromosome Res 28:369–380. https://doi.org/10.1007/s10577-020-09642-1 PubMed DOI

Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524. https://doi.org/10.1038/443521a PubMed DOI

Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res 23:415–420. https://doi.org/10.1007/s10577-015-9499-z PubMed DOI

Cabral-de-Mello DC (2015) Beetles (Coleoptera). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 171–217

Cabral-de-Mello DC, Moura RC, Martins C (2011) Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. Cytogenet Genome Res 134:127–135. https://doi.org/10.1159/000326803 PubMed DOI

Camacho JPM, Cabrero J, López-León MD, Cabral-de-Mello DC, Ruiz-Ruano FJ (2015) Grasshoppers (Orthoptera). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 381–438

Carabajal Paladino LZ, Nguyen P, Šíchová J, Marec F (2014) Mapping of single-copy genes by TSA-FISH in the codling moth Cydia pomonella. BMC Genet 15:S15. https://doi.org/10.1186/1471-2156-15-S2-S15 PubMed DOI PMC

Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220. https://doi.org/10.1038/371215a0 PubMed DOI

Chirino MG, Papeschi AG, Bressa MJ (2013) The significance of cytogenetics for the study of karyotype evolution and taxonomy of water bugs (Heteroptera, Belostomatidae) native to Argentina. Comp Cytogenet 7:111–129. https://doi.org/10.3897/CompCytogen.v7i2.4462 DOI

Colihueque N, Gajardo G (1996) Chromosomal analysis in Artemia populations from South America. Cytobios 88:141–148

Dolejš P, Kořínková T, Musilová J, Opatová V, Kubcová L, Buchar J, Král J (2011) Karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Araneae: Lycosidae). Eur J Entomol 108:1–16. https://doi.org/10.14411/eje.2011.001

Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE (2016) Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids Res 44:D793–D800. https://doi.org/10.1093/nar/gkv1208 PubMed DOI

Fominaya A, Loarce Y, González JM, Ferrer E (2016) Tyramide signal amplification: Fluorescence in situ hybridization for identifying homoeologous chromosomes. Methods Mol Biol 1429:35–48. https://doi.org/10.1007/978-1-4939-3622-9_4 PubMed DOI

Garrido-Ramos MA (2017) Satellite DNA: an evolving topic. Genes 8:E230. https://doi.org/10.3390/genes8090230 PubMed DOI

Green JE, Dalíková M, Sahara K, Marec F, Akam M (2016) XX/XY system of sex determination in the geophilomorph centipede Strigamia maritima. PLoS ONE 11:e0150292. https://doi.org/10.1371/journal.pone.0150292 PubMed DOI PMC

Gulia-Nuss M, Meyer JM, Hill CA (2015) Ticks (Ixodida). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 439–470

Hobza R, Cegan R, Jesionek W, Kejnovsky E, Vyskot B, Kubat Z (2017) Impact of repetitive elements on the Y chromosome formation in plants. Genes 8:302. https://doi.org/10.3390/genes8110302 DOI PMC

Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN (2014) Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 71:467–478. https://doi.org/10.1007/s00018-013-1437-7 PubMed DOI

i5K Consortium (2013) The i5K Initiative: Advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J Hered 104:595–600. https://doi.org/10.1093/jhered/est050 DOI PMC

Imai HT, Crozier RH, Taylor RW (1977) Karyotype evolution in ants. Chromosoma 59:341–393. https://doi.org/10.1007/BF00327974 DOI

Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559. https://doi.org/10.1073/pnas.0403659101 PubMed DOI

Kennison JA (2008) Dissection of larval salivary glands and polytene chromosome preparation. CSH Protoc. https://doi.org/10.1101/pdb.prot4708 PubMed DOI

Kotsarenko K, Vechtova P, Lieskovska J, Füssy Z, Cabral-de-Mello DC, Rego ROM, Alberdi P, Collins M, Bell-Sakyi L, Sterba J, Grubhoffer L (2020) Karyotype changes in long-term cultured tick cell lines. Sci Rep 10:13443. https://doi.org/10.1038/s41598-020-70330-5 PubMed DOI PMC

Kuznetsova VG, Grozeva SM, Hartung V, Anokhin BA (2015a) First evidence for (TTAGG)n telomeric sequence and sex chromosome post-reduction in Coleorrhyncha (Insecta, Hemiptera). Comp Cytogenet 9:523–532. https://doi.org/10.3897/CompCytogen.v9i4.5609 PubMed DOI PMC

Kuznetsova VG, Khabiev GN, Krivokhatsky VA (2015b) Chromosome numbers in antlions (Myrmeleontidae) and owlflies (Ascalaphidae) (Insecta, Neuroptera). ZooKeys 538:47–61. https://doi.org/10.3897/zookeys.538.6655 DOI

Kuznetsova VG, Maryańska-Nadachowska A, Shapoval NA, Anokhin BA, Shapoval AP (2017) Cytogenetic characterization of eight Odonata species originating from the Curonian Spit (the Baltic Sea, Russia) using C-banding and FISH with 18S rDNA and telomeric (TTAGG) PubMed DOI

Larracuente AM, Feerre PM (2015) Simple method for Fluorescence DNA In Situ Hybridization to squashed chromosomes. J Vis Exp 95:e52288. https://doi.org/10.3791/52288 DOI

Liehr T, Buleu O, Karamysheva T, Bugrov A, Rubtsov N (2017) New insights into Phasmatodea chromosomes. Genes 8:327. https://doi.org/10.3390/genes8110327 DOI PMC

López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos MA (ed) Repetitive DNA. Genome Dyn, Karger, Basel, pp 1–28

Luykx P (1983) XO:XX sex chromosomes and Robertsonian variation in the autosomes of the wood-roach Cryptocercus punctulatus (Dictyoptera: Blattaria: Cryptocercidae). Ann Entomol Soc Am 76:518–522 DOI

Mandrioli M, Manicardi GC (2015) Aphids (Hemiptera). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 327–350

Marques A, Banaei-Moghaddam AM, Klemme S, Blattner FR, Niwa K, Guerra M, Houben A (2013) B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Ann Bot 112:527–534. https://doi.org/10.1093/aob/mct121 PubMed DOI PMC

Mason JM, Frydrychová RC, Biessmann H (2008) Drosophila telomeres: an exception providing new insights. BioEssays 30:25–37. https://doi.org/10.1002/bies.20688 PubMed DOI PMC

Mattos VF, Carvalho LS, Cella DM, Schneider MC (2014) Location of 45S ribosomal genes in mitotic and meiotic chromosomes of buthid scorpions. Zool Sci 31:603–607. https://doi.org/10.2108/zs140005 DOI

Mazzoleni S, Rovatsos M, Schillaci O, Dumas F (2018) Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp Cytogenet 12:27–40. https://doi.org/10.3897/CompCytogen.v12i1.19381 PubMed DOI PMC

Miao Y, Wang J-S, Hua B-Z (2018) Molecular phylogeny of the scorpionflies Panorpidae (Insecta: Mecoptera) and chromosomal evolution. Cladistics 35:385–400. https://doi.org/10.1111/cla.12357 DOI

Milani D, Palacios-Gimenez OM, Cabral-de-Mello DC (2017) The U2 snDNA is a useful marker for B chromosome detection and frequency estimation in the grasshopper Abracris flavolineata. Cytogenet Genome Res 151:36–40. https://doi.org/10.1159/000458468 PubMed DOI

Milani D, Bardella VB, Ferretti ABSM, Palacios-Gimenez OM, Melo AS, Moura RC, Loreto V, Song H, Cabral-de-Mello DC (2018) Satellite DNAs unveil clues about the ancestry and composition of B chromosomes in three grasshopper species. Genes 9:523. https://doi.org/10.3390/genes9110523 DOI PMC

Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767. https://doi.org/10.1126/science.1257570 PubMed DOI

Palacios-Gimenez OM, Dias GB, Lima LG, Kuhn GCS, Ramos E, Martins C, Cabral-de-Mello DC (2017) High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci Rep 7:6422. https://doi.org/10.1038/s41598-017-06822-8 PubMed DOI PMC

Panfilio KA, Angelini DR (2017) By land, air, and sea: hemipteran diversity through the genomic lens. Curr Opin Insect Sci 25:106–115. https://doi.org/10.1016/j.cois.2017.12.005 PubMed DOI

Pérez-García C, Morán P, Pasantes JJ (2014) Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters. BMC Genet 15:84. https://doi.org/10.1186/1471-2156-15-84 PubMed DOI PMC

Piccoli MCA, Bardella VB, Cabral-de-Mello DC (2018) Repetitive DNAs in Melipona scutellaris (Hymenoptera: Apidae: Meliponidae): chromosomal distribution and test of multiple heterochromatin amplification in the genus. Apidologie 49:497–504. https://doi.org/10.1007/s13592-018-0577-z DOI

Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM (2016) High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep 6:28333. https://doi.org/10.1038/srep28333 PubMed DOI PMC

Ruiz-Ruano FJ, Cabrero J, López-León MD, Camacho JPM (2017) Satellite DNA content illuminates the ancestry of a supernumerary (B) chromosome. Chromosoma 126:487–500. https://doi.org/10.1007/s00412-016-0611-8 PubMed DOI

Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7:449–460. https://doi.org/10.1023/A:1009297729547 PubMed DOI

Triant DA, Cinel SD, Kawahara AY (2017) Lepidoptera genomes: current knowledge, gaps and future directions. Curr Opin Insect Sci 25:99–105. https://doi.org/10.1016/j.cois.2017.12.004 PubMed DOI

Vasconcelos EV, Vasconcelos S, Ribeiro T, Benko-Iseppon AM, Brasileiro-Vidal AC (2018) Karyotype heterogeneity in Philodendron s.l. (Araceae) revealed by chromosome mapping of rDNA loci. PLoS ONE 13:e0207318. https://doi.org/10.1371/journal.pone.0207318 PubMed DOI PMC

Webb AIR, White MJD, Contreras N, Cheney J (1978) Cytogenetics of the parthenogenetic grasshopper Warramaba (formerly Moraba) virgo and its bisexual relatives. Chromosoma 67:309–339. https://doi.org/10.1007/BF00285964 DOI

Wiegmann BM, Richards S (2018) Genomes of Diptera. Curr Opin Insect Sci 25:116–124. https://doi.org/10.1016/j.cois.2018.01.007 PubMed DOI

Yoshido A, Sahara K, Yasukochi Y (2015) Silk moths (Lepidoptera). In: Sharakov IV (ed) Protocols for cytogenetic mapping of arthropod genomes. CRC Press, Boca Raton, pp 219–256

Zamore PD, Ma S (2011) Isolation of Drosophila melanogaster testes. J Vis Exp 13:2641. https://doi.org/10.3791/2641 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The first insight into Acanthocephalus (Palaeacanthocephala) satellitome: species-specific satellites as potential cytogenetic markers

. 2025 Jan 23 ; 15 (1) : 2945. [epub] 20250123

The burst of satellite DNA in Leptidea wood white butterflies and their putative role in karyotype evolution

. 2024 Dec 01 ; 31 (6) : .

Chromosome analysis and the occurrence of B chromosomes in fish parasite Acanthocephalus anguillae (Palaeacanthocephala: Echinorhynchida)

. 2023 ; 30 () : 44. [epub] 20231023

Development of a novel genetic sexing strain of Ceratitis capitata based on an X-autosome translocation

. 2023 Sep 27 ; 13 (1) : 16167. [epub] 20230927

Accumulation of retrotransposons contributes to W chromosome differentiation in the willow beauty Peribatodes rhomboidaria (Lepidoptera: Geometridae)

. 2023 Jan 11 ; 13 (1) : 534. [epub] 20230111

On the Origin of Neo-Sex Chromosomes in the Neotropical Dragonflies Rhionaeschna bonariensis and R. planaltica (Aeshnidae, Odonata)

. 2022 Dec 15 ; 13 (12) : . [epub] 20221215

A step forward in the genome characterization of the sugarcane borer, Diatraea saccharalis: karyotype analysis, sex chromosome system and repetitive DNAs through a cytogenomic approach

. 2022 Dec ; 131 (4) : 253-267. [epub] 20221011

Insights into the Karyotype Evolution of Charinidae, the Early-Diverging Clade of Whip Spiders (Arachnida: Amblypygi)

. 2021 Nov 12 ; 11 (11) : . [epub] 20211112

Analyses of the Updated "Animal rDNA Loci Database" with an Emphasis on Its New Features

. 2021 Oct 22 ; 22 (21) : . [epub] 20211022

The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths

. 2021 ; 12 () : 661417. [epub] 20210330

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...