Development of a novel genetic sexing strain of Ceratitis capitata based on an X-autosome translocation

. 2023 Sep 27 ; 13 (1) : 16167. [epub] 20230927

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37758733
Odkazy

PubMed 37758733
PubMed Central PMC10533888
DOI 10.1038/s41598-023-43164-0
PII: 10.1038/s41598-023-43164-0
Knihovny.cz E-zdroje

Genetic sexing strains (GSS), such as the Ceratitis capitata (medfly) VIENNA 8 strain, facilitate male-only releases and improve the efficiency and cost-effectiveness of sterile insect technique (SIT) applications. Laboratory domestication may reduce their genetic diversity and mating behaviour and hence, refreshment with wild genetic material is frequently needed. As wild males do not carry the T(Y;A) translocation, and wild females do not easily conform to artificial oviposition, the genetic refreshment of this GSS is a challenging and time-consuming process. In the present study, we report the development of a novel medfly GSS, which is based on a viable homozygous T(XX;AA) translocation using the same selectable markers, the white pupae and temperature-sensitive lethal genes. This allows the en masse cross of T(XX;AA) females with wild males, and the backcrossing of F1 males with the T(XX;AA) females thus facilitating the re-establishment of the GSS as well as its genetic refreshment. The rearing efficiency and mating competitiveness of the novel GSS are similar to those of the T(Y;A)-based VIENNA 8 GSS. However, its advantage to easily allow the genetic refreshment is of great importance as it can ensure the mass production of high-quality males and enhanced efficacy of operational SIT programs.

Zobrazit více v PubMed

Vreysen MJ, Hendrichs J, Enkerlin WR. The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. J. Fruit Ornam. Plant Res. 2006;14:107–130.

Enkerlin W, Gutiérrez-Ruelas JM, Cortes AV, Roldan EC, Midgarden D, Lira E, Arriaga FJT. Area freedom in Mexico from Mediterranean fruit fly (Diptera: Tephritidae): A review of over 30 years of a successful containment program using an integrated area-wide SIT approach. Fla. Entomol. 2015;98:665–681.

Enkerlin WR. Impact of fruit fly control programmes using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. CRC Press; 2021. pp. 979–1006.

Hendrichs J, Robinson A. Sterile insect technique. In: Resh VH, Cardé RT, editors. Encyclopedia of insects. Academic Press; 2009. pp. 953–957.

Knipling EF. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 1955;48:459–462.

Knipling EF. Sterile insect technique as a screwworm control measure: the concept and its development. In: Graham OH, editor. Symposium on Eradication of the Screwworm from the United States and Mexico. Miscellaneous Publications of the Entomological Society of America 62; 1985. pp. 4–7.

Vargas-Teran M, Spradbery JP, Tweddle NE. Impact of screwworm eradication programmes using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. CRC Press, Taylor & Francis Group; 2021. pp. 949–978.

Franz G, Bourtzis K, Cáceres C. Practical and operational genetic sexing systems based on classical genetic approaches in fruit flies, an example for other species amenable to large-scale rearing for the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. CRC Press, Taylor & Francis Group; 2021. pp. 575–604.

Hendrichs J, Franz G, Rendon P. Increased effectiveness and applicability of the sterile insect technique through male-only releases for control of Mediterranean fruit flies during fruiting seasons. J. Appl. Entomol. 1995;119:371–377.

Rendón P, McInnis D, Lance D, Stewart J. Mediterranean fruit fly (Diptera: Tephritidae) genetic sexing: Large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J. Econ. Entomol. 2004;97:1547–1553. PubMed

Orozco D, Meza JS, Zepeda S, Solís E, Quintero-Fong JL. Tapachula-7, a new genetic sexing strain of the Mexican fruit fly (Diptera: Tephritidae): Sexual compatibility and competitiveness. J. Econ. Entomol. 2013;106:735–741. PubMed

Whitten MJ. Automated sexing of pupae and its usefulness in control by sterile insects. J. Econ. Entom. 1969;62:272–273.

Rössler Y. Automated sexing of Ceratitis capitata [Dip.: Tephritidae]: The development of strains with inherited, sex-limited pupal color dimorphism. Entomophaga. 1979;24:411–416.

Rössler Y. The genetics of the Mediterranean fruit fly: A ‘white pupae’ mutant. Ann. Entomol. Soc. Am. 1979;72:583–585.

McCombs SD, Saul SH. Translocation-based genetic sexing system for the oriental fruit fly (Diptera: Tephritidae) based on pupal color dimorphism. Ann Entomol Soc Am. 1995;88:695–698.

McInnis DO, Tam S, Lim R, Komatsu J, Kurashima R, Albrecht C. Development of a pupal color-based genetic sexing strain of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) Ann Entomol Soc Am. 2004;97:1026–1033.

Isasawin S, Aketarawong N, Lertsiri S, Thanaphum S. Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain. BMC genetics. 2014;15:1–11. PubMed PMC

Zepeda-Cisneros CS, Meza Hernández JS, García-Martínez V, Ibañez-Palacios J, Zacharopoulou A, Franz G. Development, genetic and cytogenetic analyses of genetic sexing strains of the Mexican fruit fly, Anastrepha ludens Loew (Diptera: Tephritidae) BMC Genet. 2014;15:1–11. PubMed PMC

Meza JS, Bourtzis K, Zacharopoulou A, Gariou-Papalexiou A, Cáceres C. Development and characterization of a pupal-colour based genetic sexing strain of Anastrepha fraterculus sp. 1 (Diptera: Tephritidae) BMC genetics. 2020;21:1–9. PubMed PMC

Ward CM, Aumann RA, Whitehead MA, Nikolouli K, Leveque G, Gouvi G, Schetelig MF. White pupae phenotype of tephritids is caused by parallel mutations of a MFS transporter. Nat. Commun. 2021;12:1–12. PubMed PMC

Whitten MJ. The conceptual basis for genetic control. In: Kerkut GA, Gilbert LI, editors. Comprehensive Insect Physiology Biochemistry and Pharmacology. Pergamon Press; 1985. pp. 465–528.

Robinson AS, Franz G, Kingsler F. Genetic sexing strains in the Mediterranean fruit fly, Ceratitis capitata: development, mass rearing and field application. Trends Entomol. 1999;2:81–104.

Robinson AS, Van Heemert C. Ceratitis capitata—a suitable case for genetic sexing. Genetica. 1982;58:229–237.

Benet J, Oliver-Bonet M, Cifuentes P, Templado C, Navarro J. Segregation of chromosomes in sperm of reciprocal translocation carriers: A review. Cytogenet. Genome Res. 2005;111:281–290. PubMed

Caceres C. Mass rearing of temperature sensitive genetic sexing strains in the Mediterranean fruit fly (Ceratitis capitata) Genetica. 2002;116:107–116. PubMed

Quintero-Fong L, Luis JH, Montoya P, Orozco-Dávila D. In situ sexual competition between sterile males of the genetic sexing Tapachula-7 strain and wild Anastrepha ludens flies. J. Crop. Prot. 2018;106:1–5.

Franz G, Kerremans P, Rendon P, Hendrichs J. Development and application of genetic sexing systems for the Mediterranean fruit fly based on a temperature sensitive lethal. In: McPheron B, Steck G, editors. Fruit Fly Pests: A World Assessment of Their Biology and Management. St Lucie Press; 1996. pp. 185–191.

Meccariello A, Salvemini M, Primo P, Hall B, Koskinioti P, Dalíková M, Saccone G. Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests. Science. 2019;365:1457–1460. PubMed

Franz G. Recombination between homologous autosomes in Mediterranean fruit fly (Ceratitis capitata) males: type-1 recombination and the implications for the stability of genetic sexing strains. Genetica. 2002;116:73–84. PubMed

Fisher K, Cáceres C. A filter rearing system for mass reared genetic sexing strains of Mediterranean fruit fly Diptera: Tephritidae. In: Tan KH, editor. Area-wide Control of Fruit Flies and Other Insect Pests. Penerbit Universiti Sains Malaysia; 2000. pp. 543–550.

Gourzi P, Gubb D, Livadaras Y, Caceres C, Franz G, Savakis C, Zacharopoulou A. The construction of the first balancer chromosome for the Mediterranean fruit fly, Ceratitis capitata. Mol Gen Genet. 2000;264:127–136. PubMed

Cayol JP. Changes in Sexual Behavior and Life History Traits of Tephritid Species Caused by Mass-Rearing Processes. In: Aluja M, Norrbom A, editors. Fruit flies Tephritidae. CRC Press; 1999. pp. 861–878.

Bedo DG. Polytene and mitotic chromosome analysis in Ceratitis capitata (Diptera; Tephritidae) Can J Genet Cytol. 1986;28:180–188.

Traut W, Thi Khuong N, Schneider S. Karyotypes of Megaselia scalaris (Diptera) wild-type and translocation strains. Genetica. 1990;83:77–84.

McKee BD. Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochim. Biophys. Acta. 2004;1677:165–180. PubMed

Canovai R, Caterini B, Contadini L, Galleni L. Karyology of the medfly Ceratitis capitata (Wied.) mitotic complement: ASG bands. Caryologia. 1994;47:241–247.

Bedo DG, Webb GC. Conservation of nucleolar structure in polytene tissues of Ceratitis capitata (Diptera: Tephritidae) Chromosoma. 1989;98:443–449.

Procunier WS, Smith JJ. Localization of ribosomal DNA in Rhagoletis pomonella (Diptera: Tephritidae) by in situ hybridization. Insect Mol Biol. 1993;2:163–174. PubMed

Goday C, Selivon D, Perondini ALP, Greciano PG, Ruiz MF. Cytological characterization of sex chromosomes and ribosomal DNA location in Anastrepha species (Diptera, Tephritidae) Cytogenet Genome Res. 2006;114:70–76. PubMed

Willhoeft U, Franz G. Identification of the sex-determining region of the Ceratitis capitata Y chromosome by deletion mapping. Genetics. 1996;144:737–745. PubMed PMC

Drosopoulou E, Nakou I, Šíchová J, Kubíčková S, Marec F, Mavragani-Tsipidou P. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae) Genetica. 2012;140:169–180. PubMed

Marchi A, Pili E. Ribosomal RNA genes in mosquitoes: localization by fluorescence in situ hybridization (FISH) Heredity. 1994;72:599–605. PubMed

Brianti MT, Ananina G, Recco-Pimentel SM, Klaczko LB. Comparative analysis of the chromosomal positions of rDNA genes in species of the tripunctata radiation of Drosophila. Cytogenet Genome Res. 2009;125:149–157. PubMed

McKee BD, Habera L, Vrana JA. Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X–Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics. 1992;132:529–544. PubMed PMC

Porras MF, Meza JS, Rajotte EG, Bourtzis K, Cáceres C. Improving the phenotypic properties of the Ceratitis capitata (Diptera: Tephritidae) temperature-sensitive lethal genetic sexing strain in support of sterile insect technique applications. J. Econ. Entomol. 2020;113:2688–2694. PubMed PMC

Setterfield LA, Mahadevaiah S, Mittwoch U. Chromosome pairing and germ cell loss in male and female mice carrying a reciprocal translocation. Reproduction. 1988;82:369–379. PubMed

Meza JS, Ul Haq I, Vreysen MJ, Bourtzis K, Kyritsis GA, Caceres C. Comparison of classical and transgenic genetic sexing strains of Mediterranean fruit fly (Diptera: Tephritidae) for application of the sterile insect technique. PLoS One. 2018;13:e0208880. PubMed PMC

FAO, IAEA, USDA . Product Quality Control for Sterile Mass-Reared and Released Tephritid Fruit Flies, Version 6.0. International Atomic Energy Agency; 2014. p. 164.

Nikolouli K, Colinet H, Stauffer C, Bourtzis K. How the mighty have adapted: Genetic and microbiome changes during laboratory adaptation in the key pest Drosophila suzukii. Entomol Gen. 2022;42:723–732.

Augustinos AA, Targovska A, Cancio-Martinez E, Schorn E, Franz G, Cáceres C, Bourtzis K. Ceratitis capitata genetic sexing strains: laboratory evaluation of strains from mass-rearing facilities worldwide. Entomol. Exp. App. 2017;164:305–317.

Calkins CO, Webb JC. A cage and support framework for behavioral tests of fruit flies in the field. Fla Entomol. 1983;66:512–514.

Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57:184–194.

Whiting MF. Phylogeny of the holometabolous insect orders based on 18S ribosomal DNA: when bad things happen to good data. In: DeSalle R, Wheeler W, Giribet G, editors. Molecular systematics and evolution: Theory and practice. Birkhäuser; 2002. pp. 69–83. PubMed

Fuková I, Nguyen P, Marec FE. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. PubMed

Cabral-de-Mello DC, Marec F. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol. Genet. Genom. 2021;296:513–526. PubMed

Chambers JM. Software for data analysis: programming with R. Springer; 2008.

Bolker BM, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 2009;24:127–135. PubMed

Burnham KP, Anderson DR. Model selection and multimodel inference. A practical information-theoretic approach. Springer; 1998.

FAO, IAEA, USDA . Product Quality Control for Sterile Mass-Reared and Released Tephritid Fruit Flies, Version 6.0. International Atomic Energy Agency; 2014. p. 164.

Cayol JP, Vilardi J, Rial E, Vera MT. New indices and method to measure the sexual compatibility and mating performance of Ceratitis capitata (Diptera: Tephritidae) laboratory-reared strains under field cage conditions. J. Econ. Entomol. 1999;92:140–145.

Jones B, Sall J. JMP statistical discovery software. Wiley Interdiscip. Rev. Comput. Stat. 2011;3:188–194.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...