White pupae phenotype of tephritids is caused by parallel mutations of a MFS transporter
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
33479218
PubMed Central
PMC7820335
DOI
10.1038/s41467-020-20680-5
PII: 10.1038/s41467-020-20680-5
Knihovny.cz E-zdroje
- MeSH
- biologická kontrola škůdců metody MeSH
- Ceratitis capitata genetika MeSH
- CRISPR-Cas systémy MeSH
- fenotyp MeSH
- fertilita genetika MeSH
- genom hmyzu genetika MeSH
- hmyzí proteiny genetika MeSH
- kukla genetika MeSH
- mutace * MeSH
- rozmnožování genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- Tephritidae klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- hmyzí proteiny MeSH
Mass releases of sterilized male insects, in the frame of sterile insect technique programs, have helped suppress insect pest populations since the 1950s. In the major horticultural pests Bactrocera dorsalis, Ceratitis capitata, and Zeugodacus cucurbitae, a key phenotype white pupae (wp) has been used for decades to selectively remove females before releases, yet the gene responsible remained unknown. Here, we use classical and modern genetic approaches to identify and functionally characterize causal wp- mutations in these distantly related fruit fly species. We find that the wp phenotype is produced by parallel mutations in a single, conserved gene. CRISPR/Cas9-mediated knockout of the wp gene leads to the rapid generation of white pupae strains in C. capitata and B. tryoni. The conserved phenotype and independent nature of wp- mutations suggest this technique can provide a generic approach to produce sexing strains in other major medical and agricultural insect pests.
Canadian Centre for Computational Genomics McGill University Montreal QC Canada
Department of Environmental Engineering University of Patras 2 Seferi str 30100 Agrinio Greece
McGill University Genome Centre McGill University Montreal QC Canada
School of Biological Sciences University of Adelaide 5005 Adelaide Australia
South Australian Research and Development Institute Waite Road Urrbrae 5064 South Australia
Zobrazit více v PubMed
Robinson, A. S. & Hooper, G. Fruit Flies: Their Biology, Natural Enemies, and Control Vol. 1 (Elsevier, 1989).
Suckling DM, et al. Eradication of tephritid fruit fly pest populations: outcomes and prospects. Pest Manag. Sci. 2016;72:456–465. doi: 10.1002/ps.3905. PubMed DOI
Dyck, V. A. et al. Sterile Insect Technique – Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) (Springer, 2005).
Vreysen, M., Robinson, A. S. & Hendrichs, J. Area-Wide Control of Insect Pests: from Research to Field Implementation (Springer, 2007).
Rendon P, McInnis D, Lance D, Stewart J. Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J. Econ. Entomol. 2004;97:1547–1553. doi: 10.1603/0022-0493-97.5.1547. PubMed DOI
Franz, G. Sterile Insect Technique – Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) (Springer, 2005).
Augustinos AA, et al. Ceratitis capitata genetic sexing strains: laboratory evaluation of strains from mass‐rearing facilities worldwide. Entomol. Exp. Appl. 2017;164:305–317. doi: 10.1111/eea.12612. DOI
Zacharopoulou A, et al. A review of more than 30 years of cytogenetic studies of Tephritidae in support of sterile insect technique and global trade. Entomol. Exp. Appl. 2017;164:204–225. doi: 10.1111/eea.12616. DOI
Rössler Y. The genetics of the Mediterranean fruit fly: a “white pupae” mutant. Ann. Entomol. Soc. Am. 1979;72:583–585. doi: 10.1093/aesa/72.5.583. DOI
Rössler Y, Koltin Y. The genetics of the Mediterranean fruit fly, Ceratitis capitata: three morphological mutations. Ann. Entomol. Soc. Am. 1976;69:604–608. doi: 10.1093/aesa/69.4.604. DOI
McCombs SD, Saul SH. Linkage analysis of five new genetic markers of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) J. Hered. 1992;83:199–203. doi: 10.1093/oxfordjournals.jhered.a111192. PubMed DOI
McInnis DO, et al. Development of a pupal color-based genetic sexing strain of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) Ann. Entomol. Soc. Am. 2004;97:1026–1033. doi: 10.1603/0013-8746(2004)097[1026:DOAPCG]2.0.CO;2. DOI
Wappner P, et al. White pupa: a Ceratitis capitata mutant lacking catecholamines for tanning the puparium. Insect Biochem. Molec. Biol. 1995;25:365–373. doi: 10.1016/0965-1748(94)00078-V. DOI
Rössler Y, Rosenthal H. Genetics of the mediterranean fruit fly (Diptera: Tephritidae): morphological mutants on chromosome five. Ann. Entomol. Soc. Am. 1992;85:525–531. doi: 10.1093/aesa/85.4.525. DOI
Kerremans P, Franz G. Cytogenetic analysis of chromosome 5 from the Mediterranean fruit fly, Ceratitis capitata. Chromosoma. 1994;103:142–146. doi: 10.1007/BF00352323. PubMed DOI
Papanicolaou A, et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 2016;17:192. doi: 10.1186/s13059-016-1049-2. PubMed DOI PMC
Papathanos PA, et al. A perspective on the need and current status of efficient sex separation methods for mosquito genetic control. Parasites Vectors. 2018;11:654. doi: 10.1186/s13071-018-3222-9. PubMed DOI PMC
Sim SB, Geib SM. A chromosome-scale assembly of the Bactrocera cucurbitae genome provides insight to the genetic basis of white pupae. G3. 2017;7:1927–1940. doi: 10.1534/g3.117.040170. PubMed DOI PMC
Sim SB, Ruiz-Arce R, Barr NB, Geib SM. A new diagnostic resource for Ceratitis capitata strain identification based on QTL mapping. G3. 2017;7:3637–3647. doi: 10.1534/g3.117.300169. PubMed DOI PMC
Zdobnov EM, et al. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 2017;45:D744–D749. doi: 10.1093/nar/gkw1119. PubMed DOI PMC
San Jose M, et al. Incongruence between molecules and morphology: a seven-gene phylogeny of Dacini fruit flies paves the way for reclassification (Diptera: Tephritidae) Mol. Phylogen. Evol. 2018;121:139–149. doi: 10.1016/j.ympev.2017.12.001. PubMed DOI
Choo A, Crisp P, Saint R, O’Keefe LV, Baxter SW. CRISPR/Cas9-mediated mutagenesis of the white gene in the tephritid pest Bactrocera tryoni. J. Appl. Entomol. 2018;142:52–58. doi: 10.1111/jen.12411. DOI
Ogaugwu CE, Schetelig MF, Wimmer EA. Transgenic sexing system for Ceratitis capitata (Diptera: Tephritidae) based on female-specific embryonic lethality. Insect Biochem. Mol. Biol. 2013;43:1–8. doi: 10.1016/j.ibmb.2012.10.010. PubMed DOI
Davis AW, et al. Rescue of hybrid sterility in crosses between D. melanogaster and D. simulans. Nature. 1996;380:157–159. doi: 10.1038/380157a0. PubMed DOI
Araripe LO, Montenegro H, Lemos B, Hartl DL. Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: the varied and elusive functions of “speciation genes”. BMC Evol. Biol. 2010;10:385. doi: 10.1186/1471-2148-10-385. PubMed DOI PMC
Brideau NJ, Barbash DA. Functional conservation of the Drosophila hybrid incompatibility gene Lhr. BMC Evol. Biol. 2011;11:57. doi: 10.1186/1471-2148-11-57. PubMed DOI PMC
Kotov AA, et al. piRNA silencing contributes to interspecies hybrid sterility and reproductive isolation in Drosophila melanogaster. Nucleic Acids Res. 2019;47:4255–4271. doi: 10.1093/nar/gkz130. PubMed DOI PMC
Barbash DA. Ninety years of Drosophila melanogaster hybrids. Genetics. 2010;186:1–8. doi: 10.1534/genetics.110.121459. PubMed DOI PMC
Bedo DG, Zacharopoulou A. Inter-tissue variability of polytene chromosome banding patterns. Trends Genet. 1988;4:90–91. doi: 10.1016/0168-9525(88)90093-5. PubMed DOI
Kriventseva EV, et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019;47:D807–d811. doi: 10.1093/nar/gky1053. PubMed DOI PMC
Zhao Y, et al. A major facilitator superfamily protein participates in the reddish brown pigmentation in Bombyx mori. J. Insect Physiol. 2012;58:1397–1405. doi: 10.1016/j.jinsphys.2012.08.002. PubMed DOI
The modEncode Consortium et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 2010;330:1787–1797. doi: 10.1126/science.1198374. PubMed DOI PMC
Wright TR. The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv. Genet. 1987;24:127–222. doi: 10.1016/S0065-2660(08)60008-5. PubMed DOI
Bourtzis K, Psachoulia C, Marmaras VJ. Evidence that different integumental phosphatases exist during development in the Mediterranean fruit fly Ceratitis capitata: possible involvement in pupariation. Comp. Biochem. Physiol. Part B. 1991;98:411–416. doi: 10.1016/0305-0491(91)90198-M. DOI
Meccariello A, et al. Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests. Science. 2019;365:1457–1460. doi: 10.1126/science.aax1318. PubMed DOI
Hall AB, et al. Sex determination. A male-determining factor in the mosquito Aedes aegypti. Science. 2015;348:1268–1270. doi: 10.1126/science.aaa2850. PubMed DOI PMC
Liu P, et al. Nix is a male-determining factor in the Asian tiger mosquito Aedes albopictus. Insect Biochem. Mol. Biol. 2019;118:103311. doi: 10.1016/j.ibmb.2019.103311. PubMed DOI PMC
Ward CM, Pederson TH. S. M. ngsReports: a Bioconductor package for managing FastQC reports and other NGS related log files. Bioinformatics. 2020;36:2587–2588. doi: 10.1093/bioinformatics/btz937. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Sedlazeck FJ, Rescheneder P, von Haeseler A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics. 2013;29:2790–2791. doi: 10.1093/bioinformatics/btt468. PubMed DOI
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907 (2012).
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC
Zheng X, et al. SeqArray-a storage-efficient high-performance data format for WGS variant calls. Bioinformatics. 2017;33:2251–2257. doi: 10.1093/bioinformatics/btx145. PubMed DOI PMC
Ward, C. M., Ludington, A. J., Breen, J. & Baxter, S. W. Genomic evolutionary analysis in R with geaR. 10.1101/2020.08.06.240754 (2020).
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Waterhouse RM, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2018;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinforma. 2018;19:153. doi: 10.1186/s12859-018-2129-y. PubMed DOI PMC
Martin SH, Van Belleghem SM. Exploring evolutionary relationships across the genome using topology weighting. Genetics. 2017;206:429–438. doi: 10.1534/genetics.116.194720. PubMed DOI PMC
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37. doi: 10.1093/nar/gkr367. PubMed DOI PMC
Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Zimin AV, et al. The MaSuRCA genome assembler. Bioinformatics. 2013;29:2669–2677. doi: 10.1093/bioinformatics/btt476. PubMed DOI PMC
Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Green MR, Sambrook J. Isolation of High-Molecular-Weight DNA using organic solvents. Cold Spring Harb. Protoc. 2017;2017:pdb.prot093450. doi: 10.1101/pdb.prot093450. PubMed DOI
Koren S, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC
Huang S, et al. HaploMerger: reconstructing allelic relationships for polymorphic diploid genome assemblies. Genome Res. 2012;22:1581–1588. doi: 10.1101/gr.133652.111. PubMed DOI PMC
Ghurye J, Pop M, Koren S, Bickhart D, Chin CS. Scaffolding of long read assemblies using long range contact information. BMC Genomics. 2017;18:527. doi: 10.1186/s12864-017-3879-z. PubMed DOI PMC
Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Robinson JT, et al. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC
Zacharopoulou A, Franz G. Genetic and cytogenetic characterization of genetic sexing strains of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) J. Econ. Entomol. 2013;106:995–1003. doi: 10.1603/EC12379. PubMed DOI
Zacharopoulou A, et al. The genome of the Mediterranean fruit fly Ceratitis capitata: localization of molecular markers by in situ hybridization to salivary gland polytene chromosomes. Chromosoma. 1992;101:448–455. doi: 10.1007/BF00582839. PubMed DOI
Mavragani-Tsipidou, P. et al. Protocols for Cytogenetic Mapping of Arthropod Genomes (ed Sakharov, I.) (CRC Press, Taylor and Francis Group, LLC, 2014).
Zacharopoulou A. Polytene chromosome maps in the medfly Ceratitis capitata. Genome. 1990;33:184–197. doi: 10.1139/g90-030. DOI
Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–W245. doi: 10.1093/nar/gky354. PubMed DOI PMC
Doench JG, et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 2014;32:1262–1267. doi: 10.1038/nbt.3026. PubMed DOI PMC
Aumann RA, Schetelig MF, Häcker I. Highly efficient genome editing by homology-directed repair using Cas9 protein in Ceratitis capitata. Insect Biochem. Mol. Biol. 2018;101:85–93. doi: 10.1016/j.ibmb.2018.08.004. PubMed DOI
Burger A, et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development. 2016;143:2025–2037. doi: 10.1242/dev.134809. PubMed DOI
Carvalho GB, Ja WW, Benzer S. Non-lethal PCR genotyping of single Drosophila. Biotechniques. 2009;46:312–314. doi: 10.2144/000113088. PubMed DOI PMC
Gariou-Papalexiou A, et al. Polytene chromosomes as tools in the genetic analysis of the Mediterranean fruit fly, Ceratitis capitata. Genetica. 2002;116:59–71. doi: 10.1023/A:1020959608886. PubMed DOI