Advantages and limitations of shot-gun proteomic analyses on Arabidopsis plants with altered MAPK signaling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25763005
PubMed Central
PMC4340173
DOI
10.3389/fpls.2015.00107
Knihovny.cz E-zdroje
- Klíčová slova
- mitogen-activated protein kinase (MAPK), phosphoproteomics, proteomics, shot-gun proteomics, signaling, validation,
- Publikační typ
- časopisecké články MeSH
Zobrazit více v PubMed
Ahsan N., Huang Y., Tovar-Mendez A., Swatek K. N., Zhang J., Miernyk J. A., et al. . (2013). A Versatile mass spectrometry-based method to both identify kinase client-relationships and characterize signaling network topology. J. Proteome Res. 12, 937–948. 10.1021/pr3009995 PubMed DOI PMC
Anderson J. C., Peck S. C. (2008). A simple and rapid technique for detecting protein phosphorylation using one-dimensional isoelectric focusing gels and immunoblot analysis. Plant J. 55, 881–885. 10.1111/j.1365-313X.2008.03550.x PubMed DOI
Chou M. F., Schwartz D. (2011). Biological sequence motif discovery using motif-x. Curr. Protoc. Bioinformatics Chapter 13, Unit 13. 15–24. 10.1002/0471250953.bi1315s35 PubMed DOI
Conesa A., Götz S. (2008). Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008:619832. 10.1155/2008/619832 PubMed DOI PMC
Conroy C., Ching J., Gao Y., Wang X., Rampitsch C., Xing T. (2013). Knockout of AtMKK1 enhances salt tolerance and modifies metabolic activities in Arabidopsis. Plant Signal. Behav. 8:e24206. 10.4161/psb.24206 PubMed DOI PMC
de Hoon M. J. L., Imoto S., Nolan J., Miyano S. (2004). Open source clustering software. Bioinformatics 20, 1453–1454. 10.1093/bioinformatics/bth078 PubMed DOI
de la Fuente van Bentem S., Mentzen W. I., de la Fuente A., Hirt H. (2008). Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks. Proteomics 8, 4453–4465. 10.1002/pmic.200800175 PubMed DOI
Feilner T., Hultschig C., Lee J., Meyer S., Immink R. G. H., Koenig A., et al. . (2005). High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates. Mol. Cell. Proteomics 4, 1558–1568. 10.1074/mcp.M500007-MCP200 PubMed DOI
Frei dit Frey N., Garcia A. V., Bigeard J., Zaag R., Bueso E., Garmier M., et al. . (2014). Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol. 15:R87. 10.1186/gb-2014-15-6-r87 PubMed DOI PMC
Gygi S. P., Rochon Y., Franza B. R., Aebersold R. (1999). Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730. PubMed PMC
Hoehenwarter W., Thomas M., Nukarinen E., Egelhofer V., Röhrig H., Weckwerth W., et al. . (2013). Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Mol. Cell. Proteomics 12, 369–380. 10.1074/mcp.M112.020560 PubMed DOI PMC
Horton P., Park K.-J., Obayashi T., Fujita N., Harada H., Adams-Collier C. J., et al. . (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35, W585–W587. 10.1093/nar/gkm259 PubMed DOI PMC
Iersel M. P., van Kelder T., Pico A. R., Hanspers K., Coort S., Conklin B. R., et al. . (2008). Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399. 10.1186/1471-2105-9-399 PubMed DOI PMC
Jensen L. J., Kuhn M., Stark M., Chaffron S., Creevey C., Muller J., et al. . (2009). STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416. 10.1093/nar/gkn760 PubMed DOI PMC
Jørgensen C., Locard-Paulet M. (2012). Analysing signalling networks by mass spectrometry. Amino Acids 43, 1061–1074. 10.1007/s00726-012-1293-z PubMed DOI
Kinoshita E., Kinoshita-Kikuta E., Takiyama K., Koike T. (2006). Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749–757. 10.1074/mcp.T500024-MCP200 PubMed DOI
Komis G., Takáč T., Bekešová S., Vadovič P., Samaj J. (2014). Affinity-Based SDS PAGE identification of phosphorylated Arabidopsis MAPKs and substrates by acrylamide pendant Phos-TAG™. Methods Mol. Biol. 1171, 47–63. 10.1007/978-1-4939-0922-3_5 PubMed DOI
Krysan P. J., Jester P. J., Gottwald J. R., Sussman M. R. (2002). An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14, 1109–1120. 10.1105/tpc.001164 PubMed DOI PMC
Lassowskat I., Böttcher C., Eschen-Lippold L., Scheel D., Lee J. (2014). Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. Front. Plant Sci. 5:554. 10.3389/fpls.2014.00554 PubMed DOI PMC
Miles G. P., Samuel M. A., Ranish J. A., Donohoe S. M., Sperrazzo G. M., Ellis B. E. (2009). Quantitative proteomics identifies oxidant-induced, AtMPK6-dependent changes in Arabidopsis thaliana protein profiles. Plant Signal. Behav. 4, 497–505. 10.4161/psb.4.6.8538 PubMed DOI PMC
Obayashi T., Kinoshita K. (2010). Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways. J. Plant Res. 123, 311–319. 10.1007/s10265-010-0333-6 PubMed DOI
Ovečka M., Takáč T., Komis G., Vadovič P., Bekešová S., Doskočilová A., et al. . (2014). Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. J. Exp. Bot. 65, 2335–2350. 10.1093/jxb/eru115 PubMed DOI PMC
Petersen T. N., Brunak S., von Heijne G., Nielsen H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786. 10.1038/nmeth.1701 PubMed DOI
Popescu S. C., Popescu G. V., Bachan S., Zhang Z., Gerstein M., Snyder M., et al. . (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 23, 80–92. 10.1101/gad.1740009 PubMed DOI PMC
Singh R., Lee M.-O., Lee J.-E., Choi J., Park J. H., Kim E. H., et al. . (2012). Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. Plant Physiol. 160, 477–487. 10.1104/pp.112.200071 PubMed DOI PMC
Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., et al. . (2014). Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203, 1175–1193. 10.1111/nph.12880 PubMed DOI PMC
Stulemeijer I. J. E., Stratmann J. W., Joosten M. H. A. J. (2007). Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the cf-4/avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiol. 144, 1481–1494. 10.1104/pp.107.101063 PubMed DOI PMC
Takáč T., Pechan T., Šamajová O., Šamaj J. (2013). Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis. J. Proteome Res. 12, 4435–4448. 10.1021/pr400466x PubMed DOI PMC
Takáč T., Pechan T., Samajova O., Ovecka M., Richter H., Eck C., et al. . (2012). Wortmannin treatment induces changes in Arabidopsis root proteome and post-golgi compartments. J. Proteome Res. 11, 3127–3142. 10.1021/pr201111n PubMed DOI
Takáč T., Šamajová O., Vadovič P., Pechan T., Košútová P., Ovečka M., et al. . (2014). Proteomic and biochemical analyses show functional network of proteins involved in antioxidant defense of Arabidopsis anp2anp3 double mutant. J. Proteome Res. 13, 5347–5361. 10.1021/pr500588c PubMed DOI PMC
Yang Z., Guo G., Zhang M., Liu C. Y., Hu Q., Lam H., et al. . (2013). Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of Arabidopsis mutants reveals ethylene-regulated time-dependent phosphoproteins putative substrates of constitutive triple response 1 kinase. Mol. Cell. Proteomics 12, 3559–3582. 10.1074/mcp.M113.031633 PubMed DOI PMC