Advantages and limitations of shot-gun proteomic analyses on Arabidopsis plants with altered MAPK signaling

. 2015 ; 6 () : 107. [epub] 20150225

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25763005

Zobrazit více v PubMed

Ahsan N., Huang Y., Tovar-Mendez A., Swatek K. N., Zhang J., Miernyk J. A., et al. . (2013). A Versatile mass spectrometry-based method to both identify kinase client-relationships and characterize signaling network topology. J. Proteome Res. 12, 937–948. 10.1021/pr3009995 PubMed DOI PMC

Anderson J. C., Peck S. C. (2008). A simple and rapid technique for detecting protein phosphorylation using one-dimensional isoelectric focusing gels and immunoblot analysis. Plant J. 55, 881–885. 10.1111/j.1365-313X.2008.03550.x PubMed DOI

Chou M. F., Schwartz D. (2011). Biological sequence motif discovery using motif-x. Curr. Protoc. Bioinformatics Chapter 13, Unit 13. 15–24. 10.1002/0471250953.bi1315s35 PubMed DOI

Conesa A., Götz S. (2008). Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008:619832. 10.1155/2008/619832 PubMed DOI PMC

Conroy C., Ching J., Gao Y., Wang X., Rampitsch C., Xing T. (2013). Knockout of AtMKK1 enhances salt tolerance and modifies metabolic activities in Arabidopsis. Plant Signal. Behav. 8:e24206. 10.4161/psb.24206 PubMed DOI PMC

de Hoon M. J. L., Imoto S., Nolan J., Miyano S. (2004). Open source clustering software. Bioinformatics 20, 1453–1454. 10.1093/bioinformatics/bth078 PubMed DOI

de la Fuente van Bentem S., Mentzen W. I., de la Fuente A., Hirt H. (2008). Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks. Proteomics 8, 4453–4465. 10.1002/pmic.200800175 PubMed DOI

Feilner T., Hultschig C., Lee J., Meyer S., Immink R. G. H., Koenig A., et al. . (2005). High throughput identification of potential Arabidopsis mitogen-activated protein kinases substrates. Mol. Cell. Proteomics 4, 1558–1568. 10.1074/mcp.M500007-MCP200 PubMed DOI

Frei dit Frey N., Garcia A. V., Bigeard J., Zaag R., Bueso E., Garmier M., et al. . (2014). Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol. 15:R87. 10.1186/gb-2014-15-6-r87 PubMed DOI PMC

Gygi S. P., Rochon Y., Franza B. R., Aebersold R. (1999). Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730. PubMed PMC

Hoehenwarter W., Thomas M., Nukarinen E., Egelhofer V., Röhrig H., Weckwerth W., et al. . (2013). Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Mol. Cell. Proteomics 12, 369–380. 10.1074/mcp.M112.020560 PubMed DOI PMC

Horton P., Park K.-J., Obayashi T., Fujita N., Harada H., Adams-Collier C. J., et al. . (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35, W585–W587. 10.1093/nar/gkm259 PubMed DOI PMC

Iersel M. P., van Kelder T., Pico A. R., Hanspers K., Coort S., Conklin B. R., et al. . (2008). Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399. 10.1186/1471-2105-9-399 PubMed DOI PMC

Jensen L. J., Kuhn M., Stark M., Chaffron S., Creevey C., Muller J., et al. . (2009). STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416. 10.1093/nar/gkn760 PubMed DOI PMC

Jørgensen C., Locard-Paulet M. (2012). Analysing signalling networks by mass spectrometry. Amino Acids 43, 1061–1074. 10.1007/s00726-012-1293-z PubMed DOI

Kinoshita E., Kinoshita-Kikuta E., Takiyama K., Koike T. (2006). Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749–757. 10.1074/mcp.T500024-MCP200 PubMed DOI

Komis G., Takáč T., Bekešová S., Vadovič P., Samaj J. (2014). Affinity-Based SDS PAGE identification of phosphorylated Arabidopsis MAPKs and substrates by acrylamide pendant Phos-TAG™. Methods Mol. Biol. 1171, 47–63. 10.1007/978-1-4939-0922-3_5 PubMed DOI

Krysan P. J., Jester P. J., Gottwald J. R., Sussman M. R. (2002). An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14, 1109–1120. 10.1105/tpc.001164 PubMed DOI PMC

Lassowskat I., Böttcher C., Eschen-Lippold L., Scheel D., Lee J. (2014). Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. Front. Plant Sci. 5:554. 10.3389/fpls.2014.00554 PubMed DOI PMC

Miles G. P., Samuel M. A., Ranish J. A., Donohoe S. M., Sperrazzo G. M., Ellis B. E. (2009). Quantitative proteomics identifies oxidant-induced, AtMPK6-dependent changes in Arabidopsis thaliana protein profiles. Plant Signal. Behav. 4, 497–505. 10.4161/psb.4.6.8538 PubMed DOI PMC

Obayashi T., Kinoshita K. (2010). Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways. J. Plant Res. 123, 311–319. 10.1007/s10265-010-0333-6 PubMed DOI

Ovečka M., Takáč T., Komis G., Vadovič P., Bekešová S., Doskočilová A., et al. . (2014). Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. J. Exp. Bot. 65, 2335–2350. 10.1093/jxb/eru115 PubMed DOI PMC

Petersen T. N., Brunak S., von Heijne G., Nielsen H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786. 10.1038/nmeth.1701 PubMed DOI

Popescu S. C., Popescu G. V., Bachan S., Zhang Z., Gerstein M., Snyder M., et al. . (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 23, 80–92. 10.1101/gad.1740009 PubMed DOI PMC

Singh R., Lee M.-O., Lee J.-E., Choi J., Park J. H., Kim E. H., et al. . (2012). Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. Plant Physiol. 160, 477–487. 10.1104/pp.112.200071 PubMed DOI PMC

Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., et al. . (2014). Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203, 1175–1193. 10.1111/nph.12880 PubMed DOI PMC

Stulemeijer I. J. E., Stratmann J. W., Joosten M. H. A. J. (2007). Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the cf-4/avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiol. 144, 1481–1494. 10.1104/pp.107.101063 PubMed DOI PMC

Takáč T., Pechan T., Šamajová O., Šamaj J. (2013). Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis. J. Proteome Res. 12, 4435–4448. 10.1021/pr400466x PubMed DOI PMC

Takáč T., Pechan T., Samajova O., Ovecka M., Richter H., Eck C., et al. . (2012). Wortmannin treatment induces changes in Arabidopsis root proteome and post-golgi compartments. J. Proteome Res. 11, 3127–3142. 10.1021/pr201111n PubMed DOI

Takáč T., Šamajová O., Vadovič P., Pechan T., Košútová P., Ovečka M., et al. . (2014). Proteomic and biochemical analyses show functional network of proteins involved in antioxidant defense of Arabidopsis anp2anp3 double mutant. J. Proteome Res. 13, 5347–5361. 10.1021/pr500588c PubMed DOI PMC

Yang Z., Guo G., Zhang M., Liu C. Y., Hu Q., Lam H., et al. . (2013). Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of Arabidopsis mutants reveals ethylene-regulated time-dependent phosphoproteins putative substrates of constitutive triple response 1 kinase. Mol. Cell. Proteomics 12, 3559–3582. 10.1074/mcp.M113.031633 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace