Proteomic Analysis of Arabidopsis pldα1 Mutants Revealed an Important Role of Phospholipase D Alpha 1 in Chloroplast Biogenesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30833950
PubMed Central
PMC6388422
DOI
10.3389/fpls.2019.00089
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, chloroplast biogenesis, chloroplast protein import, phospholipase D alpha 1, proteomics, translation,
- Publikační typ
- časopisecké články MeSH
Phospholipase D alpha 1 (PLDα1) is a phospholipid hydrolyzing enzyme playing multiple regulatory roles in stress responses of plants. Its signaling activity is mediated by phosphatidic acid (PA) production, capacity to bind, and modulate G-protein complexes or by interaction with other proteins. This work presents a quantitative proteomic analysis of two T-DNA insertion pldα1 mutants of Arabidopsis thaliana. Remarkably, PLDα1 knockouts caused differential regulation of many proteins forming protein complexes, while PLDα1 might be required for their stability. Almost one third of differentially abundant proteins (DAPs) in pldα1 mutants are implicated in metabolism and RNA binding. Latter functional class comprises proteins involved in translation, RNA editing, processing, stability, and decay. Many of these proteins, including those regulating chloroplast protein import and protein folding, share common functions in chloroplast biogenesis and leaf variegation. Consistently, pldα1 mutants showed altered level of TIC40 (a major regulator of protein import into chloroplast), differential accumulation of photosynthetic protein complexes and changed chloroplast sizes as revealed by immunoblotting, blue-native electrophoresis, and microscopic analyses, respectively. Our proteomic analysis also revealed that genetic depletion of PLDα1 also affected proteins involved in cell wall architecture, redox homeostasis, and abscisic acid signaling. Taking together, PLDα1 appears as a protein integrating cytosolic and plastidic protein translations, plastid protein degradation, and protein import into chloroplast in order to regulate chloroplast biogenesis in Arabidopsis.
Zobrazit více v PubMed
Anthony R. G., Henriques R., Helfer A., Mészáros T., Rios G., Testerink C., et al. . (2004). A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J. 23, 572–581. 10.1038/sj.emboj.7600068 PubMed DOI PMC
Arisz S. A., Testerink C., Munnik T. (2009). Plant PA signaling via diacylglycerol kinase. Biochim. Biophys. Acta 1791, 869–875. 10.1016/j.bbalip.2009.04.006 PubMed DOI
Asakura Y., Galarneau E., Watkins K. P., Barkan A., van Wijk K. J. (2012). Chloroplast RH3 DEAD box RNA helicases in maize and arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiol. 159, 961–974. 10.1104/pp.112.197525 PubMed DOI PMC
Athenstaedt K., Daum G. (1999). Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem. 266, 1–16. 10.1046/j.1432-1327.1999.00822.x PubMed DOI
Bargmann B. O. R., Laxalt A. M., ter Riet B., van Schooten B., Merquiol E., Testerink C., et al. . (2009). Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50, 78–89. 10.1093/pcp/pcn173 PubMed DOI PMC
Bentolila S., Oh J., Hanson M. R., Bukowski R. (2013). Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet. 9:e1003584. 10.1371/journal.pgen.1003584 PubMed DOI PMC
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI
Camoni L., Di Lucente C., Pallucca R., Visconti S., Aducci P. (2012). Binding of phosphatidic acid to 14-3-3 proteins hampers their ability to activate the plant plasma membrane H+-ATPase. IUBMB Life 64, 710–716. 10.1002/iub.1058 PubMed DOI
Clément M., Leonhardt N., Droillard M. J., Reiter I., Montillet J. L., Genty B., et al. . (2011). The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol. 156, 1481–1492. 10.1104/pp.111.174425 PubMed DOI PMC
Conesa A., Götz S. (2008). Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008:619832. 10.1155/2008/619832 PubMed DOI PMC
Devaiah S. P., Roth M. R., Baughman E., Li M., Tamura P., Jeannotte R., et al. . (2006). Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67, 1907–1924. 10.1016/j.phytochem.2006.06.005 PubMed DOI
DistéFano A. M., GarcíA-Mata C., Lamattina L., Laxalt A. M. (2007). Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure: NO induces phosphatidic acid accumulation in guard cells. Plant Cell Environ. 31, 187–194. 10.1111/j.1365-3040.2007.01756.x PubMed DOI
Doniwa Y., Ueda M., Ueta M., Wada A., Kadowaki K., Tsutsumi N. (2010). The involvement of a PPR protein of the P subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript. Gene 454, 39–46. 10.1016/j.gene.2010.01.008 PubMed DOI
Elmore J. M., Liu J., Smith B., Phinney B., Coaker G. (2012). Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling. Mol. Cell. Proteomics 11:M111.014555. 10.1074/mcp.M111.014555 PubMed DOI PMC
Emanuelsson O., Nielsen H., von Heijne G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. Publ. Protein Soc. 8, 978–984. 10.1110/ps.8.5.978 PubMed DOI PMC
Fellerer C., Schweiger R., Schöngruber K., Soll J., Schwenkert S. (2011). Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of Arabidopsis. Mol. Plant 4, 1133–1145. 10.1093/mp/ssr037 PubMed DOI
Flores-Pérez Ú., Bédard J., Tanabe N., Lymperopoulos P., Clarke A. K., Jarvis P. (2016). Functional analysis of the Hsp93/ClpC chaperone at the chloroplast envelope. Plant Physiol. 170, 147–162. 10.1104/pp.15.01538 PubMed DOI PMC
Flores-Pérez Ú., Jarvis P. (2017). Isolation and suborganellar fractionation of arabidopsis chloroplasts. Methods Mol. Biol. 1511, 45–60. 10.1007/978-1-4939-6533-5_4 PubMed DOI
Gookin T. E., Assmann S. M. (2014). Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. Plant J. 80, 553–567. 10.1111/tpj.12639 PubMed DOI PMC
Guo L., Mishra G., Markham J. E., Li M., Tawfall A., Welti R., et al. . (2012). Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J. Biol. Chem. 287, 8286–8296. 10.1074/jbc.M111.274274 PubMed DOI PMC
Guo L., Mishra G., Taylor K., Wang X. (2011). Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J. Biol. Chem. 286, 13336–13345. 10.1074/jbc.M110.190892 PubMed DOI PMC
Heard W., Sklenár J., Tomé D. F. A., Robatzek S., Jones A. M. E. (2015). Identification of regulatory and cargo proteins of endosomal and secretory pathways in Arabidopsis thaliana by proteomic dissection. Mol. Cell. Proteomics 14, 1796–1813. 10.1074/mcp.M115.050286 PubMed DOI PMC
Heinemeyer J., Eubel H., Wehmhöner D., Jänsch L., Braun H. P. (2004). Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. Phytochemistry 65, 1683–1692. 10.1016/j.phytochem.2004.04.022 PubMed DOI
Hong Y., Zhao J., Guo L., Kim S.-C., Deng X., Wang G., et al. . (2016). Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62, 55–74. 10.1016/j.plipres.2016.01.002 PubMed DOI
Hou Q., Ufer G., Bartels D. (2016). Lipid signalling in plant responses to abiotic stress: lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 39, 1029–1048. 10.1111/pce.12666 PubMed DOI
Huang C., Yu Q. B., Li Z. R., Ye L. S., Xu L., Yang Z. N. (2017). Porphobilinogen deaminase HEMC interacts with the PPR-protein AtECB2 for chloroplast RNA editing. Plant J. 92, 546–556. 10.1111/tpj.13672 PubMed DOI
Huang S. (2006). Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol. Biol. Cell 17, 1946–1958. 10.1091/mbc.e05-09-0840 PubMed DOI PMC
Huo C., Zhang B., Wang H., Wang F., Liu M., Gao Y., et al. . (2016). Comparative study of early cold-regulated proteins by two-dimensional difference gel electrophoresis reveals a key role for phospholipase Dα1 in mediating cold acclimation signaling pathway in rice. Mol. Cell. Proteomics 15, 1397–1411. 10.1074/mcp.M115.049759 PubMed DOI PMC
Janda M., Šašek V., Chmelarová H., Andrejch J., Nováková M., Hajšlová J., et al. . (2015). Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana. Front. Plant Sci. 6:59. 10.3389/fpls.2015.00059 PubMed DOI PMC
Jarvis P., López-Juez E. (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14, 787–802. 10.1038/nrm3702 PubMed DOI
Jiang Y., Wu K., Lin F., Qu Y., Liu X., Zhang Q. (2014). Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta 239, 565–575. 10.1007/s00425-013-1999-5 PubMed DOI
Kato Y., Miura E., Matsushima R., Sakamoto W. (2007). White leaf sectors in yellow variegated2 are formed by viable cells with undifferentiated plastids. Plant Physiol. 144, 952–960. 10.1104/pp.107.099002 PubMed DOI PMC
Kleffmann T., Russenberger D., von Zychlinski A., Christopher W., Sjölander K., Gruissem W., et al. . (2004). The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr. Biol. 14, 354–362. 10.1016/j.cub.2004.02.039 PubMed DOI
Klopffleisch K., Phan N., Augustin K., Bayne R. S., Booker K. S., Botella J. R., et al. . (2011). Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol. Syst. Biol. 7:532. 10.1038/msb.2011.66 PubMed DOI PMC
Koussevitzky S., Stanne T. M., Peto C. A., Giap T., Sjögren L. L., Zhao Y., et al. . (2007). An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol. Biol. 63, 85–96. 10.1007/s11103-006-9074-2 PubMed DOI
Kovacheva S., Bédard J., Patel R., Dudley P., Twell D., Ríos G., et al. . (2005). In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J. Cell Mol. Biol. 41, 412–428. 10.1111/j.1365-313X.2004.02307.x PubMed DOI
Kovács-Bogdán E., Soll J., Bölter B. (2010). Protein import into chloroplasts: the Tic complex and its regulation. Biochim. Biophys. Acta 1803, 740–747. 10.1016/j.bbamcr.2010.01.015 PubMed DOI
Li M., Hong Y., Wang X. (2009). Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim. Biophys. Acta 1791, 927–935. 10.1016/j.bbalip.2009.02.017 PubMed DOI
Lichtenthaler K., Buschmann C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS Spectroscopy, in Current Protocols in Food Analytical Chemistry (CPFA) (New York, NY: John Wiley and Sons; ), F4.3, F4.3.1–F4.3.8.
McLoughlin F., Arisz S. A., Dekker H. L., Kramer G., de Koster C. G., Haring M. A., et al. . (2013). Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem. J. 450, 573–581. 10.1042/BJ20121639 PubMed DOI
Myouga F., Motohashi R., Kuromori T., Nagata N., Shinozaki K. (2006). An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response. Plant J. 48, 249–260. 10.1111/j.1365-313X.2006.02873.x PubMed DOI
Nakai M. (2015). The TIC complex uncovered: the alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochim. Biophys. Acta 1847, 957–967. 10.1016/j.bbabio.2015.02.011 PubMed DOI
Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J., et al. . (2018). Gene expression pattern and protein localization of arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Front. Plant Sci. 9:371. 10.3389/fpls.2018.00371 PubMed DOI PMC
Olinares P. D. B., Kim J., van Wijk K. J. (2011). The Clp protease system; a central component of the chloroplast protease network. Biochim. Biophys. Acta 1807, 999–1011. 10.1016/j.bbabio.2010.12.003 PubMed DOI
Pandey S. (2016). Phospholipases as GTPase activity accelerating proteins (GAPs) in plants. Plant Signal. Behav. 11:e1176821. 10.1080/15592324.2016.1176821 PubMed DOI PMC
Park S., Rodermel S. R. (2004). Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc. Natl. Acad. Sci. U.S.A. 101, 12765–12770. 10.1073/pnas.0402764101 PubMed DOI PMC
Patel R., Hsu S. C., Bédard J., Inoue K., Jarvis P. (2008). The Omp85-related chloroplast outer envelope protein OEP80 is essential for viability in Arabidopsis. Plant Physiol. 148, 235–245. 10.1104/pp.108.122754 PubMed DOI PMC
Pleskot R., Li J., Žárský V., Potocký M., Staiger C. J. (2013). Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci. 18, 496–504. 10.1016/j.tplants.2013.04.005 PubMed DOI
Pogson B. J., Albrecht V. (2011). Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol. 155, 1545–1551. 10.1104/pp.110.170365 PubMed DOI PMC
Rajashekar C. B., Zhou H. E., Zhang Y., Li W., Wang X. (2006). Suppression of phospholipase Dalpha1 induces freezing tolerance in Arabidopsis: response of cold-responsive genes and osmolyte accumulation. J. Plant Physiol. 163, 916–926. 10.1016/j.jplph.2005.08.006 PubMed DOI
Ramos-Vega M., Guevara-García A., Llamas E., Sánchez-León N., Olmedo-Monfil V., Vielle-Calzada J. P., et al. . (2015). Functional analysis of the Arabidopsis thaliana CHLOROPLAST BIOGENESIS 19 pentatricopeptide repeat editing protein. New Phytol. 208, 430–441. 10.1111/nph.13468 PubMed DOI
Roy Choudhury S., Pandey S. (2016). The role of PLDα1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in Arabidopsis. Plant J. 86, 50–61. 10.1111/tpj.13151 PubMed DOI
Roy Choudhury S., Pandey S. (2017). Phosphatidic acid binding inhibits RGS1 activity to affect specific signaling pathways in Arabidopsis. Plant J. 90, 466–477. 10.1111/tpj.13503 PubMed DOI
Sang Y., Cui D., Wang X. (2001). Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 126, 1449–1458. 10.1104/pp.126.4.1449 PubMed DOI PMC
Scuffi D., Nietzel T., Di Fino L. M., Meyer A. J., Lamattina L., Schwarzländer M., et al. . (2018). Hydrogen sulfide increases production of NADPH oxidase-dependent hydrogen peroxide and phospholipase d-derived phosphatidic acid in guard cell signaling. Plant Physiol. 176, 2532–2542. 10.1104/pp.17.01636 PubMed DOI PMC
Shikanai T. (2015). RNA editing in plants: machinery and flexibility of site recognition. Biochim. Biophys. Acta 1847, 779–785. 10.1016/j.bbabio.2014.12.010 PubMed DOI
Shoolingin-Jordan P. M. (1995). Porphobilinogen deaminase and uroporphyrinogen III synthase: structure, molecular biology, and mechanism. J. Bioenerg. Biomembr. 27, 181–195. 10.1007/BF02110033 PubMed DOI
Singh A., Bhatnagar N., Pandey A., Pandey G. K. (2015). Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium 58, 139–146. 10.1016/j.ceca.2015.04.003 PubMed DOI
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., et al. . (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452. 10.1093/nar/gku1003 PubMed DOI PMC
Takáč T., Pechan T., Richter H., Müller J., Eck C., Böhm N., et al. . (2011). Proteomics on brefeldin A-treated Arabidopsis roots reveals profilin 2 as a new protein involved in the cross-talk between vesicular trafficking and the actin cytoskeleton. J. Proteome Res. 10, 488–501. 10.1021/pr100690f PubMed DOI
Takáč T., Šamaj J. (2015). Advantages and limitations of shot-gun proteomic analyses on Arabidopsis plants with altered MAPK signaling. Front. Plant Sci. 6:107. 10.3389/fpls.2015.00107 PubMed DOI PMC
Takáč T., Šamajová O., Pechan T., Luptovčiak I., Šamaj J. (2017). Feedback microtubule control and microtubule-actin cross-talk in arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN 1 mutants. Mol. Cell. Proteomics 16, 1591–1609. 10.1074/mcp.M117.068015 PubMed DOI PMC
Takáč T., Vadovič P., Pechan T., Luptovčiak I., Šamajová O., Šamaj J. (2016). Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6. Sci. Rep. 6:28306. 10.1038/srep28306 PubMed DOI PMC
Takenaka M., Zehrmann A., Verbitskiy D., Kugelmann M., Hartel B., Brennicke A. (2012). Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc. Natl. Acad. Sci. U.S.A. 109, 5104–5109. 10.1073/pnas.1202452109 PubMed DOI PMC
Testerink C., Larsen P. B., van der Does D., van Himbergen J. A., Munnik T. (2007). Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J. Exp. Bot. 58, 3905–3914. 10.1093/jxb/erm243 PubMed DOI
Testerink C., Munnik T. (2011). Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62, 2349–2361. 10.1093/jxb/err079 PubMed DOI
Tillich M., Hardel S. L., Kupsch C., Armbruster U., Delannoy E., Gualberto J. M., et al. . (2009). Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proc. Natl. Acad. Sci. U.S.A. 106, 6002–6007. 10.1073/pnas.0808529106 PubMed DOI PMC
Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., et al. . (2012). Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 159, 450–460. 10.1104/pp.112.195578 PubMed DOI PMC
Vizcaíno J. A., Csordas A., del-Toro N., Dianes J. A., Griss J., Lavidas I., et al. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456. 10.1093/nar/gkw880 PubMed DOI PMC
Wang L., Ouyang M., Li Q., Zou M., Guo J., Ma J., et al. . (2010). The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis. Plant Mol. Biol. 74, 47–59. 10.1007/s11103-010-9653-0 PubMed DOI
Wang R., Zhao J., Jia M., Xu N., Liang S., Shao J., et al. . (2018). Balance between cytosolic and chloroplast translation affects leaf variegation. Plant Physiol. 176, 804–818. 10.1104/pp.17.00673 PubMed DOI PMC
Yu L., Nie J., Cao C., Jin Y., Yan M., Wang F., et al. . (2010). Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188, 762–773. 10.1111/j.1469-8137.2010.03422.x PubMed DOI
Zhang L., Wei Q., Wu W., Cheng Y., Hu G., Hu F., et al. . (2009a). Activation of the heterotrimeric G protein α-subunit GPA1 suppresses the ftsh-mediated inhibition of chloroplast development in Arabidopsis. Plant J. 58, 1041–1053. 10.1111/j.1365-313X.2009.03843.x PubMed DOI
Zhang Q., Lin F., Mao T., Nie J., Yan M., Yuan M., et al. . (2012). Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24, 4555–4576. 10.1105/tpc.112.104182 PubMed DOI PMC
Zhang W., Qin C., Zhao J., Wang X. (2004). Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. U.S.A. 101, 9508–9513. 10.1073/pnas.0402112101 PubMed DOI PMC
Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., et al. . (2009b). Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21, 2357–2377. 10.1105/tpc.108.062992 PubMed DOI PMC
Zhao J. (2015). Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. J. Exp. Bot. 66, 1721–1736. 10.1093/jxb/eru540 PubMed DOI PMC
Zhao J., Wang X. (2004). Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J. Biol. Chem. 279, 1794–1800. 10.1074/jbc.M309529200 PubMed DOI
Zheng M., Liu X., Liang S., Fu S., Qi Y., Zhao J., et al. . (2016). Chloroplast translation initiation factors regulate leaf variegation and development. Plant Physiol. 172, 1117–1130. 10.1104/pp.15.02040 PubMed DOI PMC
Zybailov B., Rutschow H., Friso G., Rudella A., Emanuelsson O., Sun Q., et al. . (2008). Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PloS ONE 3:e1994. 10.1371/journal.pone.0001994 PubMed DOI PMC
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations
Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants